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We consider the effect of network topology on the optimality of packet routing which is quantified by �c, the
rate of packet insertion beyond which congestion and queue growth occurs. We show that for any network,
there exists an absolute upper bound, expressed in terms of vertex separators, for the scaling of �c with network
size N, irrespective of the static routing protocol used. We then derive an estimate to this upper bound for
scale-free networks and introduce a static routing protocol, the “hub avoidance protocol,” which, for large
packet insertion rates, is superior to the shortest path routing protocol.
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The advent of the Internet has brought with it the possi-
bility of exponentially increasing information transfer
through its infrastructure. In the current paradigm of packet-
switched communication, there can be delays caused in
packet delivery due to device latency—i.e., the time taken to
process and forward a single packet by a router. If more
packets arrive at nodes �routers� than they are able to process
per unit time, queues will build up on the nodes, leading to
delays in packet delivery. Motivated by these facts, we ad-
dress two questions of broad significance for communication
networks. �i� How can one characterize a packet switched
communication network’s ultimate carrying capacity? �ii�
What routing algorithms will achieve this ultimate capacity?

In this paper we demonstrate the existence of an upper
bound �T for the congestion threshold �c �1� determined
solely by the network topology; �c is the packet insertion
rate above which queuing and congestion appears in the net-
work. It has been argued that the degree distribution of the
internet is a power law or “scale free” �2–5�. Moreover, the
scale-free network topology has been proposed as a suitable
candidate for the structure of sensor networks �6,7�. Moti-
vated by these reasons, we focus on scale-free networks. We
will restrict our discussion to the configuration model �CM�
�8�, which is one of the simplest models to generate a scale-
free network. While this model may not capture all structural
features of the Internet �9�, it nevertheless provides a suitable
starting point for the demonstration of our approach which is
applicable to arbitrary graph structures. Without loss of gen-
erality, we assume all routers to have a latency of unity. We
also assume that routers have infinite storage capacity.

Denote by G the physical substrate graph �network� for
communication, which we assume to be singly connected.
Once a packet entering node s reaches its destination node d,
it disappears from the system. The sequence of nodes and
edges that the packet visits constitutes the route for that
source-destination pair. For a network of size N, the routing
problem consists of finding an assignment of routes for all
N�N−1� /2 pairs of nodes. We shall call such an assignment
set a “static routing protocol” �SRP�. We consider a model

�1,10,11� where packet transmission is described by a dis-
crete time-parallel update algorithm. At time t and at every
node, a packet enters with probability 0���1. The packet
has a destination, chosen uniformly at random from the re-
maining N−1 nodes. Every node i maintains a set of all
packets that were sent to it by its neighbors in the previous
step, eliminates from this set the packets whose destination is
i, and adds to the set the freshly injected packet, created with
probability �. The first packet in the queue is then sent to a
neighbor on G following the SRP. Above the congestion
threshold �c of packet creation there is an onset of conges-
tion, when packets start accumulating on the network �10�. In
Fig. 3�a�, below, we show the rate of steady-state packet-
growth �10�, ����� limt→��n�t+�t�−n�t�� / �N��t�, as func-
tion of � for both the shortest-path protocol �SPP� and the
protocol proposed in this paper. Here n�t� is the number of
packets on the entire network at time t.

We define the betweenness b for a node as the number of
SRP routes passing through that node. The largest of the N
betweenness values resulting from the SRP is the “maximal
node betweenness” B. The threshold �c can be expressed in
terms of B for a given SRP �11�. For a given SRP route
between a source s and destination d the average packet cur-
rent incurred from the source at s is � / �N−1�. For a node
with betweenness b, the average packet inflow current will
be given by b� / �N−1�. Since the outflow of packets occurs
at unit latency, we will have queuing and congestion at the
node for which � / �N−1� reaches unity for the first time:
namely, at the node with b=B. Thus

�c =
N − 1

B
. �1�

For the SPP �1,10�, the node betweenness becomes identical
to the shortest-path betweenness BSPP �12�. From Eq. �1� it
follows that for a given routing protocol, the dependence of
the congestion threshold �c on N is determined by the scaling
with N of B. Therefore, the best routing protocol from the
point of view of router congestion avoidance would be one
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for which B exhibits the slowest growth with N. Although
there have been prescribed ad hoc “adaptive routing proto-
cols” �13,14� that increase �c, the issue of finding a bound on
�c has not been systematically addressed.

Next, we show that there is a lower bound BT�B �and
thus �c��T� induced only by the topology of the network G
and it is independent of the routing protocol used; i.e., no
SRP can give rise to a congestion threshold greater than �T.
Thus, by dictating an upper bound on the congestion thresh-
old, BT quantifies the intrinsic bottleneck present in the graph
G. Among the set P of all possible SRP’s, let Bopt be the
smallest maximal betweenness value: namely, Bopt
=minSRP�PBSRP, so BT�Bopt �Fig. 1�. It is an open question
whether the topological bound can be achieved by a routing
protocol. Similar considerations have been made in the con-
text of edge betweenness in Refs. �15,16�. Here we focus on
the scaling of the bound BT as a function of N.

We next discuss BT using graph partitioning arguments.
Given an arbitrary network G, partition the set of all nodes V
into three nonempty sets denoted A, X, and A�. Since G is
singly connected, there will be edges running between at
least two pairs of the three sets. Unless G is the complete
graph, we can choose X such that there are no edges running
directly between A and A�, in which case X is called a vertex
separator. For any SRP we must designate a route for all
pairs of nodes, therefore also for those pairs for which one
node is in A and the other in A�. Since X is a separator set, all
routes from A to A� must go through the nodes in X. There-
fore, there are at least �A � �A�� routes passing through X for
any SRP. Since the maximum is always larger or equal than
the average, the maximum betweenness incurred on the
nodes in X can be no less than ��A � �A� � � / �X�. We define the
sparsity �17� of the separator X the quantity QX
��X � / ��A � �A� � �. Thus, associated with every vertex separa-
tor X there is a quantity BX=1/QX providing a lower bound
to the maximal betweenness on nodes in X. Denote by M
the set of all possible vertex separators in G. If we system-
atically consider all possible choices of vertex separators X
�M, we can find �at least� one separator X* for which BX
=1/QX achieves its maximal value defined as BT. Thus, the
topology of the graph constrains the maximal betweenness to
be no less than BT, and for arbitrary routing, B�BT
=1/QX* =1/minX�MQX.

Finding minimal sparsity vertex separators is an NP-hard
problem �18�, and we shall not deal with it here. Due to the
analytical and the computational difficulty in determining BT,
we focus on obtaining an analytical estimate Be to BT and
derive its scaling with N for random, uncorrelated, scale-free
networks. While possibly being greater than the true topo-
logical bound BT, this estimate Be nevertheless provides a
comparative value dependent only on the network topology
and allows us to quantify the performance of the SPP.

We start by systematically considering every possible ver-
tex separator in the graph as follows. First, bipartition the
graph as shown in Fig. 2 into sets A and A� with �A � � �A��.
Let c�A� be the subset of nodes in A which are adjacent to at
least one node in A� and let c�A�� be the subset of nodes in
A� which are adjacent to at least one node in A. We can now
obtain a vertex separator c�A� which separates sets A \c�A�
�19� and A� or, similarly, a vertex separator c�A�� which
separates sets A� \c�A�� and A. Thus, going through all pos-
sible bipartitions of the graph with �A � �N /2 ensures that we
have considered all possible vertex separators of the graph.

If c�A� is chosen as the separator, then the sparsity is
Qc�A�= �c�A� � / ��A−c�A� � �A� � �� �c�A� � / ��A � �A� � �. We obtain
a similar expression for Qc�A�� if c�A�� is chosen as the vertex
separator. Therefore

Qc�A� �
1

�A��
�c�A��

�A�
, Qc�A�� �

1

�A��
�c�A���

�A�
. �2�

Since �A � �N /2, �A� � �O�N� and a lower bound for the spar-
sity QX* is determined by

QX* �
1

O�N�
min

A�V,A�N/2
�min� �c�A��

�A�
,
�c�A���

�A� 	
 . �3�

Next we use the notion of edge expansion, �e, defined
below. For a bipartition of the graph G into sets A and A�,
denote the number of edges simultaneously adjacent to a
node in A and A� as ce�A ,A��. Then

�e = min
A�V,A�N/2

�ce�A,A���
�A�

, �4�

and an edge expander graph has �e=O�1�. Next consider a
bipartition of the graph into A and A�, and let �A � =cN�

where c is a constant and 0	��1. From the edge expan-
sion property of scale-free graphs with minimum degree
kmin�3 �15�, the number of cut edges between A and A� is at
least �ecN�=O�N��. We can bound from below both �c�A��
and �c�A���, as needed by �3�, by the minimal size m of the
set of nodes that can contribute �ecN� cut edges. The size m

is obtained by taking all nodes with degree higher than k̂,
such that N�

k̂

�
kP�k�dk=�ecN�, where P�k�=Ak−
 is the de-

FIG. 1. �Color online� The relative sizes of the betweenness
values introduced in the text.

FIG. 2. �Color online� Bipartitioning G into A and A� such as to
obtain two vertex separators c�A� and c�A��; see text.
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gree distribution of the graph. This yields k̂�N�1−��/�
−2�.
Therefore the minimal size of the set of nodes that can con-
tribute �ecN� edges is m=N�

k̂

�
P�k�dk�NN�1−
��1−��/�
−2�

and, therefore,

�c�A��, �c�A��� � m = O�NN�1−
��1−��/�
−2�� . �5�

The quantity m is bounded below by O�1�. For a given 
 we
see that when �=1 or in other words A and A� in the bipar-
tition are both O�N�, we get m�O�N�. For all other values
of �, we get m	O�N�. As � decreases from 1, m also de-
creases until it becomes O�1� and this occurs for the first
time when �=1/ �
−1�. Thus, from �5� and �3� we get QX*

�O�N−
/�
−1�� and so

BT � Be � O�N
/�
−1�� . �6�

From �6� we see that when 
→2, we obtain the worst pos-
sible scaling of Be=O�N2�, which can be understood from
the fact that the graph becomes increasingly star like, and for
such a graph the central node trivially has B=O�N2� �20�. On
the other hand, when 
→�, Be→O�N�. In this case the
graph approaches a random regular graph and random regu-
lar graphs are good vertex expanders �21�. This implies that
for any bipartition into A and A�, there exists a constant �
such that �c�A�� � �� �A�. Thus �c�A� � � �� �A � ��1+��, so
�c�A�� and �c�A��� are linear in �A� and hence Be=O�N�.

When 2	
	3, for the networks generated by the con-
figuration model to be uncorrelated requires that the maxi-
mum degree in the network Kmax�N1/2 �22�. Incorporating
this upper cutoff in the arguments made above, we obtain
QX* �O�N3/2� and hence BT�Be�O�N3/2� �same as for 

=3 in �6��. From Fig. 3�b�, we see that BSPP�N1.80. This is
much worse than the scaling of Be and therefore suggests
that an SRP for which the maximal betweenness scales like
Be would provide better performance from the point of view
of congestion than the SPP. The question arises whether Be
can be achieved by any static routing protocol. We answer
this question affirmatively by presenting next an SRP for
which the scaling of the maximal betweenness surpasses that
of Be and is therefore significantly better than the scaling of
BSPP.

While Be imposes an upper bound on BT, a nontrivial
lower bound can be imposed on BT using the following con-
sideration: Assume we take as a vertex separator all nodes of
degree k�K* for some K*. The total number of links ema-
nating from the nodes of this separator is N�=N�K*

� ckk−
dk
=O(N�K*�2−
). The total number of nodes in this separator is
n=N�K*

� ck−
dk=O(N�K*�1−
). The probability that a node of
degree kmin has all its neighbors in the vertex separator is
order �N� /N�kmin, decaying exponentially with k. Since there
are O�N� nodes of degree kmin, at least O(N�N� /N�kmin)nodes
must communicate through the separator. This yields

BT � O�NN�N�/N�kmin

n
	 � O„N�K*��2−
�kmin−�1−
�

… . �7�

For kmin=3 and 
	2.5 this gives a nontrivial lower bound
on BT.

FIG. 3. �Color online� �a� Performance of SPP �solid circles� and
hub avoidance HAP �squares� on a scale-free graph of size N=103

and 
=2.5. The number of hubs removed is nH=nH
* =0.05N, which

in our simulations yields the minimal value of BHAP for N=1000.
The congestion threshold �c beyond which packet growth occurs
������0� is higher for the HAP as compared to the SPP. �b� Log-
log plot of the scaling of the maximum betweenness versus system
size N for the two protocols. BHAP has scaling exponent of
1.42±0.01, consistent with the worst case estimate for the topologi-
cal bound on the maximal betweenness, Be�N3/2. For each value of
N, we use the minimal value of BHAP obtained in simulations by
varying nH. BSPP grows much faster, BSPP�N1.80±0.01. The errors in
the slopes are the standard errors in the regression coefficient. �c�
Nonmonotonic behavior of BHAP as the number of hubs removed in
the HAP, nH, is varied. We show results for N=2500, 5000, 7500,
and 10000 from bottom to top, respectively. We see that BHAP

achieves a minimal value at a certain value of nH=nH
* .
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The performance of the SPP can be approximated by con-
sidering the role of the high degree nodes with k=O�
N�.
Since a sharp cutoff is induced on the degrees, the number of
such nodes is N�
N

� ck−
dk=O�N�3−
�/2�. These nodes are con-
nected in an approximate clique with a finite fraction of the
shortest paths going through them �since the probability of
connecting to one of these high degree nodes is larger than to
any other node and the path between them is short�, and due
to their similar degree, these nodes may be assumed to have
similar betweenness values. Thus, the estimate on the be-
tweenness of these nodes is BSPP�O�N2 /N�3−
�/2�
=O�N�
+1�/2�. For the case 
=2.5, from Fig. 3�b�, this yields
BSPP�O�N1.75� in agreement with the measured 1.8. Note
that if a packet can be split to access multiple shortest paths
between source and destination, the definition of between-
ness and hence the scaling of BSPP is altered �23�.

Our derivation of Be suggests that the sparsity is smallest
when obtained from a bipartition where the smaller set is of
size of the order of the maximal degree. This suggests that,
topologically, the betweenness for hubs is high and using the
SPP increases this betweenness since shorter paths tend to
use hubs. Moreover, using the SPP leaves a large number of
alternate paths unused for routing. Exploiting these observa-
tions, we obtain a novel SRP, which we call the hub avoid-
ance protocol �HAP�, as follows: �i� Remove a number nH of
the highest degree nodes. The network could now consist of
several disconnected clusters. �ii� In every disconnected clus-
ter, assign a routing path for every pair of nodes using SPP.
�iii� Place back the removed nodes with their edges. �iv� For
every pair of nodes which have not been assigned a routing
path in step �i�, assign one using the SPP. For our simulations
�Fig. 3�b�� we have chosen for a given N that value of nH
which gives the optimal performance—i.e., the lowest value
for the maximal betweenness BHAP. In general, varying the
value of nH gives rise to a nonmonotonic behavior, with a
minimum at a certain value of nH=nH

* �N� �Fig. 3�c��. Thus,
the HAP is an SRP for which the scaling of the maximal
betweenness not only achieves, but surpasses the scaling of
the topological estimate Be, and therefore is a significant im-

provement over the SPP. This improvement comes from uti-
lizing available alternate paths which, while not significantly
longer than the shortest path, considerably reduces the be-
tweenness of the hubs. Figure 3�a� shows the improvement
in performance of our HAP as reflected by the increase in the
value of the �c and the decrease in the number of accumu-
lating packets at a given packet creation rate � compared to
the SPP.

We argue for the attainability of the scaling Be�N3/2 us-
ing the HAP. Assume that the HAP proceeds by initially
removing nodes with degree k�K* and connecting remain-
ing nodes using the SPP. Then, gradually start restoring
nodes of degree K�K*. At a given stage j, assume that we
restore all nodes with k=Kj. For all j, we choose Kj suffi-
ciently large so that the network is still above the percolation
threshold and therefore has a connected component of O�N�.
The network at stage j can therefore be considered to consist
of three sets of nodes: �i� the set X of newly restored nodes
with k=Kj, �ii� the set A� which forms the connected com-
ponent of O�N�, and �iii� the set A of nodes that are detached
from A� by the removal of X. Moreover, the size of the set A
can be no greater than O��X �Kj�. Hence, nodes in X can
connect O��X �Kj� nodes in A with the O�N� nodes in A�.
Assuming that nodes of the set X share equally the between-
ness arising from paths between A and A� �which is reason-
able since the degrees of the constituent nodes are the same�,
the betweenness on each node in set X is
�O��X �KjN�� / �O��X � ��=O�NKj�. Since Kj can be at most
O�
N�, it follows that the maximal betweenness obtained by
the HAP is at most O�N3/2�.

In summary, we identified a bound to communication aris-
ing purely from the network topology and we used this
bound to show that there exist better SRPs than the SPP for
routing on scale-free networks.
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