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Properties of a quantum mushroom billiard in the form of a superconducting microwave resonator have been
investigated. They reveal unexpected nonuniversal features such as, e.g., a supershell effect in the level density
and a dip in the nearest-neighbor spacing distribution. Theoretical predictions for the quantum properties of
mixed systems rely on the sharp separability of phase space—an unusual property met by mushroom billiards.
We however find deviations which are ascribed to the presence of dynamic tunneling.
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Billiards play a central role in the investigation of systems
with regular, chaotic, or mixed dynamics �1�. When quantum
chaos established itself as a new field, billiards were used as
a paradigm for both theoretical and experimental research
�2�. The billiard considered in this Rapid Communication is
from the family of mushroom billiards suggested by Buni-
movich �3� as a generalization of the stadium billiard �4�.
Compared to conventional mixed systems they have the par-
ticular property that their phase space is sharply divided into
one regular island and the chaotic sea, whereas usually the
islands of regularity are typically surrounded by a layer of
infinitely many islands. In the simplest case they consist of a
semicircular hat with a symmetrically attached rectangular
stem as shown in Fig. 1�a�. All regular orbits of mushroom
billiards are orbits of the semicircle billiard with a conserved
angular momentum which stay in the hat forever. Orbits of
particles with the same angular momentum form a semicir-
cular caustic. There is one critical caustic, which rigorously
separates the orbits into regular and chaotic ones; its radius
rc equals half the width of the stem �dotted line in Fig. 1�a��.
Particles moving in the hat with a larger or equal caustic stay
there forever, whereas those with a smaller one eventually
enter the stem and therefore are chaotic. To our knowledge
this clear separation of the phase space has been found be-
fore only for classical maps �5�. Due to this unusual feature
of the phase space, classical mushroom billiards are of inter-
est with respect to different aspects �6�. How becomes the
separability of the classical phase space visible in properties
of the corresponding quantum system? This question moti-
vated us to investigate a quantum mushroom billiard experi-
mentally using the analogy between quantum and microwave
billiards �7,8�.

The geometry of the quantum billiard we investigated is
shown in Fig. 1�b�. To avoid the effects induced by the su-
perposition of two parity classes, we used a desymmetrized
mushroom billiard—i.e., one with a quarter-circle for the hat.
Moreover, the stem is chosen triangular instead of rectangu-
lar in order to eliminate bouncing ball orbits as seen, e.g., in
the stadium billiard �8�. The stem width is two-thirds of the
radius R of the hat, and its inner angle equals 45°. We veri-
fied with a rigorous analysis �3� that the classical phase space
is still sharply divided into a regular and a chaotic part. The
invariant measure qc of the chaotic part is 82.9% of the
phase-space volume. The eigenvalues of the quantum mush-
room billiard were measured with a flat, cylindric microwave
cavity of lead-plated copper �Fig. 1�c�� of 5 mm height. The

hat has a radius of R=0.24 m. In order to obtain a large and
reliable set of resonance frequencies we performed the mea-
surements at 4.2 K, where the cavity is superconducting
�8,9�. Using a vectorial network analyzer �VNA� we col-
lected complex transmission spectra with six different anten-
nae up to 22 GHz with a sample rate of 100 kHz. The an-
tenna positions are distributed over the whole area of the
billiard �Fig. 1�b��. Figure 2 shows a part of the measured
transmission spectra for five different antenna combinations.
The spectra have the unusual property that they exhibit se-
quences of resonances, which are separated by large gaps
with no resonances �arrows in Fig. 2�. This bunching effect
indicates that there are two well-distinguishable frequency
scales. It will be discussed in detail below.

A set of 938 resonance frequencies was obtained from the
spectra in agreement with the expectation from Weyl’s for-
mula �10�. On the basis of this large data set we first consid-
ered conventional statistics and compared them to theories
applicable to the quantum spectra of mixed systems, such as,
e.g., the Berry-Robnik statistics �11�. First we computed the
number of levels N�f�—i.e., the integrated resonance density
��f�—and determined its smooth part NWeyl�f�. The resulting
fluctuating part Nfluc�f�=N�f�−NWeyl�f� is shown in Fig. 3.
The most striking feature is a beating pattern caused by the
superposition of two oscillations, which in fact reflects the
bunching effect observed in Fig. 2. In the stadium billiard �8�
oscillations are caused by the so-called bouncing ball orbits.
To find the origin of the beating observed in Fig. 3, we com-
puted the length spectrum ��̃fluc�x�� shown in Fig. 4�a�, which
has peaks at lengths x of periodic orbits. Here, �̃fluc�x� is the
Fourier transform of the fluctuating part of the resonance

FIG. 1. �Color online� �a� Typical shape of a mushroom billiard
with the critical caustic shown as a dotted line, �b� desymmetrized
version �quarter-circle as hat� with triangular stem, and �c� photo-
graph of the corresponding experimental microwave resonator. The
positions of the six antennae in the experiment are indicated in �b�.
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density �fluc�k� as a function of wave number k=2�f /c,
where c is the velocity of light. In order to get information on
the nature of the periodic orbits related to the peaks in the
length spectrum, we also computed the latter for the regular
orbits in the hat �8�. For this purpose we first determined the
eigenvalues and eigenfunctions of a quarter-circle billiard of
the same radius as the hat. These are indexed by a radial
quantum number n and an angular momentum one m. The
length spectrum in Fig. 4�b� has been obtained by consider-
ing only eigenvalues with eigenfunctions, which are local-
ized between the critical caustic �Fig. 1�a�� and the circular
boundary—that is, eigenfunctions with a sufficiently large m.
By comparison of Fig. 4�a� with Fig. 4�b� we see that all
peaks of regular orbits in the hat of the mushroom billiard
are reproduced. The remaining peaks in the length spectrum
are thus associated with chaotic orbits. Around 0.7 m we
observe a pair of closely lying dominant peaks. They corre-
spond to the shortest regular periodic orbits. After subtract-
ing their contribution to Nfluc�f� the beating vanished. This
cause of beatings in circular or spherical geometries by short
dominant orbits of approximately the same length has al-
ready been observed in metal clusters �12� and termed the
supershell effect. It has also been stressed in nuclei �13�,
nanowires �14�, and recently in trapped dilute Fermi gases
�15�. In mushroom billiards it is induced by regular orbits
coexisting with chaotic ones whose measure is determined
by the depth of the stem.

Next we consider the nearest-neighbor spacing distribu-

tion �NND�. Figure 5�a� shows the experimental NND with
that for Poisson statistics and a Gaussian orthogonal en-
semble �GOE� describing regular and chaotic systems, re-
spectively. As to be expected the experimental NND coin-
cides with neither of them. A comparison of the NND with
the one derived by Berry and Robnik �11� for mixed systems
yields good agreement for qc=82.9% as given above. Yet,
even though the requirements for its applicability are best
met with mushroom billiards, most surprisingly the agree-
ment is not better than for other mixed systems. Especially,
for small spacings s deviations are visible in Fig. 5�a�. This
can be attributed to dynamic tunneling between classically
separated regions of phase space in the quantum regime
�16–18�. In addition, we observe a peculiarity in the shape of
the NND. Namely, the experimental histogram resulting
from a fairly small binwidth exhibits a profound dip at s
=0.7. This dip is statistically significant, and it is present also
in NND’s derived from different subsections of the spec-
trum. When including the contribution of the pair of domi-
nant short periodic orbits to Nfluc�f� in the usual spectral
unfolding procedure �8�, the dip is no longer present �Fig.
5�b��. It should be noted that this result is contrary to the
general belief that only long periodic orbits control short-
range spectral properties of a quantum system.

While in the semiclassical limit the eigenvalue spectrum

FIG. 2. Part of five transmission spectra between 9 and 10 GHz,
measured with the microwave resonator shown in Fig. 1�c�. The
curves labeled with �S1j�, j=2, . . . ,6, are obtained with the antennae
1 and j whose positions are indicated in Fig. 1�b�. The spectra have
been displaced from each other along the y axis for illustration and
are plotted in a logarithmic scale. One notices a bunching
behavior—i.e., large gaps marked by arrows—between stretches of
resonances.

FIG. 3. Fluctuating part of the number of resonances below a
given frequency f . The curve oscillates and shows a beating behav-
ior with some noise at the nodes marked by arrows.

FIG. 4. �a� Experimental length spectrum of periodic orbits of
the mushroom billiard. The two peaks of lengths of about 0.7 m are
due to two regular orbits in the hat of the mushroom, and that at
length 1.12 m is due to a chaotic one. �b� The computed length
spectrum of a quarter-circle billiard is shown flipped upside down,
where only eigenvalues were considered which correspond to angu-
lar momenta larger than the critical one.

FIG. 5. �a� Nearest-neighbor spacing distribution of the mush-
room billiard together with those for Poisson statistics and the GOE
�solid lines� expected for systems with regular and chaotic dynam-
ics, respectively. Note the dip at s=0.7. It vanishes �b� when the
contribution of the dominant periodic orbits in Fig. 4 to the reso-
nance density is subtracted. The dashed line in both �a� and �b�
shows the Berry-Robnik prediction for a mixed system with qc

=82.9% chaos.
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of a mixed system consists of regular eigenvalues with
eigenfunctions localized on the regular islands—i.e., for the
desymmetrized mushroom billiard those of a quarter-circle
billiard with eigenfunctions localized in the hat—and of cha-
otic ones with eigenfunctions distributed over the whole bil-
liard �19�, this must not be true anymore �16,17� in the quan-
tum limit. However, since for mushroom billiards there is no
layer of islands between the regular and chaotic parts of the
phase space, their eigenstates should be classifiable as regu-
lar or chaotic �16,20� even in the quantum regime. In order to
investigate this further, we measured the electric field
strength intensity—i.e., squared eigenfunctions of an en-
larged copy of the mushroom billiard—for several resonance
frequencies using the perturbing bead method at room tem-
perature �21�. An example for a squared regular eigenfunc-
tion is shown in Fig. 6�a�. It is very similar to that of the
quarter-circle with n=3 and m=44. A chaotic eigenfunction
is plotted in Fig. 6�b�. However, for such eigenfunctions we
even find traces of regularity in the field pattern in the hat,
and for the regular eigenfunctions the intensity in the stem is
nonvanishing. This indicates that there is a dynamic tunnel-
ing �18�, such that the classification into regular and chaotic
eigenstates is only asymptotically correct. Indeed, we also
observed some rare mixed eigenfunctions whose intensity is
equally distributed over the whole billiard area, while the
field pattern in the hat is very similar to that of a regular
eigenfunction �Fig. 6�c��. In Fig. 6�d� the averaged intensity
distribution of 239 chaotic eigenfunctions is shown. Its clas-
sical counterpart is the probability PC to find chaotic orbits at
a certain position in the billiard. It is constant as in com-
pletely chaotic systems in that part of the billiard which is
accessible to chaotic orbits only—i.e., in the stem and in the
hat for 0�r�rc, where r is the distance from the circle

center and rc is the radius of the critical caustic. Interestingly,
for rc�r�R it decreases as arcsin�rc /r� �3�, which is a con-
sequence of equipartition in the mixed phase space. The ra-
dial profile of PC is compared to the experimental results in
�e�—revealing the decrease of intensity in the hat. The abrupt
change of the distribution when crossing the critical caustic
is smeared out due to the finite wavelength. At the boundary
of the billiard quantum effects �22� also lead to deviations
from the classical behavior.

Finally, for a fixed n, the eigenvalues of the quarter-circle
become asymptotically equidistant for large frequencies.
Thus regular modes in the superconducting mushroom bil-
liard were obtained by identifying chains of equidistant ei-
genvalues in the measured spectrum and comparing them to
the computed ones of the corresponding circle billiard. We
found regular �chaotic� periodic orbits in the length spectrum
of the regular �chaotic� eigenvalues and, though strongly
suppressed, also chaotic �regular� ones appear. This shows
again that there is an interaction via dynamic tunneling be-
tween the regular and chaotic parts of the classical phase
space. The deviations of the measured regular eigenvalues of
the mushroom billiard from the computed eigenvalues of the
quarter-circle billiard shown in Fig. 7 quantify the dynamic
tunneling. Most interestingly they vary unidirectionally. In-
deed, for all families of equal radial quantum number n the
deviations are close to zero for large frequencies—i.e., large
values of m—where the eigenfunctions of the quarter-circle
billiard are localized close to the circular boundary and
therefore almost not influenced by the stem. When approach-
ing the frequency corresponding to the critical angular mo-
mentum from above, the deviations increase as then the
eigenfunctions are localized closer and closer to the critical
caustic and the field distribution is increasingly distorted to-
ward the stem as can be seen in the intensity plot in Fig. 6�a�.
This is exactly the dynamic tunneling. There is no general
quantitative explanation for the measured deviations yet. Our
results should, however, inspire forthcoming theoretical con-
siderations of dynamic tunneling.

In summary we have shown that the spectral properties of
mushroom billiards are significantly affected by the shortest
regular orbits in the hat. They cause a supershell structure in

FIG. 6. �Color online� Measured intensity distributions. The
eigenfunctions are usually either regular �a� or chaotic �b� and cor-
respond to eigenfunctions of a quarter-circle billiard in the former
case. We also found some mixed eigenfunctions like the one in �c�.
In �d� the averaged distribution of 239 chaotic eigenfunctions is
shown. The radial intensity profile in the hat is plotted in �e� be-
tween the quarter-circle center and the circular boundary �points�,
and compared to the classical probability of finding chaotic orbits
�solid line�. The decrease beyond the critical caustic at r /R=2/3 is
revealed in the measurements, and deviations at the boundaries and
at the knee are due to quantum effects.

FIG. 7. Deviations of the experimental eigenfrequencies of the
mushroom billiard from those of a quarter-circle billiard versus fre-
quency. The symbols �points, triangles, squares� refer to regular
states. Eigenvalues with equal radial quantum number n are con-
nected by lines. For a given n there are almost no deviations for
high frequencies where the eigenfunctions are localized close to the
circular boundary. For smaller frequencies, the influence of the stem
leads to increasing deviations pointing to the importance of dy-
namic tunneling.
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the level density. As compared to other systems exhibiting
the supershell effect, in mushroom billiards the degree of
chaoticity can be tuned by varying the depth of the stem,
such that they allow the study of supershell effects for an
arbitrary degree of chaos. Surprisingly, the shortest �not
long� periodic orbits lead to a substructure in the NND. The
eigenstates of the mushroom billiard may be separated into
regular, chaotic, or—though rare—mixed ones. That the lat-
ter are rare and the behavior of the averaged intensity distri-
bution of the chaotic eigenfunctions in the mushroom hat are
manifestations of the separability of the classical phase space
in the spectral properties of the quantum billiard. Still, dy-

namic tunneling is present and can be observed, e.g., in the
field distributions, in the spectral properties, and in the de-
viations of the regular eigenvalues from those of the corre-
sponding circle billiard. Since the tunneling barrier is of a
simple structure for mushroom billiards, they are convenient
systems for the study of the dynamic tunneling process.

We acknowledge helpful discussions with E. Bogomolny,
L. Bunimovich, A. Heine, T. Papenbrock, T. Seligman, and
A. Wirzba. T.F. received grants from the Studienstiftung des
Deutschen Volkes. This work has been supported by the
DFG within the SFB 634.

�1� Ya. G. Sinai, Russ. Math. Surveys 25, 137 �1970�; M. V.
Berry, Eur. J. Phys. 2, 91 �1981�; L. A. Bunimovich, Chaos 1,
187 �1991�.

�2� M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics
�Springer, New York, 1990�; H. J. Stöckmann, Quantum
Chaos—An Introduction �Cambridge University Press, Cam-
bridge, England, 1999�; Chaos and Quantum Physics, edited
by M. J. Giannoni, A. Voros, and J. Zinn Justin �North-
Holland, New York, 1991�; A. Richter, in Emerging Applica-
tions of Number Theory, The IMA Volumes in Mathematics and
its Applications, Vol. 109, edited by D. A. Hejhal et al.
�Springer, New York, 1999�, p. 479.

�3� L. A. Bunimovich, Chaos 11, 802 �2001�.
�4� L. A. Bunimovich, Commun. Math. Phys. 65, 296 �1979�.
�5� J. Malovrh and T. Prosen, J. Phys. A 35, 2483 �2002�.
�6� E. G. Altmann, A. E. Motter, and H. Kantz, Chaos 15, 033105

�2005�; S. Lansel, M. A. Porter, and L. A. Bunimovich, ibid.
16, 013129 �2006�.

�7� H. J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215
�1990�; S. Sridhar, ibid. 67, 785 �1991�.

�8� H. D. Gräf et al., Phys. Rev. Lett. 69, 1296 �1992�.
�9� C. Dembowski et al., Phys. Rev. Lett. 90, 014102 �2003�.

�10� H. P. Baltes and E. R. Hilf, Spectra of Finite Systems �Bibliog-
raphisches Institut AG, Zürich, 1976�.

�11� M. V. Berry and M. Robnik, J. Phys. A 17, 2413 �1984�.
�12� H. Nishioka, K. Hansen, and B. R. Mottelson, Phys. Rev. B

42, 9377 �1990�; J. Pedersen et al., Nature �London� 353, 733
�1991�.

�13� V. M. Strutinsky and A. G. Magner, Sov. J. Part. Nucl. 7, 138
�1976�; O. Bohigas and P. Leboeuf, Phys. Rev. Lett. 88,
092502 �2002�; H. Olofsson, S. Åberg, O. Bohigas, and P.
Leboeuf, ibid. 96, 042502 �2006�; M. Brack, Semiclassical
Physics �Westview Press, Boulder, CO, 2003�.

�14� D. F. Urban, J. Burki, C. H. Zhang, C. A. Stafford, and H.
Grabert, Phys. Rev. Lett. 93, 186403 �2004�.

�15� Y. Yu, M. Ögren, S. Åberg, S. M. Reimann, and M. Brack,
Phys. Rev. A 72, 051602�R� �2005�.

�16� M. J. Davis and E. J. Heller, J. Chem. Phys. 75, 246 �1981�.
�17� W. P. Reinhardt, J. Phys. Chem. 86, 2158 �1981�; A. M. Ozo-

rio de Almeida, ibid. 88, 6139 �1984�;
�18� G. B. Akguc and L. E. Reichl, Int. J. Quantum Chem. 98, 173

�2004�.
�19� I. C. Percival, J. Phys. B 6, L229 �1973�.
�20� O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lett. 64,

1479 �1990�.
�21� E. Bogomolny et al., Phys. Rev. Lett. 97, 254102 �2006�.
�22� A. Bäcker, R. Schubert, and P. Stifter, Phys. Rev. E 57, 5425

�1998�.

DIETZ et al. PHYSICAL REVIEW E 75, 035203�R� �2007�

RAPID COMMUNICATIONS

035203-4


