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The analysis of transitions in stochastic neurodynamical systems is essential to understand the computational
principles that underlie those perceptual and cognitive processes involving multistable phenomena, like deci-
sion making and bistable perception. To investigate the role of noise in a multistable neurodynamical system
described by coupled differential equations, one usually considers numerical simulations, which are time
consuming because of the need for sufficiently many trials to capture the statistics of the influence of the
fluctuations on that system. An alternative analytical approach involves the derivation of deterministic differ-
ential equations for the moments of the distribution of the activity of the neuronal populations. However, the
application of the method of moments is restricted by the assumption that the distribution of the state variables
of the system takes on a unimodal Gaussian shape. We extend in this paper the classical moments method to
the case of bimodal distribution of the state variables, such that a reduced system of deterministic coupled
differential equations can be derived for the desired regime of multistability.
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I. INTRODUCTION

Over the course of recent decades, neurophysiological and
psychological studies have started to shed light on a large
variety of brain functions. Deeper insight into the neural
mechanisms underlying many brain functions can only be
gained by understanding the basic computational principles
behind them. The theory of stochastic dynamical systems
offers a useful framework for the investigation of the neural
computation involved in perception, cognition, and behavior
�1,2�. Stochastic transitions occur in cognitive processes like
decision making �3–5�, and in perceptual processes like mul-
tistable perception �6�. For example, bistable visual phenom-
ena arise when the stimuli presented afford at least two dis-
tinct possible interpretations of the same unchanging
physical retinal image. Typical examples include the Necker
cube, Rubin’s face vase, binocular rivalry, and bistable ap-
parent motion �7,8�. Single cell recordings have revealed that
only a small proportion of neurons in the low-level visual
cortical areas �V1 and V2� are modulated according the per-
ceptual alternation, whereas in high-level visual cortical ar-
eas �V4, MT, MST, IT, STS� a high proportion of the neurons
vary their activity according to the perceptual flipping of the
competing percepts �6�.

Computational and theoretical neuroscience accounts for
multistability by assuming a mechanism of mutual inhibition
among visually responsive neurons �9,10� �see also �4,5� for
the case of decision making�. These approaches imply the
analysis of biophysically realistic neural circuits designed to
implement stochastic transitions driven by noise. In general,
these models involve populations of excitatory neurons en-
gaged in competitive interactions mediated by inhibition. In
this scenario the high and low activity states are stable for

the same set of parameter values, i.e., the system is multi-
stable. The computation involved in this type of processes is
then understood as the fluctuation-driven, probabilistic tran-
sition between multistable states. If such circuits are com-
prised of large numbers of spiking neurons, the fluctuations
needed to drive the transitions arise naturally through noisy
input and/or disorder in the collective behavior of the
network.

The temporal dynamics of the firing rates of the neuronal
populations can be qualitatively captured via a system of
first-order coupled differential equations of the Wilson-
Cowan type �11,12� which describe the evolution of the av-
erage firing rate of each population. In this case, a fluctuation
term must be added to drive the transitions, and one must
study the corresponding Langevin equation of the firing-rate
model. In order to capture the role of noise in a system of
coupled differential equations, one option is to solve the as-
sociated Fokker-Planck equation for the probability distribu-
tion of the activities of the different neuronal populations.
The nonlinear nature of the original equations, however,
makes the analysis of the corresponding Fokker-Planck
equation extremely cumbersome. For this reason, the main
analysis of such noise-driven probabilistic systems remains
based on time-consuming numerical investigations, because
of the need for sufficiently many trials to capture the statis-
tics of the data.

Tuckwell and Rodriguez ��13�; see also �14,15�� presented
an alternative approach, called the method of moments
�MM�, which involves the derivation of deterministic differ-
ential equations for the first- and second-order moments of
the distribution of the activity of the neuronal populations.
�They applied this method in the context of the collective
dynamics of coupled spiking neurons.� The resulting reduced
system of deterministic equations lends itself to both analyti-
cal and numerical methods of solution as compared with the
original Langevin equation. However, the application of the
method of moments is restricted by the assumption that the
distribution of the state variables of the system is a Gaussian.
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In neuroscience, nevertheless, many interesting phenomena,
like multistable perception or decision making, are naturally
described by systems whose state variables �e.g., firing rates�
are intrinsically bimodal. The aim of this paper is to extend
the method of moments to the case of bimodal distribution of
the state variables, such that a reduced system of determin-
istic coupled differential equations can be derived for the
regime of multistability.

II. THEORY

Let us consider a canonical competitive network that con-
tains two different populations of neurons. The activity of the
neurons in each population encodes, for example, one of the
two alternative percepts in a multistable context. The under-
lying connectivity is reflected in Fig. 1; we assume that the
connections between neurons have already been formed ac-
cording to Hebbian mechanisms, such that the coupling will
be strong between neuron pairs with correlated activity and
weak between pairs with uncorrelated activity. Accordingly,
neurons within a specific population interact via strong re-
current excitation with a dimensionless weight w+�1. On
the other hand, since neurons in two different populations are
likely to have anticorrelated activity in this behavioral con-
text, we use a weaker excitatory weight w−�1 for the con-
nections between them. Furthermore, we assume there is glo-
bal feedback inhibition in the system, as a result of which all
neurons are mutually coupled to all other neurons in an in-
hibitory way, with a weight denoted by wI. The temporal
dynamics of the firing rates of the neuronal populations is
thus described by the following system of first-order differ-
ential equations �11,12�:

�
d�i�t�

dt
= − �i�t� + ���i + �

j=1

2

wij� j�t�� + ��	i�t� , �1�

where �i�t� denotes the firing rate of population i=1,2 at
time t, wij is the synaptic strength between populations j and

i �i.e., w11=w22=w+−wI and w12=w21=w−−wI�, and � is the
time constant. The external, sensory input to the population i
is denoted by �i, and the nonlinear transfer function ��·� is a
sigmoid:

��x� =
�max

1 + exp�− 
�x/�c − 1��
, �2�

with saturation value �max and maximal slope at �c. For sim-
plicity we will assume that �max=�c and that 
=4 so that the
maximal slope is 1. Fluctuations are modeled by adding in-
dependent Gaussian noise sources, denoted by 	i. Here
		i�t�
=0 and 		i�t�	 j�t��
=�2�ij��t− t��, where the angular
brackets 	·
 denote the average over realizations. This noise
term represents finite-size effects that arise due to the finite
number N of neurons in the populations �see �16,17��.

A standard bifurcation analysis of the fixed points can be
performed for the noise-free case ��=0� corresponding to
the limit N→
, which leads to the so-called classical mean-
field approximation �1,18,19�. For increasing w+, the system
undergoes a bifurcation. In particular, for values of w+ higher
than a certain critical value w+

crit, the spontaneous activity
state becomes unstable, and the system is forced to switch to
either of the two remaining stable states, characterized by a
high activation in one of the populations and low activation
in the other. When noise is added to the system, and for
w+�w+

crit, the firing rates of the two populations have each a
bimodal distribution, due to the transitions between the two
stable states. Figure 2 shows a typical evolution of the firing
rates ��1 ,�2� as a function of time. The system acts as a
stochastic flip-flop circuit: the system remains in one of two
possible stable states until fluctuations force it to switch to
the other. Figure 3 shows the histograms for the firing rates,
obtained by numerical integration of the system of stochastic
differential equations �1�.

In order to extend the method of moments to handle bi-
modal distributions of the state variables, we will derive a
deterministic system of differential equations describing the
moments of the state variables. Let us assume that the prob-
ability distribution of the state variables, here the firing rates
�1 and �2 �we omit hereafter their explicit dependence on
time�, can be approximated by a bimodal Gaussian distribu-
tion given by

p��1,�2� = Pg�1���1,�2� + �1 − P�g�2���1,�2� , �3�

where p��1 ,�2� denotes the probability distribution of the
state variables �i; g�x���1 ,�2� is a Gaussian distribution with
mean value ��x�= ��1

�x� ,�2
�x�� and covariance matrix �ij

�x�; the
superscript �x�, where x=1,2, labels either of the two stable
states present in the system. The variable P denotes the prob-
ability of being in the state x=1, i.e., in the bump described
by the Gaussian distribution g�1���1 ,�2�. Each Gaussian
bump is described by five free parameters �the two compo-
nents of the mean and three independent elements of the
covariance matrix of the �i variables�. Consequently, the bi-
modal distribution given by Eq. �3� is characterized by 11
parameters �five for each Gaussian bump, and the fraction
P�. These 11 parameters can also be extracted through 11
independent higher moments of the state variables

w+ w+

wI wIw−

w−

wI

wI

pool 1 pool 2

λ1 λ2

FIG. 1. Stochastic neurodynamical network consisting of two
self- and mutually interacting neuronal populations. The activities
of the specific populations may encode, for example, the two alter-
native percepts in the context of bistable perception phenomena.
Continuous arrows represent excitatory connections between neu-
rons in the same population with weight w+ as well as between
neurons in different populations with weight w−. Dashed arrows
represent inhibitory connections with weight wI. External sensory
input to the respective population is provided at rates �1 and �2.
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��1 ,�2�.We define following first-, second-, third-, and
fourth-order moments of the state variables:

�i = 	�i
 = �
x=1

2

P�x��i
�x�, �4�

�ij = 	��i�� j
 = �
x=1

2

P�x���ij
�x� + ai

�x�aj
�x�� , �5�

�ijk = 	��i�� j��k
 = �
x=1

2

P�x���ij
�x�ak

�x� + �ik
�x�aj

�x� + � jk
�x�ai

�x�

+ ai
�x�aj

�x�ak
�x�� , �6�

�iiii = 	���i�4
 = �
x=1

2

P�x��3��ii
�x��2 + 6�ii

�x��ai
�x��2 + �ai

�x��4� ,

�7�

where we have defined ��i=�i−�i, P�1�= P, P�2�=1− P, and
ai

�x�=�i
�x�−�i. Here, the angular brackets of 	f(�1�t� ,�2�t�)


denote the average of an arbitrary function f(�1�t� ,�2�t�) de-
fined by

	f��1,�2�
 =� � f��1,�2�p��1,�2�d�1d�2

= P�1�	f��1,�2�
1 + P�2�	f��1,�2�
2

= P�1� � � f��1,�2�g�1���1,�2�d�1d�2 + P�2�

�� � f��1,�2�g�2���1,�2�d�1d�2. �8�

Note that not all higher-order moments are independent �e.g.,
�12=�21�; therefore, to select 11 independent parameters, one
has to consider only moments that do not result from a per-
mutation of the indices. One can expand Eq. �1� in a Taylor
series about the mean values of the rate variables � yielding

�
d�i

dt
= − �i + �

n=0



1

n!
��n��ui��

i1=1

2

¯ �
in=1

2

wii1
¯ wiin

��i1
¯ ��in

+ ��	i

=− �i + �
n=0



1

n!
��n��ui��

m=0

n � n

m
�wi1

mwi2
n−m���1�m���2�n−m + ��	i

�9�

where ��n��ui� is the nth derivative of the function ��x� ap-
plied at ui=�i+� j=1

2 wij� j. Averaging both sides, and taking
into account that 	��i�t�
=0, we obtain the following deter-
ministic equations for the first-order moments:

�
d�i

dt
= − �i + �

n=0



1

n!
��n��ui��

m=0

n � n

m
�wi1

mwi2
n−m�m,n−m

�10�

where

�m,n−m = �P�1��m,n−m
�1� + P�2��m,n−m

�2� � �11�

and
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FIG. 2. �Color online� Temporal dynamics of
the firing rates ��1 ,�2�. The firing rates of both
populations act as a stochastic flip-flop circuit,
due to the stochastic transitions between the two
bistable states.
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�m,n−m
�x� = 	���1�m���2�n−m
x = 	���1

�x� + a1
�x��m���2

�x� + a2
�x��n−m
x

�12�

with ��i
�x�=�i−�i

�x�. Equation �12� can be written in a closed
form by developing the binomial terms explicitly:

�p,b
�x� = �

k=0

p

�
j=0

b �p

k
��b

j
��a1

�x��p−k�a2
�x��b−j	���1�k���2� j
x �13�

and using the Isserlis �20� formula for the multivariate high-
order moments of a Gaussian distribution:

	���1�k���2� j
x =�
0 if k + j is odd,

�11
k �22

j k ! j!

2s/2 �
r=0

t
�2�12�2r

�k/2 − r� ! �j/2 − r� ! �2r�!
if k and j are even,

�11
k �22

j k ! j!

2s/2 �
r=0

t
�2�12�2r+1

��k − 1�/2 − r� ! ��j − 1�/2 − r� ! �2r + 1�!
if k and j are odd,

�14�

where t=min�k , j� /2. Similarly, since

�
d��i

dt
= − �i + �

n=0



1

n!
��n��ui��

m=0

n � n

m
�wi1

mwi2
n−m

� ����1�m���2�n−m − �m,n−m� + ��	i �15�

holds, the deterministic equations for the higher-order mo-
ments can be derived by applying the chain rules in Eqs.
�5�–�7� and using Eq. �15�, yielding

�
d�11

dt
= − 2�11 + 2�

n=0



1

n!
��n��u1�

��
m=0

n � n

m
�w11

m w12
n−m�m+1,n−m + �2, �16�

�
d�22

dt
= − 2�22 + 2�

n=0



1

n!
��n��u2�

��
m=0

n � n

m
�w12

m w22
n−m�m,n−m+1 + �2, �17�

�
d�12

dt
= − 2�12 + �

n=0



1

n! �
m=0

n � n

m
����n��u1�w11

m w12
n−m�m,n−m+1

+ ��n��u2�w12
m w22

n−m�m+1,n−m� , �18�

�
d�111

dt
= − 3�111 + 3�

n=0



1

n!
��n��u1�

��
m=0

n � n

m
�w11

m w12
n−m��m+2,n−m − �11�m,n−m� ,

�19�

�
d�112

dt
= − 3�112 + �

n=0



1

n! �
m=0

n � n

m
��2��n��u1�w11

m w12
n−m

���m+1,n−m+1 − �12�m,n−m� + ��n��u2�w12
m w22

n−m

���m+2,n−m − �11�m,n−m�� , �20�

�
d�122

dt
= − 3�122 + �

n=0



1

n! �
m=0

n � n

m
����n��u1�w11

m w12
n−m

���m,n−m+2 − �22�m,n−m� + 2��n��u2�w12
m w22

n−m

���m+1,n−m+1 − �12�m,n−m�� , �21�

�
d�222

dt
= − 3�222 + 3�

n=0



1

n!
��n�

��u2��
m=0

n � n

m
�w12

m w22
n−m��m,n−m+2 − �22�m,n−m� ,

�22�

�
d�1111

dt
= − 4�1111 + 4�

n=0



1

n!
��n��u1��

m=0

n � n

m
�w11

m w12
n−m

���m+3,n−m − �111�m,n−m� + 6�11�
2, �23�

�
d�2222

dt
= − 4�2222 + 4�

n=0



1

n!
��n��u2��

m=0

n � n

m
�w12

m w22
n−m

���m,n−m+3 − �222�m,n−m� + 6�22�
2. �24�

The noise term in Eqs. �16�, �17�, �23�, and �24� was derived
according to Itō calculus. In Itō calculus, white noise 	�t� is
seen as the time derivative of a Wiener process or Brownian
motion W�t�, i.e., dW�t�=	�t�dt. Our equations have the sto-
chastic differential form dX=Fdt+G dW, with G=���, and
we can apply Itō’s chain rule to obtain the differential form
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of any power of X; following Itō’s rule, the stochastic differ-
ential form for Y 
Xm is

dY = �mXm−1F + 1
2m�m − 1�Xm−2G2�dt + mXm−1G dW ,

where the unexpected term �according to conventional calcu-
lus� 1

2m�m−1�Xm−2G2dt arises from the fact that
dW��dt.

Hence, the original system described by the two Langevin
equations �1� is transformed into a system of 11 coupled
deterministic differential equations relating the higher-order
moments of the probability distributions of the rates �1 and
�2. Solving the fixed points of the deterministic system of
moments by setting the left-hand side of Eqs. �10� and �16�–
�24� equal to zero allows us to find the 11 parameters P, �i

�x�,
and �ij

�x� �for all i and x� that characterize the assumed bimo-
dal Gaussian distribution of the state variables, avoiding ex-
plicit trial-by-trial simulations of the original Langevin sys-
tem. We solve this system numerically by applying a
nonlinear least-square solver based on the Levenberg-
Marquardt method with line search �21� and truncating the
infinite summation on the right-hand side of Eqs. �10� and
�16�–�24� at a finite n=N. In the numerical experiments, we
assessed the convergence of the truncated summation by in-
creasing successively the value of N and checking that the
terms with increasing n were becoming negligible. Note that
one can calculate the derivative ��n� iteratively using the fol-
lowing expression:

��n� =



�c
��n−1� − 2




�c�max
�
j=0

n−2

an,j�
�j���n−j−1� for n � 2

�25�

where

an,j = �1 if j = 0 or j = n − 2,

an,j = an−1,j−1 + an−1,j otherwise.

�26�

III. RESULTS

We show in this section the application of the extended
MM to the multistable neurodynamical system introduced in
the last section and described by Eq. �1�. The explicit nu-
merical simulations of the neurodynamical system �1� re-
flecting the effect of stochastic fluctuations on that system
can now be compared with the semianalytical results ob-
tained by the reduced deterministic moments systems �Eqs.
�10� and �16�–�24��. In all experiments, we truncated the
right-hand side of Eqs. �10� and �16�–�24� at N=10, after
checking convergence.

The parameter values used in the simulations were �
=1 ms, �1=15 Hz, and �2=�1+��, where �� is varied from
0 to 6 �Hz. We selected the parameters in order that the
system be bistable.

Figure 3 plots the probability density functions of the sta-
tionary asymptotic distributions of �1 �lower panel� and �2
�top panel� for �=0.0632 Hz, w+=2.32, and ��=0 �unbi-
ased case�. The explicit numerical simulations of the original
Langevin system �1� were obtained by integrating a single
trial during 1000 s. We integrated numerically Eqs. �1� with
the Euler method by discretizing them in the following way:

�i�t + �t� = �i�t� +
�t

�
�− �i�t� + ���i + �

j=1

2

wij� j�t���
+ ��i��t

�
, i = 1,2,

+ ��i��t

�
, i = 1,2, �27�

where �i are independent standard normalized Gaussian
noise processes. Mean values of the firing rates calculated
from nonoverlapping intervals of 1 ms were used to con-
struct the normalized histograms ��shaded� orange areas in
Fig. 3�. Solutions for the stationary bimodal Gaussian distri-
butions with parameters �mean values, covariances, and
weighting factor P� obtained by the extended deterministic
system of moments �Eqs. �10� and �16�–�24�� are shown as
�red� solid curves in Fig. 3. They agree well with the numeri-
cal solutions of the original Langevin equations. Even more,
for comparison, Fig. 3 also depicts a bimodal Gaussian
maximum-likelihood fit �dashed black curves� of the simu-
lated data using Eq. �1�, which shows as well a good agree-
ment with the results obtained by the extended MM.
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FIG. 3. �Color online� Probability density functions of the sta-
tionary asymptotic distributions of �1 �lower panel� and �2 �top
panel� for �=0.0632 Hz, w+=2.32, and ��=0 �unbiased case�. Us-
ing �1� we integrated a single trial during 1000 ss. Mean values of
the firing rates calculated from nonoverlapping intervals of 1 ms
were used to construct normalized histograms �orange shaded ar-
eas�. Gaussian bumps with means and variances given by solutions
of the reduced deterministic moments systems �Eqs. �10� and �16�–
�24� are shown as red solid curves. The best �in the sense of maxi-
mum likelihood� fits of the simulated data using Eq. �1� obtained
with a bimodal Gaussian model are shown as dashed black curves.
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We have also obtained an excellent numerical agreement
for the moments �i

�x� and �ij
�x� between those estimated by the

MM and those estimated by the maximum-likelihood �ML�
estimators obtained from the simulated data. For example,
the two estimates �ML and MM, the latter in parentheses� for
the different moments of �1 �top panel of Fig. 3� are �1

�1�

=2.19 �2.2�, �1
�2�=4.35 �4.3�, �11

�1�=0.0505 �0.0506�, �11
�2�

=0.1046 �0.0985�. To study the more general biased case
����0�, we analyze the dependence of the main variable P
�probability of being in one of the two bistable states,
namely, the state x=1� as a function of the bias ��. Figure 4
plots the numerical results obtained by explicit simulations
of the original system �red diamonds� and the results ob-
tained by the reduced deterministic moments method �black
circles�. To facilitate visualisation, we added Weibull fitting
curves, traditionally used in the psychophysical literature.
These results show a very good agreement between numeri-
cal simulations and the extended moments method.

The influence of the bias results in an increase of the
probability of permanence in one of the two bumps of the
bimodal distribution, namely, in the one corresponding to a
high activation of the neuronal population receiving the ex-

ternal bias and low activation in the other neuronal popula-
tion. For the particular case of ��=0 �unbiased case�, P
=0.5, i.e., the system is 50% of the time in each bump. On
the other hand, for high enough �� the system is most of the
time in the state �bump� corresponding to the high activation
of the externally biased neuronal population. Note that the
increasing difference between the MM results and the simu-
lations for increasing �� is probably due to the fact that the
explicit numerical integration of the original Langevin sys-
tem �1� requires longer simulations.

IV. DISCUSSION

In this paper we extended the moments method to the case
of bimodal distributions of the state variables �e.g., firing
rates, in a neurodynamical context�, such that a reduced sys-
tem of deterministic differential equations characterizing the
parameters of the bimodal distribution can be derived for the
regime of multistability. This extension is relevant for com-
putational neuroscience, because many perceptual and cog-
nitive functions involve multistable phenomena. In a multi-
stable regime, noise appears as a decisive parameter whose
tuning determines the capability of the system to perform
decision making or multistable perception. Therefore, the
aim of this work is to present a method that allows us to
investigate the role of stochastic fluctuations in a system of
differential equations describing the underlying neurodynam-
ics. Traditionally, one approach to this problem has been to
solve the associated Fokker-Planck equation for the probabil-
ity distribution of the activities of the different neuronal
populations. The nonlinear nature of the original neurody-
namical equations hinders analytical progress in the Fokker-
Planck framework. On the other hand, numerical investiga-
tions are time consuming since they require a large set of
trials or long simulations to generate statistically meaningful
data. The moments method offers an alternative approach
that involves the derivation of deterministic differential
equations for the higher-order moments of the distribution of
the activity of the neuronal populations. The resulting re-
duced system of deterministic equations lends itself to both
analytical and numerical methods of solutions as compared
with the original Langevin equation.
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