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We present a phase model of a repetitively firing neuron possessing a phase-dependent stochastic response
to periodic inhibition. We analyze the dynamics in terms of a stochastic phase map and determine the invariant
phase distribution. We use the latter to compute both the distribution of interspike intervals �ISIs� and the
stochastic winding number �mean firing rate� as a function of the input frequency. We show that only low-order
phase locking persists in the presence of weak phase dependence, and is characterized statistically by a
multimodal ISI distribution and a nonmonotonic variation in the stochastic winding number as a function of
input frequency.
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I. INTRODUCTION

A major question in the study of nervous system function
is how information is encoded in the spike trains of repeti-
tively firing neurons. One common experimental paradigm
for investigating the relationship between input and output
spike trains is a pacemaker neuron undergoing periodic in-
hibitory stimulation �1–4�. A key observation is that a neural
oscillator exhibits phase-locking regimes, where increasing
through a range of inhibitory input frequencies can paradoxi-
cally elevate the neuron’s firing rate. If the frequency is
pushed past this range then the phase locking breaks down,
resulting in phase drift and a decreased firing rate. Theoreti-
cal studies have demonstrated that similar behavior occurs in
a variety of nonlinear oscillator models �5–7�. It has also
been found experimentally that the nonmonotonic relation-
ship between input and output firing rates due to phase lock-
ing can be disrupted by introducing random fluctuations in
the input spike trains, resulting in monotonic behavior �1,4�.
The response of a pacemaker cell to noisy pulse trains has
recently been analyzed in terms of a stochastic phase map,
with the distribution of phases evolving according to a linear
Frobenius-Perron �FP� operator �8�. One of the useful fea-
tures of such an operator is that its spectral properties can be
used to define and analyze stochastic phase locking and sto-
chastic bifurcations �9,10�.

In this paper we study the effects of intrinsic rather than
input noise on the response of a pacemaker neuron to a pe-
riodic inhibitory spike train. We model the neuron as a phase
oscillator with a noisy phase resetting curve �PRC�, whose
dynamics reduce to a stochastic phase map. This formulation
is motivated by experimentally derived PRCs that have been
found to be noisy �11,12�. From the stochastic phase map we
determine the invariant phase distribution of the associated
FP operator, and use this to compute both the distribution of
interspike intervals �ISIs� and the stochastic winding number
�mean firing rate� as a function of the input frequency. These
calculations allow us to investigate how phase locking van-
ishes as the noise level is increased. We find that phase-
locking regions with long periods, where many cycles of
stimuli are required to complete the phase patterning, tend to
be destroyed by small amounts of noise. On the other hand,

low order phase locking persists up to a critical level of
noise, and is characterized statistically by a multimodal ISI
distribution and a nonmonotonic variation in the stochastic
winding number as a function of input frequency. In related
work it has been shown how fluctuations in phase resetting
curves can also have nontrivial effects on the synchroniza-
tion properties of a pair of pulse-coupled neural phase oscil-
lators �13�. In particular, a noise-induced bifurcation can
switch the pair from a synchronous to an antisynchronous
state. Beyond the models dealt with here, noise can have
important constructive effects on neuronal oscillator systems
such as noise induced synchronization of chaotic oscillations
and synchronization of uncoupled ensembles of oscillators
by a common noisy input �14,15�.

II. THE PHASE MODEL

Consider a repetitively spiking neuron as defined by the
phase variable on the circle �A� �0,1� where we arbitrarily
define the spike event to occur when �A crosses 1 from be-
low. In the absence of inputs, �A cycles at a constant fre-
quency �A. Inputs are generated by another oscillator �B with
frequency �B. Whenever neuron A receives a pulselike input,
its phase is shifted by a phase-dependent quantity known as
its phase resetting curve �PRC�. That is, �A→�A+R��A�
+S��A��, where R��� is the deterministic part of the PRC and
S���� is a phase-dependent random contribution. The random
variable � has probability density Q��� and the multiplier
S����0 is the phase-dependent modifier of the variance of �.
This system can be written as the discontinuous differential
equation

�Ȧ = �A + �R��A� + S��A���t�����B� ,

�Ḃ = �B = 1/TB, �1�

where ���� is the dirac delta function and we will set �A

=1 for simplicity. Without the noise term this type of model
has been studied for many years in the context of circle maps
�16�. The model can be understood phenomenologically, or
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in the case of sufficiently weak inputs, can be derived from
more complex multidimensional conductance-based models
using phase-reduction methods �17,18�. In order to simplify
our subsequent analysis, we impose two conditions on the
phase shift induced by an input spike. First, an input spike
cannot cause the phase to jump forward across unity so that
the neuron fires. This is reasonable, because we are assuming
that the input is inhibitory. Second, an input cannot retard the
phase to such an extent that on the next input spike the phase
is behind where it was on the previous input. That is, we
preclude oscillator death in the model. Hence we require

P�− TB � � + R��� + S���� � 1� = 1, ∀ �A � �0,1� .

�2�

Notice that we allow the phase to pass backward through
zero. If an oscillator is slowed so it passes back through zero
and then subsequently advances forward through zero then
we could confusingly count this as a spike, and doing so
would produce nonphysiological spike statistics. In the
present analysis we distinguish between this case and ad-
vancement through unity to spike.

The model equation �1� is solved by generating a mapping
of phases for the time of the nth input pulse to the �n+1�th.
Let �n be the phase of neuron A immediately before the nth
input. Immediately after the input the phase is �n+R��n�
+S��n��n and the phase of A just before the �n+1�th input is

�n+1 = TB + �n + R��n� + S��n��n = f��n,�n� , �3�

where �n are independent, identically distributed random
variables. Consider ��R and let pn��� be a density of
phases of A just before the nth input. The �n+1�th density is
found to be �13�

pn+1��� = �
R

Q�� − �� − TB − R����
S����

� pn����
S����

d��

=F�pn���� . �4�

We would like to view these phases modulo one by identi-
fying �� �0,1� with �+ j for j�Z so we define qn�	�
=� j�Zpn�	+ j� for 	� �0,1�. Hence the operator in Eq. �4� is
transformed to the “modulo one” FP operator

qn+1�	� = �
0

1

�
j�Z

Q�	 − 	� + j − TB − R�	��
S�	��

�qn�	��
S�	��

d	�

=G�qn��	� . �5�

FP theory can guarantee the existence of a limiting density q*

from iterates Gn�q0�=G�qn−1�=qn that is invariant with re-
spect to G: G�q*�=q* �19�. The invariant density q* gives the
steady-state distribution of phases. To compute q* in practice
we discretize the integral operator �5� into a matrix. The
invariant density vector q* is the eigenvector with a single
dominant unit eigenvalue.

A. Calculation of relative spike time distribution

We wish to use q* to derive the distribution of impulse
times 
. That is, given neuron A has just fired, when will the

next input spike arrive? We denote the corresponding prob-
ability density by pAB�
�, where the subscripts signify that 

is the relative time from the A spike to the next B input. We
sketch the construction of pAB�
� as follows. We consider a
population of oscillators each of which receives an input
spike at time t=0, say, with the distribution of phases just
prior to the input given by the invariant density q*. We then
chart the evolution of the population by keeping track of
when each neuron first fires and determining the time from
this event to the arrival of the next input spike. We proceed
iteratively by decomposing the probability distribution of
relative times 
 according to how many input spikes a neuron
receives before it fires �see Fig. 1�b��. If the stimulation fre-
quency is larger than the natural frequency �TB�1�, then
none of the oscillators will fire twice before receiving an
input, thus reducing the complexity.

To formalize the calculation, it is useful to decompose the
operator G of Eq. �5� as G=� j�ZGj with

FIG. 1. �a� pAB�
� for the equations �n+1=TB+�n+a0+z with
z	N�0,��, a0=−0.2, �=0.05, and TB=0.9. Notice that even with
R���=a0 �no phase-dependent coupling� the distribution of relative
timings still has a single mode of more likely input times. �b� Sche-
matic diagram showing the construction of pAB�
� from the terms
pAB

j �
�: The initial phase 	 at time t=0 occurs with probability
q*�	�d	. Some of these phase trajectories, comprising the density
G1�q*��
�= pAB

1 �
�, spike at time TB−
 before the next input at t
=TB �top row of panel �b��. Others starting at the initial phase 	
spike after t=TB but before t=2TB. These phase trajectories com-
prise the density G1�G0�q*���
�= pAB

2 �
�, shown in the bottom row
of panel �b�. Phase trajectories that spike in the time interval
�2TB ,3TB� �not shown� comprise the density G1
G0�G0�q*����
�
= pAB

3 �
�, etc.

NESSE, CLARK, AND BRESSLOFF PHYSICAL REVIEW E 75, 031912 �2007�

031912-2



Gj�qn��	� = �
0

1

Q�	 − 	� + j − TB − R�	��
S�	��

�
�

qn�	��
S�	��

d	�. �6�

Here Gj�qn� determines the component of the probability
density qn+1 arising from neurons that fire j times between
one input spike and the next. Additionally, because we have
scaled �A=1, the phase 	 represents the time 
 between
firing and the subsequent input. Hence, by decomposing G
into the sum of Gj, we can obtain relative timing informa-
tion. We also note that the lower bound in Eq. �2� implies
that Gj =0 for j�0. Hence, G=� j
0Gj. Starting with the
invariant density q* we define

pAB
1 �
� = G1�q*��
� . �7�

This represents the population of oscillators that fire a time 

prior to the arrival of the first input spike at t=TB �assuming
that the previous input occurred at time t=0�. The density
G�q*�=� j
2Gj�q*� represents the population of oscillators
that have fired twice or more before the subsequent input
occurs. For stimulation frequencies greater than the intrinsic
frequency of neuron A this density is zero: � j
2Gj�q*�=0.
Next we map G0�q*�, which represents the population of
oscillators that have not yet fired after one cycle of inputs, to
G1�G0�q*�� and define

pAB
2 �
� = G1�G0�q*���
� . �8�

This is the probability density of oscillators that have fired a
time 
 prior to the arrival of the second input spike at t
=2TB. Similarly, the density G0

�2��q*��	�=G0G0�q*��	� corre-
sponds to the remaining oscillators that after two cycles of
inputs have not fired. From this we define, in general,

pAB
k �
� = G1�G0

�k−1��q*���
� �9�

to be the relative timing density of the spike to the next �kth�
input after k−1 preceding input cycles. Summing pAB

k �
� we
arrive at the density of relative timings

pAB�
� = �
j=1

�

pAB
j �
�, 
 � �0,min
TB,1�� . �10�

An example of pAB�
� is shown in Fig. 1�a�. In the case TB

�1, for which � j
2Gj�q*��0, there are some oscillators that
do not receive an input between successive output spikes.
This means that �0

1pAB�
�d
�1 and the proportion of oscil-
lators that do not receive an input is 1−�0

1pAB�
�d
.

B. Calculation of interspike interval distribution

We can compute the ISI distribution by first computing
the conditional ISI density given the relative input time 
.
We denote this by pAA�T 

�, where the subscripts indicate
that T is the time between successive output spikes of neuron
A. The conditional density can be decomposed according to
how many input spikes occur between successive output
spikes. First, suppose 
�T�TB+
, that is, the neuron re-

ceives only a single input spike between successive firing
events. Let 	 denote the phase of the neuron when the next
input spike arrives �see Fig. 2�. It follows that T=TB+
−	
with 	 related to 
 according to 1+	= f�
 ,�� and f defined in
Eq. �3�. This produces the conditional ISI density

pAA
1 �T

� = Q�T − 1 + R�
�

S�
�
� 1

S�
�
. �11�

We are assuming that Q��� is an even function of �. Now
suppose that the neuron receives two inputs before firing
again so that T� �TB+
 ,2TB+
�. Let �1 be the phase of the
neuron when the second input spike arrives and let 	 denote
the phase when the third spike arrives �see Fig. 2�b��. Then
T=2TB+
−	 with 1+	= f��1 ,��� and �1= f�
 ,�� for inde-
pendent random variables � ,��. It follows that the condi-
tional ISI density for T� �TB+
 ,2TB+
� is

pAA
2 �T

� = �

TB

�

Q�T − 
 − t� + R��1�t� + 
��
S��1�t� + 
�� �

�
1

S��1�t� + 
��
pAA

1 �t� + 


�dt�, �12�

where we have introduced the change of variables �1�t�=1
− �t−
�+TB. Similarly, if T� ��j−1�TB+
 , jTB+
�, j
=1,2 , . . ., then the corresponding conditional ISI density is

FIG. 2. �a� pAA�T 

� for the equations �n+1=TB+�n+a0+� with
�	N�0,��, a0=−0.1, �=0.025, 
=0.25, and TB=0.5 ��B=2�. The
discontinuities occur at T=kTB+
, k=1,2 , . . ., and reflect the sepa-
ration of oscillators that fire after k inputs. �b� Below the graph is an
idealized representation of likely spike trains �output times� in re-
sponse to inputs �input times�, given the first input was at 
=0.25.
For this particular case the most likely interspike intervals are found
in the intervals �2TB+
 ,3TB+
� and �3TB+
 ,4TB+
�, associated
with the respective probability densities pAA

2 �T 

� and pAA
3 �T 

�.
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pAA
j �T

� = �

�j−1�TB

�

Q�T − 
 − t� + R���j−1��t� + 
��

S���j−1��t� + 
�� �
�

1

S���j−1��t� + 
��
pAA

�j−1��t� + 


�dt�, �13�

with � j�t�=1− �t−
�+ jTB. We therefore obtain the full con-
ditional ISI density

pAA�T

� = pAA
j �T

�, T � ��j − 1�TB + 
, jTB + 
� .

�14�

pAA�T 

� is defined for T� �0, � � and limT→�pAA�T 

�=0.
Recall that the lower bound of Eq. �2� requires that all oscil-
lators cannot be phase retarded over an input cycle TB, guar-
anteeing that all oscillators eventually reach unity. Conse-
quently, the computation of pAA�T 

� can be accomplished in
finitely many recursive integrals pAA

j �T 

�. pAA�T 

� will
have discontinuities at the boundaries of the intervals jTB
+
, j=1,2 , . . . �see Fig. 2�a��. These discontinuities are the
boundaries between populations of cycles that were fast
enough to be able to reach firing threshold before another
input �T� jTB+
� and those which were too slow �T
 jTB

+
�.
In the above analysis we have assumed that an input spike

cannot immediately drive a neuron to fire. This will be valid
provided that the upper bound of Eq. �2� holds. However, it
is possible for a neuron to fire twice without receiving an
input. In that case, the ISI is simply the natural frequency of
the oscillator, T=1. Taking this into account, the density of
interspike intervals pAA�T� can be calculated by integrating
the product of Eqs. �14� and �10� with respect to 
 giving the
final result

pAA�T� = �
0

1

pAA�T

�pAB�
�d


+ ��T − 1��1 − �
0

1

pAB�
�d
� . �15�

In performing the numerical computations required for
pAA�T� one may wonder if it is computationally efficient
compared with performing Monte Carlo simulations. At first
sight, the series of nested integrals needed to compute the
pAA

j �T 

� would seem to be prohibitively expensive because
each integral, when reduced to a discrete mesh, transforms to
matrix multiplication. We must also compute the dominant
eigenvector q* of the FP operator G as well as transforming
q* to approximate pAB�
�, all of which takes many matrix
multiplications. Although initially daunting, with the appro-
priate choice of a discrete mesh the analytical calculations
can be made efficient. Let N be the number of grid points
evenly spaced on the interval �0,1� with step size 1/N be-
tween points. We shall also choose the same step size for T
and 
, and require that TB be a multiple of 1 /N. With these
conditions the integral kernel in Eq. �13� can be constructed
once and reused to compute all pAA

j �T 

�. We expect the
analytical method to be fast when there are few nested inte-
grals pAA

j �T 

� to compute and slower when there are many.

There will be many when the phase delay magnitude 
R���

nears the length of TB. In this case the delay is so big that
only a very small phase advance is made over a stimulation
cycle and we are nearing the lower bound in constraint �2�.
For model parameters that avoid this pitfall the analytical
computations can be done efficiently and can be performed
faster, more accurately, and have the advantage of being ana-
lyzable, than Monte Carlo simulations �data not shown�.

III. STATISTICAL PHASE LOCKING, AVERAGE FIRING
RATE, AND SPIKE PATTERNING FOR AN

INHIBITORY INPUT

We now use the probability densities derived in the pre-
ceding section to analyze the effects of noise on the response
of a pacemaker neuron to periodic inhibition.

A. Phase locking and stochastic winding number

In the deterministic case ��=0�, 1:1 phase locking occurs
when there is a fixed point 	* of the circle map �3�, 	*−1
= f�	* ,0�. Likewise, n :m phase locking occurs when 	*

−m= fn�	* ,0�, where fn is the nth iterate of f . The qualitative
dynamics of the deterministic circle map can be character-
ized in terms of its winding number �20�

�A = lim
n→�

�n

n
, �16�

which measures the mean firing rate per number of inputs of
the neuron. Assuming that the map f is smooth and invert-
ible, it can be shown that �A is independent of the initial
phase �0 and is a continuous function of parameters. If �A is
rational, that is, �A=m /n for integers m ,n, then every se-
quence of phases converges to a periodic orbit on which
there is n :m phase locking. On the other hand, if �A is
irrational then the dynamics is quasiperiodic with the se-
quence of phases �n dense on the interval �0,1�. The wind-
ing number as a function of TB exhibits a devil’s staircase
structure in which neighborhoods centered about TB=m /n
�in which �0

1R=0� can be shown to be constant, equaling
m /n, representing n :m phase-locked regions. The compli-
ment set of the n :m phase-locked regions forms a cantor-set
structure �20�. Because �A is continuous in TB it guarantees
that �A�TB� is monotonically increasing. In the present con-
text we wish to dimensionalize the winding number to make
it synonymous with mean firing rate per input time cycle by
scaling the winding number by TB. Scaling by TB makes the
devil’s staircase structure slanted and the phase-locked re-
gions become monotonically decreasing segments. If we
switch to the �B=1/TB line the segments become monotoni-
cally increasing and we refer to them as paradoxical regions.
One of the main points of this document is to show how the
inclusion of noise can flatten and obscure these paradoxical
segments.

If there exists noise in the system then we can calculate
the stochastic winding number, scaled by TB, following Ref.
�8�. Let the initial phase of an oscillator just before an input
be �. The phase � just before the next stimulus is distributed
according to the density
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Q�� − � − TB − R���
S���

� 1

S���
. �17�

The mean phase traveled in the time between the two inputs
is

w��� = �
−�

�

�� − ��Q�� − � − TB − R���
S���

� 1

S���
d�

=TB + R��� , �18�

assuming that the noise density Q��� has zero mean. The
stochastic winding number is then

�A,stoch =
1

TB
�

0

1

w���q*���d�

=1 +
1

TB
�

0

1

R���q*���d� . �19�

B. Perturbation expansion of stochastic winding number

For concreteness, suppose that R�x�=a0+�r�x�, a0�0,
and S�x�=1+�s�x� with 0���1. When �=0 there is no
robust phase locking and the stochastic winding number is
simply

�A,stoch = 1 +
a0

TB
= 1 + a0�B. �20�

Hence, in the absence of phase locking, the firing rate de-
creases linearly in �B. With ��0 we require a perturbative
solution to q*. It is convenient to work with the periodic
extension of q*, which we denote by p*. The latter is invari-
ant with respect to the linear operator F of Eq. �4�. Let

p*��� = p0
*��� + �p1

*��� + �2p2
*��� + ¯ �21�

and expand the operator F in powers of �. Collecting terms
with equal powers of � generates a hierarchy of equations.
The zeroth order equation is

p0
*��� = �

−�

�

p0
*�x�Q�� − x − ��dx , �22�

where �=TB+a0, which has the solution p0
*���=1. The first

order equation takes the form

p1
*��� − �

−�

�

Q�� − x − ��p1
*�x�dx

=− �
−�

�

Q�� − x − ��s���dx− �
−�

�

Q��� − x − ���r�x�

+ �� − x − ��s�x��dx . �23�

Rearranging and using the change of variables z=�−x−�
and integration by parts produces the inhomogeneous linear
integral equation

p1
*��� − �

−�

�

Q�z�p1
*�� − z − ��dz

=− �
−�

�

zQ�z�s��� − z − ��dz− �
−�

�

Q�z�r��� − z − ��dz .

�24�

The solution of the integral equation can be solved by Fou-
rier methods. We let

r�x� = �
n

ancos�2�nx� + bnsin�2�nx� ,

s�x� = �
n

cncos�2�nx� + dnsin�2�nx� ,

p1
*�x� = �

n

�ncos�2�nx� + �nsin�2�nx� �25�

and then note that if Q is Gaussian, Q�x�= ���2�−1/2exp
�−x2 /�2�, then

un = �
−�

�

Q�x�cos�2�nx�dx = exp�− �n���2� ,

vn = �
−�

�

xQ�x�sin�2�nx�dx = ��2nun. �26�

A Gaussian random variable violates the restriction in Eq.
�2�. However, if � is small enough the violations will be rare
events and inconsequential to the results. Substituting Eq.
�25� into Eq. �24� and then matching terms we arrive at the
following 2�2 linear system for the nth Fourier coefficients:

1

2�n
�1 − uncos�2�n�� unsin�2�n��

− unsin�2�n�� 1 − uncos�2�n��
���n

�n
�

=− � Uncos�2�n�� + Vnsin�2�n��
− Vncos�2�n�� + Unsin�2�n��

� , �27�

where Un=vncn+bnun and Vn=dnvn+anun. The matrix is al-
ways invertible �for nonzero noise� because the determinant
D1=1+un

2−2uncos�2�n��
1+un
2−2un= �1−un�2�0.

Hence the Fourier coefficients of p1
*�	� are uniquely solvable

as functions of an, bn, cn, and dn.
For � sufficiently small we may approximate the stochas-

tic winding number as

�A,stoch = 1 +
1

TB
�

0

1

R���q*���d�

�1 +
1

TB
�

0

1

�a0 + �r�����1 + �q1
*����d�

=1 + a0�B +
�2

TB
�

0

1

r���q1
*���d�=1 + a0�B

+
�2�B

2 �
n=1

�

�an bn���n�an,bn,cn,dn�
�n�an,bn,cn,dn�

� . �28�
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This calculation determines the phase-locking regions for �
�0 that are preserved with the inclusion of noise. We expect
even a small amount of noise to obscure long-period j :k:
phase locking regions �j or k large�. However, short-period
phase locking regions like 1:1, 1:2, or 2:1 are expected to
endure. The perturbative solution �28� provides a way to ana-
lyze the mechanism by which phase locking regions are
damped by noise. Note, in particular, that higher order modes
�n large� are damped by the factor un=exp�−2�n���2� such
that ��n

2+�n
2�n exp�−2�n���2� �see Eq. �27��. This ex-

presses concisely that long-period n :m phase locking is de-
stroyed by noise. By long-period phase locking we mean
large n where n inputs lead to n distinct phase relations that
tend to produce a growth in the amplitude of the nth Fourier
mode of q1

*�	�. Figure 3 shows calculations of q*�	� for both
the dominant eigenvector solution �solid line in panels �a�
and �b�� and the perturbative solution �dashed line in panel
�a�� for the sine circle map f�	 ,z�=	+a0+� sin�2�	�+z for
a stimulation frequency ��B=0.8� in the 1:1 phase locking
region. For �=0.01 the perturbative solution is in agreement
with the eigenvector solution. If �=0.05 the perturbative so-
lution is no longer valid as the eigenvector solution exhibits
strong 1:1 statistical phase locking.

For � sufficiently small and if s�x�=0, i.e., cn and dn are
zero for all n, then the perturbative stochastic winding num-
ber is

�A,stoch � 1 + a0�B −
�2�B

2 �
n=1

�
2�nun�an

2 + bn
2�sin�2�n��

1 + un
2 − 2uncos�2�n��

.

�29�

Each term in the sum over n has a positive maximum and a
negative minimum at the points

� =
k

n
±

1

2�n
cos−1� 2un

1 + un
2�, k � Z , �30�

respectively. Hence, increasing the input frequency �B
=1/TB so that �=TB+a0 varies between these two points
generates a monotonically increasing contribution to the sto-
chastic winding number. Thus we can estimate the width of a
paradoxical segment arising from the nth mode as �TB
= �1/�n�cos−1�2un / �1+un

2��. Recall that un=exp�−2�n���2�.
Hence, as � is increased the width of the paradoxical seg-
ment is increased slightly, but not exceeding 1/�n, but the
amplitude diminishes proportionally to un. Furthermore, the
nth order firing rate perturbation magnitude is proportional to
�2�an

2+bn
2�. That is, if r�x� does not contain the nth Fourier

mode then no information regarding the corresponding para-
doxical segments will be revealed by the first-order pertur-
bative method. The solution does not exist in the small noise
limit �→0 because the linear system �27� becomes singular
and the invariant density converges to the set of delta func-
tions about the phased locked points 	* if in a phase locking
region, or converges toward an ergodic measure on some
quasiperiodic orbit that densely fills the circle. Thus the
smoothness assumption breaks down in the phase locking
regions and the invariant density cannot be expanded as a
Fourier series. This also suggests that at the center of the
paradoxical region the error between the perturbative solu-
tion and the analytical solution will be the greatest. Hence �
and � must scale together for the perturbative solution to be
valid. A larger � makes for a larger deterministic phase lock-
ing region and hence � must also be increased in order to
obscure strong phase locking. The surprising result is that the
first-order perturbative solution reveals that the n :m quasi-
phase-locking regions exist at the O��1� level only if the
phase resetting curve r��� contains nth order Fourier modes.
For example, take the deterministic sine circle map �→�
+�+� sin�2��� which has n :m phase locking regions cen-
tered about the points m /n on the � axis each with O��n�
width �20�. With the addition of noise the n :m quasi-phase-
locking regions with n
2 may only persist at the O��2� level
and therefore have O��3� magnitudes which are effectively
nonexistent. The result also shows that, in the case of weak
phase-dependent coupling �small ��, the n :m paradoxical
segments all possess the same mechanism by which noise
diminishes their width and magnitude and that the modes are
independent of one another, suggesting that the above sine
circle map is a good candidate as a model system because the
inclusion of higher Fourier modes is redundant, merely cre-
ating additional noninteracting phase locking regions on a
finer scale.

C. Example: Noisy sine circle map

Using the above rationale we take the stochastic sine
circle map f�� ,��=�+�+� sin�2���+� as the canonical
system. Figure 4 shows the stochastic winding number cal-
culated from the full q*��� �thick solid line� and the pertur-
batively calculated q*��� �thick dashed line�, both overlaid
atop the numerically calculated deterministic winding num-
ber �thin dashed line� as in Eq. �16� for large n, over three

FIG. 3. �a� q*�	� calculated as the dominant eigenvector of G
�solid line� and the perturbative solution �dashed line�. Parameters
are f�	 ,��=	+TB+a0+� sin�2�	�+� with TB=1.25, �=0.01, �
	N�0,��, �=0.025, and a0=−0.2. �b� With the same parameters
except �=0.05 q*�	� can only be calculated as the dominant eigen-
vector of G as the perturbative solution is not valid for � this large.
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different noise levels �panels �a�, �b�, and �c��. The paradoxi-
cal region, due to 1:1 statistical phase locking, diminishes in
magnitude with an increase in noise while the width of the
minima and maxima gets slightly wider according to ��−1

=�(cos−1�2u1 / �1+u1
2��)−1. The perturbative solution pro-

vides an approximation to the width of the paradoxical re-
gion however for smaller noise levels �panel �a�� the vertical
magnitude is not a good match because the O��2� terms be-
come relevant in the paradoxical region. Outside the para-
doxical region however the errors become minuscule. Hence,
in putative paradoxical region where statistical phase locking
exists the perturbative solution provides a marker for the
existence or nonexistence of the paradoxical regions and es-
timates of their size, but does not accurately approximate the
true shape of the stochastic winding number. This suggests
that higher order terms are necessary to elucidate exactly the
shape of the paradoxical region.

The singularly perturbed solution shows the emergence of
firing rate perturbations emerging from the zeroth order state
q*�	�=1, where no reliable phase relationships exist. If � is
made larger, the singularly perturbed solution is no longer
valid but the phase locking regions become large enough to
be physiologically relevant, and the effects of phase-
dependent coupling will be readily seen in spike patterning

of the ISI distribution. Figure 5 shows the ISI distribution for
the sine circle map for when there is no phase-dependent
coupling ��=0� for a frequency sweep �B=0.7 to �B=2, in
0.1 increments. Unlike the previous case shown in Fig. 4 we
set a0=−0.2. The spike patterning without any phase depen-
dent coupling ��=0�, when there is no statistical phase lock-
ing, serves as a comparison for the ��0 case. At �B=0.7
�panel �a�� the input frequency is slower than the oscillator
intrinsic frequency and the oscillator can be found in two
distinct firing periods, one representing the cycles where no
input was given, represented by a delta pulse centered about
unity, and a bell-shaped density of periods centered about
T=1.2 representing those that received a single input. As the
input frequency is increased �panel �b�� the proportion of
cycles not receiving input shrinks. At �B=0.9 �panel �c�� the
noninput cycles are gone and a bimodal distribution emerges
where the larger left mode are cycles receiving a single input
and the right mode are cycles receiving two inputs. As the
input frequency increases further the left mode shrinks while
the right mode grows �panels �d�–�h��. At �B=1.5 �panel �I��
there are no longer any cycles receiving only a single input
and an additional mode emerges of cycles receiving three
inputs. Note also that this ISI distribution bears resemblance
to the ISI distribution for �B=0.9 except that the two modes
are slightly broader reflecting the increased uncertainty from
receiving a greater number of stochastic inputs. In a similar
fashion, this cycle repeats as the input frequency is increased
further to �B=1.6 �panel �j�� and beyond, where the ISI dis-
tribution probability mass moves rightward by the emer-
gence and growth of modes centered about T=1−ka0 for k
=0,1 ,2 , . . . .

For the case of strong phase-dependent coupling we
choose �=0.1, which is too large to use the singularly per-
turbed solution so we must solve for the fixed point of G �5�

FIG. 4. Calculations of the stochastic winding number �A,stoch

for the sine circle map through a frequency sweep from �−1=0.9 to
�−1=1.1 with model parameters a0=0, �=0.01, and �=0.05, 0.1,
and 0.15 represented in panels �a�, �b�, and �c�, respectively. The
thick solid line is the actual stochastic winding number; the thick
dashed line is the perturbative solution. For reference, the thin
dashed line is the deterministic winding number that was numeri-
cally calculated as in Eq. �16� for large n. In all three plots 1:1
statistical phase locking produces the paradoxical region. Increased
noise squashes the magnitude and broadens the width of the para-
doxical region. Notice that the amplitude of the singularly perturbed
solution is not a good match to the actual solution but the minima
and maxima provide a good approximation to the size of the para-
doxical region.

FIG. 5. Calculations of pAA�T� for the noisy circle map with no
phase dependent coupling ��=0� through a frequency sweep from
�B=0.7 to �B=1.6. Model parameters are a0=−0.2 and �=0.025.
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for q*�	�. Figure 6 shows the ISI distributions for the same
frequency sweep as before. The inclusion of phase-
dependent coupling serves to radically shift the location of
the probability mass compared to the �=0 case. The same
general trend of the emergence of slower modes and shrink-
ing of faster modes still holds as stimulation frequency is
increased in the phase dependent case. At �B=0.7 �panel �a��
the oscillator can be found at a wide range of periods. As the
input frequency is increased �panel �b�� the ISI distribution
narrows as the system enters the 1:1 phase locking regime.
At �B=0.9 �panel �c�� the 1:1 phase locking drives the entire
population of cycles to shorter periods thereby producing the
paradoxical region in the stochastic winding number plot
�see Fig. 7�. As the frequency is increased to �B=1 �panel
�d�� the system can no longer keep pace with statistical 1:1

phase locking every cycle and so the cycle periods shift radi-
cally to longer periods where the ISI distribution reveals a
multi-modal shape. The leftmost mode are cycles still sus-
taining �1:1�-like firing rates while the right mode and the
long rightward tail of the distribution represents cycles that
have received two or more inputs before firing. Frequency
increases beyond the quasi-�1:1� pattern �panels �e�–�g��
show the probability mass moving rightward to longer cycle
periods while forming a very broad ISI distribution. At �B
=1.4 and beyond �panels �h�–�j�� the ISI distribution sharp-
ens considerably about T	1.4 forming a statistical 2:1
quasi-phase-locked pattern that evolves similarly to the non-
phase-dependent case.

Figure 7 shows the stochastic winding number as a func-
tion of input frequency over three noise levels �=0.025
�same level as in Fig. 6�, 0.1, and 0.2 shown in solid line,
dashed line, and dot-dashed line, respectively. The 1:1 para-
doxical segment centered near 0.83 diminishes in amplitude
with greater noise level. Note that for small noise �=0.025
there exists a small 2:1 paradoxical segment and a very small
3:2 segment. Increased noise makes these regions barely de-
tectable. In the weakly perturbed O��1� solution these seg-
ments are not present suggesting that higher-order O��2� pro-
cesses are involved in larger n �n=2, 3 , . . .� quasi phase
locking. Interestingly, if we included higher order Fourier
modes in the phase response curve these paradoxical regions
would scale in an O��1� manner.

Furthering this analysis we show ISIs for a finer decre-
ment of input frequencies near the 1:1 paradoxical region
revealed in Fig. 7 alongside the associated distribution of
invariant phases q*�	�. Figure 8 shows the ISI distribution
�left column� and q*�	� �right column� over a range of input
frequencies in the 1:1 paradoxical region. The figure shows

FIG. 6. Calculations of pAA�T� for the noisy circle map through
a frequency sweep from �B=0.7 to �B=1.6. Model parameters are
a0=−0.2, �=0.025, and �=0.1.

FIG. 7. Calculations of �A,stoch for the noisy circle map through
a frequency sweep from �B=0.7 to �B=1.6. Model parameters are
a0=−0.2 and �=0.1. Solid line represents �=0.025, dashed line �
=0.1, and dot-dashed line �=0.2

FIG. 8. Calculations of pAA�T� �left column� and the associated
q*�	� �right column� for the low noise level ��=0.025� sine circle
map through a frequency sweep from �B=0.7 through �B=1.
Model parameters are a0=−0.2 and �=0.1.
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that the leftward shift of the ISI distribution to paradoxically
faster cycles due to increased frequency is concomitant with
the sharpening of the invariant phase density q*�	� to statis-
tical phase locking.

The sharp structures in the firing patterns and phase den-
sities seen in the low noise case are blurred substantially
with an increase in noise. Figure 9 shows the ISI distribu-
tions and phase densities for the high noise ��=0.1� for the
same frequency sweep as in the low noise case. As previ-
ously, an increase in input frequency initiates a 1:1 quasi-
phase-locked firing pattern thereby producing a sharpening
of the phase density through the paradoxical region and first
a leftward shift in ISI density followed by a larger rightward
shift. In contrast to the low noise case, the sharpening of the
phase density is not as great. In the high noise case the peaks
of the ISI densities trace the leftward-rightward shifts very
similarly to the low noise case. The real difference is that the
rightward tail emerges sooner and is even longer than the
low noise case and no bimodality emerges. This suggests that
the mechanism of decreasing the size of the paradoxical re-
gion through increased noise is by decreasing the likelihood
that the postsynaptic cell will be able to fire in time before
the next input, which drastically slows the neuron.

In Fig. 7 a small 2:1 paradoxical segment exists near �B
	1.42. To conclude this illustration we show in Fig. 10 the
ISI distributions and q*�	� for a frequency sweep from �B

=1.35 to �B=1.5, covering the 2:1 paradoxical segment
shown in Fig. 7 under low noise conditions ��=0.025�. Over
this sweep of frequencies the invariant phase density sharp-
ens to form a bimodal distribution suggesting a 2:1 quasi-
phase-locked state. In this case typically two inputs occur
before the postsynaptic oscillator can fire.

IV. DISCUSSION

Using the stochastic phase model �3� we have shown how
to analytically construct the relative timing of input distribu-
tion pAB�
� and the ISI distribution pAA�T�. These analytic
constructions are faster to compute than Monte Carlo simu-
lations and have the advantage of being analyzable. Using
the stochastic winding number �8�, we compute the pertur-
bative stochastic winding number for �-small phase-
dependent PRC and phase-dependent noise. Using these cal-
culations we have explored the relationship between output
firing rate in response to a sweep of inhibitory stimulation
frequencies �B. In the absence of phase-dependent coupling
��=0� there is no phase of the postsynaptic oscillator that is
more likely to receive an input than any other �q*�	�=1� and
the stochastic winding number is independent of the noise
level �. With 0���1 paradoxical regions �regions of non-
monotonicity� in �A,stoch��B� emerge and can be calculated
as the inner product of R��� and the invariant distributions of
phases q*�	�. Increasing noise ��� decreases the amplitude
of paradoxical regions. Furthermore, by decomposing the
R��� into its Fourier modes n=1,2 , . . . we are able to show
the n :m paradoxical regions are functions of solely the nth
Fourier mode. If the nth Fourier mode is small or nonexist-
ent, then n :m paradoxical regions will be small or not exist
on an O��1� level.

The spike patterning of a stochastic oscillator over a
sweep of stimulation frequencies can be assessed by exam-
ining the ISI distribution. Under low-noise conditions, the
characteristic shape of the ISI’s is multimodal, where each
mode represents a proportion of cycles receiving a certain
number of inputs. Increased stimulation frequency causes a
shift in probability mass away from modes of faster cycles
and to modes of slower cycles. If the coupling is phase de-

FIG. 9. Calculations of pAA�T� �left column� and the associated
q*�	� �right column� for the higher noise level ��=0.1� sine circle
map through a frequency sweep from �B=0.7 through �B=1.
Model parameters are a0=−0.2 and �=0.1.

FIG. 10. Calculations of pAA�T� �left column� and the associated
q*�	� �right column� for the low noise level ��=0.025� sine circle
map through a frequency sweep from �B=1.35 through �B=1.5.
Model parameters are a0=−0.2 and �=0.1.
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pendent ���0�, then n :m paradoxical regions can exist and
are a result of statistical phase locking, where the invariant
distribution q*�	� narrows about m phase states that solve the
fixed point equation for the deterministic map, for the case of
n :m phase locking. These statistical phase relationships
serve to produce the characteristic left-then-right shift in
probability mass due to increasing the stimulation frequency.
The mechanism by which increased noise diminishes para-
doxical left-then-right ISI density shifts due to n :m statistical
phase patterns is by increasing the likelihood that oscillators
will either fire the mth spike before the nth input or, alterna-
tively, be delayed too long and not be able to fire the mth
spike before the �n+1�th input comes in. By increasing this
likelihood, increased noise diminishes the sharpness of the
multimodal peaks of the ISI distributions.

Using FP operators, in addition to producing the afore-
mentioned statistical distributions, has the advantage of ex-
ploring the FP operator spectrum to find stochastic bifurca-
tions �9,10,21–23�. Furthermore, in our examples, we have
not examined the effects of a phase-dependent variance
S����1. If S were to be larger in one section of the phase
space relative to elsewhere it could disrupt phase locking
preferentially in that section. Although those prospects are
intriguing, we will defer their consideration for future work.

The techniques used in the current work could be ex-
tended beyond the present stimulation paradigm on a single
neuronal oscillator to networks of coupled neural oscillators
with noise. In some particular circle maps �see Ref. �24��

synchronization has been observed in coupled networks even
in regimes of quasiperiodic flow or chaos. Synaptic noise,
like that in the present work, could possibly disturb this syn-
chronization of the network. In other neuronal models of
all-to-all coupled networks of large N→� oscillators it is
known that noise can serve to stabilize the incoherent state
where the phase of one oscillator is not predictive of the
phase of any other oscillator �25–27�. However, if N is of
moderate size it is not known to what extent relative phase
relationships or spike-timing relationships are important for
the average firing rate of the constituent oscillators. This
problem has relevance to light-intensity encoding by the ma-
rine invertebrate Hermissenda eye, whose five inhibitory
photoreceptors encode light intensity via output firing rate. In
this system, computational and physiological evidence sug-
gests that noise disrupts photoreceptor phase locking,
thereby obscuring paradoxical regions and permitting robust
and systematic encoding �28,29�. The mathematical analyses
presented herein indicate that this is a general phenomenon
that extends beyond any particular system.
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