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Wrapping conformations of a polymer on a curved surface
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The conformation of a polymer on a curved surface is high on the agenda for polymer science. We assume
that the free energy of the system is the sum of bending energy of the polymer and the electrostatic attraction
between the polymer and surface. As is also assumed, the polymer is very stiff with an invariant length for each
segment so that we can neglect its tensile energy and view its length as a constant. Based on the principle of
minimization of free energy, we apply a variation method with a locally undetermined Lagrange multiplier to
obtain a set of equations for the polymer conformation in terms of local geometrical quantities. We have
obtained some numerical solutions for the conformations of the polymer chain on cylindrical and ellipsoidal
surfaces. With some boundary conditions, we find that the free energy profiles of polymer chains behave
differently and depend on the geometry of the surface for both cases. In the former case, the free energy of each
segment distributes within a narrower range and its value per unit length oscillates almost periodically in the
azimuthal angle. However, in the latter case the free energy distributes in a wider range with larger value at
both ends and smaller value in the middle of the chain. The structure of a polymer wrapping around an
ellipsoidal surface is apt to dewrap a polymer from the endpoints. The dependence of threshold lengths for a
polymer on the initially anchored positions is also investigated. With initial conditions, the threshold wrapping
length is found to increase with the electrostatic attraction strength for the ellipsoidal surface case. When a
polymer wraps around a sphere surface, the threshold length increases monotonically with the radius without
the self-intersection configuration for a polymer. We also discuss potential applications of the present theory to

DNA/protein complex and further researches on DNA on the curved surface.
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I. INTRODUCTION

The conformation of a polymer on a curved surface is a
fundamental issue in polymer science which is related to
some important biological processes and technological appli-
cations. In particular, polymer wrapping is relevant to DNA
packaging in cells, where the genomic DNA is compactly
folded onto chromatins through several hierarchical steps
[1].

The theoretical understanding of the supercoiled configu-
rations of plasmids has been obtained by modeling a DNA as
a wormlike chain (WLC) characterized by the bending and
twisting (torsional) rigidities [2,3]. The elastic properties of a
DNA chain greatly influence (or regulate) its biological func-
tions [4]. In a host of biological processes, such as packag-
ing, transcription, regulation and repair, different parts of a
DNA molecule should collaborate with each other by flex-
ibility of the DNA chain.

A polyelectrolyte (PE) absorbing on colloid particles or
micelles, and a DNA binding to latex particles and dendrim-
ers, which were also under intensive investigations recently
[5,6]. A negatively charged DNA chain, a PE, will be held to
the protein core with oppositely charged lysines or arginines
against its tendency to straighten if the DNA/protein com-
plex attractive interactions are sufficiently strong. The DNA/
protein complex will dissociate if their mutual attractive
forces are weakened, where a DNA unwraps the protein core.
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Experiments show that the binding strength of a PE varies
with several parameters, such as temperature, salt concentra-
tion, surface charge density, and linear charge density of the
PE. This attractive strength will govern wrapping-
unwrapping phase transition [7]. The polymer statistics on
curved surfaces have also been investigated [8,9]. However,
the conformation of a WLC wrapping around a curved sur-
face is seldom addressed and is still an open question. To
investigate the conformation of a WLC folded onto a curved
surface, we consider a simplified model. We assume that the
free energy of the system is the sum of bending energy of the
polymer and the electrostatic attraction between the polymer
and surface. We also assume that the polymer is very stiff
with an invariant length for each segment so that we can
neglect its strain energy and view its length as a constant.
Based on the principle of minimization of free energy and
with the aid of differential geometry, we can derive a set of
differential equations to determine the shape of a polymer
meandering on a given curved surface.

This paper is organized as follows. In Sec. II we first
propose a simplified model for the polymer energy. Based on
the principle of minimization of free energy, we derive a set
of coupled nonlinear differential equations for a specific con-
formation of a polymer chain on the curved surface with
given boundary conditions. In Sec. III we present numerical
solutions with boundary and initial conditions for the confor-
mations of the polymer on cylindrical and ellipsoidal sur-
faces. Finally, in Sec. IV we summarize our numerical results
and discuss issues for further studies. For illustrating the va-
lidity of the mathematical method used in Sec. II we take the
classic geodesic problem as an example in Appendix A.
More detailed derivation of the set of coupled nonlinear dif-
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ferential equations for a specific conformation of a WLC on
a curved surface is presented in Appendix B. In Appendix C,
we will demonstrate to derive a set of coupled differential
equations for specific conformation of a WLC including the
torsional energy effect for academic interest.

II. THEORETICAL MODEL

In our simplified model, the electrostatic interactions be-
tween segments and polymer chain extensibility are ne-
glected, which is a trade-off between computational efforts
and physical rigor. In the appreciated WLC model [2], the
elastic energy of a chain with contour length L is given by
the sum of the bending energy H,.,, the twisting energy H,,
[2], and the electrostatic attraction energy H,, between the
chain and the surface. The shape of a WLC will be deter-
mined by the competition between the elastic energy and the
attraction energy. For the polymers with helix structure will
contain a twisting energy [10]. For simplicity, we consider
the case of a WLC with a small twisting rate and its twisting
energy can be neglected or the cases of polymers without
helix structure. In the coarse-grain sense, the outer of a spool
will be approximated as a smooth surface. In the WLC
model, the total system free energy is given as usual by [10]

Hio = Hyen + Hy, (1)
where
A L
Hyen= Ef K2(S)ds, (2)
0
L
Hy = DJ ds (3)
0

(ds denotes the arc-length element of the chain); «(s) corre-
sponds to curvature of the chain at the point parametrized by
the arc-length s and A denotes elastic rigidity. In the case of
DNA/protein complex, typical value of A is 50kpT-nm with
kg being the Boltzmann constant and 7 the environment tem-
perature [3,11]. The value of D is the order of —kzT/b, with
b, the spacing between charges along the chain [10] and its
value is about —1 ~—10kgz7T/nm for a DNA-protein complex.
One should note in passing that the value of A and D are
temperature dependent. We assume that each segment of a
chain is inextensible [12]. Thus the WLC length remains
fixed and will be left as a constraint in our approach. A
principal assumption in this paper is that, each segment of
the WLC can lie on the surface due to their sufficiently
strong attractions [10]. We expect the WLC meandering on a
curved surface will adjust its chain conformation such that
the system energy assumes the minimum, based on which
differential equations determining the conformation of a
WLC wrapping around a curved surface can be obtained.
Before deriving the governing equations, we first intro-
duce related notations. Each point of a space curve is deter-
mined by its position vector r=r(s) where s is a scalar pa-
rameter associated with the point along the curve and is
taken to be the arc-length here for it is a reparametrization
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invariant. The unit tangent vector at a point s is defined as

T(s) = d;—(s) 4)

and its derivative takes the form of

T N, (5)
S
where
d*r(s) d’r(s)
Ny =5 / ‘ ds? (©)

is the principal normal vector. As mention above, «(s) is the
curvature of a space curve at s.

A curve lying on a curved surface can be characterized by
the curvature vector x(s)N(s) which can be decomposed into
two orthogonal components as follows: the coefficient of one
lying on the tangent plane is the so-called geodesic curvature
K,(s) and that of the other one in the positive normal direc-
tion of the tangent plane the normal curvature «,(s). They
are related by the equation [13]

k($)N(s) = ky(s)[n(s) X T(s)]+ &, (s)n(s), ()

where n(s) is the unit normal vector perpendicular to the
tangent plane at the point r(s).

To study the boundary value problem, we consider a fam-
ily of curves with two fixed endpoints, parametrized as

Cyr(s,N) =r(u;(s,N),us(s,N)), (8)

where each curve is specified by the parameter A\. A WLC
meandering along the curve C\ with its free energy assuming
a minimum corresponds to the conformation C,. We define
the variation of r(s,\) with respect to N at A=0 with the
fixed s as

ar(ul(sv )\)’ Mz(s, )\))

J(s) = PN L 9)

Note that the vector function J(s) at the initial and terminal
points assumes zero vectors. The vector J(s) lying on the
tangent plane of the curved surface can be decomposed into

[13]
J(s) =1(s)T(s) + h(s)n(s) X T(s), (10)

where n(s) and T(s) are unit normal vector of the curved
surface and the tangent vector of curve C at s, respectively.
In addition, J(s) is presumably a smooth vector function on
the curved surface and [(s) and h(s) are two arbitrary func-
tions with certain conditions imposed.

Under the constraint of the constant length for each seg-
ment, or |&r(s,)\)/z9s|ds=constant, the Euler equation can be
written as

Hay ssN|
PN + 2 As) PN AZO—O, (11)

where

031903-2



WRAPPING CONFORMATIONS OF A POLYMER ON A...

ar(s,\)

f(s,N) = ds—AL=0 (12)

and 7(s) is a locally undetermined Lagrange multiplier. With
the help of Egs. (4) and (9), the constraint term in Eq. (11)
can be written as

lim >, y(s)%

AL—0 A=0
J or(s,\) dr(s,\

_ f AL [ TN HED)
c, 2N ds ds =0
L

=JJ@H%%T®ﬂ, (13)
0

where we have used Pr(s,\)/ INds|,—o

=d[ar(s,N)/ I\|y_9]/ds=J'(s). Here we denote the first and
second derivative of a function with respect to s, such as
r(s), as r'(s) and r”’(s), and its nth order derivative as
r(s) for n>2. The fixed-segment length assumption is
valid for the case of DNA not under a large tension
(<65 pN) [14]. On the other hand, the attraction theory for a
WLC under a large tension should be modified. But that will
result in much more complications for the problem.

To simplify Eq. (13), we substitute Eq. (10) into Eq. (13)
and note the same endpoints of C, and C, will render
1(0)=1(L)=0 and h(0)=h(L)=0. It is straightforward to ob-
tain

L
im Sy TSN f 1(s)y' (s)ds
AL—0 IN oo 0
L
—f h(s)¥(s)K,(s)ds.
0

(14)

In a similar way, a straightforward but tedious calculation
with additionally imposing conditions #’(0)=h'(L)=0 yields

Hye, A (F
—bet =—f [L(s)(= 8" (s)k(s)) + h(s)X(s)]ds,
N =0 2Jo
(15)
oH, L
— = —Df h(s)ky(s)ds, (16)
IN | \=0 0
where
X(s) =20 - 0" = 3k,k> = 2k,0" - (T X n) + 2k,
—4xn’ - (T Xn)—4k,kn’ - T. (17)

Quantities appearing in the above equations, e.g., k, T,...
and their associated derivatives, are all reparametrization in-
variants and they are independent of the choice of specific
coordinate systems. The reader is referred to Appendix B for
the detailed derivations of Eq. (15). Substituting Egs.
(14)—(16) into Eq. (11), we obtain
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L
f [[— Y (s) —4Ax(s)k’ (5)]i(s)

0
+ (%X(s) — s Ky(s) — DKg(S))h(S):|dS =0, (18)

which is the main result of this paper. Because I(s) and &(s)
in Eq. (18) can be treated as independent arbitrary functions
after inserting the Lagrange’s multiplier y(s), both of their
coefficients should be null, i.e., the least-energy conforma-
tion should satisfy the following two equations:

v'(s) +4Ak(s)k'(s) =0, (19)

%X(s) —[¥(s) + D]k,(s) =0. (20)

The expressions of Egs. (19) and (20) are reparametrization
invariant. Meanwhile, the magnitude of the unit tangent vec-
tor should be 1,

2

du;du;
|I"(S)|2= E gij__l =1, (21)
ij=1 ds ds

where g;; is the metric tensor depending on the shape of a
surface. Equation (21) should be viewed as the third equation
for determining the WLC conformation. Let (u,(s),u,(s)) be
the coordinates of C, on the curved surface, all geometric
variables, such as «(s), the metric tensor 8ij» €tc., can be cast
in terms of the variables (u,(s),u,(s)). Now we are left with
three unknown functions, u,(s), u,(s), and y(s), and they
should be uniquely solved from three coupled highly nonlin-
ear differential equations, i.e., Egs. (19)—(21), with proper
boundary conditions.

Now we turn to the case of only one point of a WLC
being initially anchored on the curved surface. The confor-
mation of the full chain is achieved by attaching the seg-
ments one by one to the surface (in a unit of a base pair for
the DNA case). If the attraction energy is sufficiently large,
the chain conformation can maintain under the thermal fluc-
tuations, and therefore the conformation of each segment
will be determined by the minimization of its own (segment)
total energy. By performing the variation of energy with one
endpoint fixed and an infinitesimal small segment length 5L,
we find the conformation still can be described by the same
three equations, Egs. (19)—(21), which correspond to the ini-
tial value problem at the anchored point instead of the
boundary value problem. We shall investigate the behaviors
of the solutions of Egs. (19)—(21), with initial or boundary
conditions for cylindrical and ellipsoidal surfaces.

III. APPLICATIONS

Cylindrical surface. A cylindrical surface can be param-
etrized by variables 6 and z via the vector function: r(6,z)
=(pcos 0,psin 0,7), 0<0<2m, 0<z=<L,, where p and L,
are, respectively, the radius and height of a cylinder. The
conformation of a polymer on this surface can be described
by r(6(s),z(s))=(p cos 6(s),p sin 8(s),z(s)). Then Eq. (21)
reduces to
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FIG. 1. (Color online) Schematics of WLCs wrapping around
curved surfaces. (a) WLCs wrapping around a cylindrical surface.
(b) WLCs wrapping around an ellipsoidal surface. The boundary
conditions in (a) and (b) are the same as those in Figs. 2 and 4,
respectively.

PO )P+ (9 =1. (22)

In view of complication and nonlinearity in Egs. (19), (20),
and (22), we can only restore to their numerical solutions. To
find the specific boundary-value solutions, we should specify
six boundary values of (6,z), z' at two endpoints, and the
length of L in advance. In other words, with a given chain
length and position coordinates, slopes of a WLC at its end-
points, its conformation can be obtained by solving the dif-
ferential equations. In this work, we utilize the shooting
method to solve the boundary value problems by the fourth-
order Runge-Kutta technique [15] and the relevant param-
eters are taken for the case of a DNA-protein complex. Here
p and L, are taken as 5.5 and 6 nm, respectively. If not
explicitly mentioned, bending stiffness of a WLC, A, and
attraction strength D will take the values of 50kzT-nm and
—1.2kgT/nm, respectively. Figure 1(a) is a schematic picture
of the conformation of three WLCs wrapping around a cy-
lindrical surface with the same two endpoints, whose bound-
ary conditions will be presented in the next paragraph.
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z(nm)

&,(units of kz7/nm)

FIG. 2. Conformations of a WLC wrapping around a cylindrical
surface with two identical endpoints: (a) Dependence of z on 6, (b)
gy, versus 6. For curves (1), (2), and (3) their boundary conditions
are imposed as (6(0),z(0),z'(0))=(0,0,0) and (&(L),z(L),z'(L))
=(41,6,0), and their lengths are 69.420, 69.498, and 69.501 nm,
respectively.

Figure 2(a) shows the dependence of z on 6 for three
conformations of a WLC wrapping around a cylindrical sur-
face. Here curves (1), (2), and (3) correspond to the red,
green, and blue curves in Fig. 1(a), respectively. The coordi-
nates of the two endpoints are (6,z)=(0,0) and (4,6) for
s=0 and L, respectively. In Fig. 2 three different conforma-
tions are displayed with the same boundary conditions,
7'(0)=z'(L)=0, but different contour lengths, where the con-
tour lengths are 69.420, 69.498, and 69.501 nm for curves
(1), (2), and (3), respectively. Curves (1), (2), and (3) have 0,
1, and 2 terraces, respectively. It seems there are more ter-
races formed for longer WLCs.

Figure 2(b) shows the bending energy per unit length ver-
sus 6 for the three conformations in Fig. 2(a). Here the sym-
bol g, stands for the bending energy per unit length. Curves
(2) and (3) exhibit approximately periodic oscillations with
respect to the coordinate @ and bending energy per unit
length g, seems to have a tendency to spread over the WLC
uniformly. Comparing Figs. 2(a) with 2(b), we find that the
positions close to the terrace in Fig. 2(a) correspond to larger
bending curvature of WLC and then higher bending energy.

Figure 3 shows g, distribution diagram corresponding to
Fig. 2(b). Here the total sample number N is equal to 5000
and the interval Ag, is equal to 0.005kz7T/nm. The standard
deviations for the data are calculated as 0.009 150 49,
0.017 6061, and 0.019 0614kzT/nm for curves (1), (2), and
(3), respectively. It is apparent that for g, distribution the
longer WLCs will be wider. To accommodate larger string
length on the same curved surface space, a WLC needs to
make more turns as shown in Fig. 2(a). The left- and right-
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FIG. 3. Bending energy per unit length distribution diagram for
curves in Fig. 2(b).

hand peaks in Fig. 3 correspond to the valley and peaks in
Fig. 2(b), respectively.

It is of interest to know whether the studies presented
above bear some relevance to the package of DNA in cells. A
basic unit for the package of DNA in eucaryote cells is nu-
cleosome. A nucleosome consists of a histone octamer core
(pairs of H3, H4, H2A, and H2B), a DNA of 180-200 base
pairs around the octamer core, and a linker histone (H1). For
the DNA-histone octamer complex [16,17], H1 can bind to
each nucleosome near the site where the DNA enters and
leaves the histone octamer, and then plays the role of fixing
both ends of the chain. In this case, it corresponds to the
boundary value problem. Here we ignore the effects of fluc-
tuations at the boundaries for the existence of H1 molecule
might strengthen the attraction between the DNA and the
protein core at the boundaries. However, recent evidence in-
dicates the HI molecule is situated asymmetrically, and it
may be related to an initial value problem. Meanwhile, the
initial and boundary value problem can also be relevant to
the experiments for the single macromolecule (say DNA)
attached to protein surface by the manipulation of optical
tweezers on one or two endpoints, respectively [18].

Ellipsoidal surface. For simplicity, we consider the
ellipsoid with two equal semiaxis lengths. Then, an
ellipsoidal (or spheroidal) surface could be parametrized
as r=(a sin 6 cos ¢,a sin O sin ¢,b cos 6), 0<0<m,
0= ¢<2m, where a and b are semiaxis lengths of an ellip-
soid in the x (or y) and z directions, respectively. The con-
formation of a polymer on this surface can be described by

r(60(s), ¢(s))
= (a sin 6(s)cos ¢(s),a sin O(s)sin ¢(s),b cos O(s)).

The constraint of Eq. (21) can be recast into the following
form:

[a® + D%+ (a® = b?)cos 26(s) ][0’ (5) ] + 2a? sin® 6(s)[ ¢’ (5) ]
=2. (23)

Here a and b are taken as 5.5 and 6 nm, respectively. A

schematic draw of three WLCs wrapping around an ellipsoi-

dal surface is shown in Fig. 1(b), whose boundary conditions
will be given in the following paragraph.
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FIG. 4. Conformations of a WLC wrapping around an ellipsoi-
dal surface with two identical endpoints: (a) Dependence of z on ¢.
(b) Bending energy per unit length of a WLC versus ¢. Their
boundary conditions are ' =0 at both ends and their lengths are
66.377, 66.595, and 66.790 nm, respectively.

Figure 4(a) shows the dependence of z on ¢ for three
conformations of a WLC wrapping around an ellipsoidal sur-
face. Here curves (1), (2), and (3) correspond to the red,
green, and blue curves in Fig. 1(b), respectively. The coordi-
nates of the endpoints are (6,¢)=(cos™'(-3/b),0) and
(cos™!(3/b),4) for s=0 and L, respectively. The boundary
conditions at both ends are ' (0)=6'(L)=0, and the contour
lengths are 66.377, 66.595, and 66.790 nm for curves (1),
(2), and (3), respectively.

In Fig. 4(b), we show the bending energy per unit length,
&, versus the azimuthal angle ¢, respectively, for three con-
formations in Fig. 4(a). We note that g, is higher near ¢=0
and ¢=47 for all curves and therefore the WLCs are at-
tached weakly at the anchored point and are prone to be
detached from the surface. In general, the elasticity energy
per unit length near the middle of the chain is lower than that
at both ends. This fact can be accounted for by the small
curvature near the belly of the ellipsoid. Thus energy cost for
bending of a WLC is lower and the WLC can wrap more
tightly around the surface belly. From the free energy distri-
bution with respect to positions, it is energetically favorable
to dewrap the WLC from the surface at both ends than in the
middle of the chain. However, this behavior is very different
from that of the cylindrical case. For the cylindrical case, the
values of g, oscillate between a minimum and a maximum.
The maximum g, value appears periodically but not on the
endpoint of the WLC in contrast to the ellipsoidal case.

Figure 5 shows g, distribution corresponding to curves in
Fig. 4(b). Here the values of N and Ag, are equal to 5000
and 0.01kgT/nm, respectively. The maximum probability of
g, occurs at lower g, (about 0.83) related to the bending
energy per unit length around the belly. The standard devia-
tions for the data are calculated as 0.072 2204, 0.072 5575,
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FIG. 5. Bending energy per unit length distribution diagram for
curves in Fig. 4(b).

and 0.073 735kzT/nm for curves (1), (2), and (3), respec-
tively. Again, the longer WLC comes with wider g, distribu-
tion and this result is similar to that of the cylindrical case.

We coin the term “threshold wrapping length” Ly,, which
is the length between two positions with elasticity energy per
unit length overcoming the attraction energy per unit length.
On an ellipsoidal surface, the curvature of a WLC wrapping
in ¢ direction and bending energy increases toward the north
and south poles of the ellipsoid. The wrapping of a WLC
near the poles usually requires very high elasticity energy,
and then segments prefer to detach from the surface.

Figure 6 shows the dependence of the threshold wrapping
length L, on the anchored position @ (initial position) along
a meridian line on the ellipsoidal surface with various D
values. For a WLC wrapping one to two revolutions from
z=-3 to z=3 (like DNA-histone octomer complex), its aver-
age 0’ value is roughly estimated from —0.015 to —0.03.

50¢

45[

N
=

Ly(nm)
W (5]
< w

o
i

(17

@
> pa—cy
&) A
1 125 1.5 1.75 2 225 25
6 (rad)

20t

FIG. 6. Dependence of threshold dewrapping length Ly, on the
initially anchored position 6 along a meridian line for (1),
(1")b=-12, (2), (")b=-1.175, (3), @')D=-1.15, (4),
(4")D=-1.125, and (5), (5')D=-1.1kzT/nm. Here the initial con-
ditions for curves (1)—(5) are taken as 6 =—0.03 and ¢'=6®=¢%
=0. As for curves (1)—(5), we only change 6% values in the
above from 0 to —0.001.
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FIG. 7. Wrapping length Ly, versus the radius of a sphere core.
The initial values of (6,6) are (1.57,-0.03), (2,-0.03), and
(1.57,-0.04) for curves (1), (2), and (3), respectively. Besides, ¢,
63, and 6 are set to be none at the anchored point for all curves.

Hence, we take the initial conditions as 6 =-0.03, and
¢'=6%=69=0 for curves from (1) to (5); i.e., the tangent
vector of the WLC at the anchored position is given. Then
the WLC shoots in both forward and backward directions
until its g, reaches the value larger than the electrostatic
attraction per unit length |D|. The values of D are —1.2,
—-1.175, =1.15, =1.125, and —1.1kzT/nm for curves (1), (2),
(3), (4), and (5), respectively. Along a meridian we calculate
several Ly,’s for polymers with anchored points separated by
0.1 radian interval. All curves display a “W” shape. Valid
threshold length values are found between #=1.1 and 6=2.
On the left-hand side for curves (1)—(3), the WLC intersects
itself at =1 and then g, overcomes |D| for #<0.9, but for
curves (4) and (5), €, overcomes |D| for =<1 and no self-
intersection occurs. On the right-hand side for all curves self-
intersection occurs at §=2.1 and &,=|D| for #=2.2. Self-
intersection configuration is not physically allowed and will
be excluded, since the self-avoiding energy is not considered
here. Polymers with different initial conditions should dis-
play different behaviors. When we change ') of the above
initial conditions from zero to —0.001, we obtain curves
(1")=(5"). The valid Ly are obtained between 6=1 and
6=2.1 for curves (1’)—(3’") and between #=1.1 and 6=2.1
for curves (4’) and (5'). Beyond the valid range, €, over-
comes |D|. There is no self-intersection occurred. Our inves-
tigation reveals that one had better set the anchored point
near the belly of the ellipsoid; otherwise, the WLC will in-
tersect itself or detach from the ellipsoidal surface easily.
When |D| decreases, curves move toward the @ axis. The Ly,
is decreasing with |D|, whose values can be varied by con-
trolling salt concentrations. At high salt concentrations,
DNA-core attractions become weaker and result in smaller
values of |D| and hence Ly, (Fig. 6). In such cases, the DNA
dewraps more easily from the surface of histone core, which
is in qualitative agreement with experimental data [7].

For the case of a sphere with a=b, the dependence of Ly,
on the radius is shown in Fig. 7. The initial values of (6, 6")
are (1.57,-0.03), (2,-0.03), and (1.57,-0.04) for curves (1),
(2), and (3), respectively. Besides, ¢, 63, and 6¥ are set to
be zero at the anchored point for all curves. Here D is equal
to —1.2kgT/nm. The threshold length Ly, increases with the
radius in a finite range for all curves. It is intuitive that this
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trend is qualitatively universal for any fixed initial condition
and here we provide quantitative results. Such a finite al-
lowed range due to the exclusion of self-intersection cannot
be found by a simple way and is determined by the condi-
tions of the anchored point. When the core radius is larger
than a certain value, 5.5, 6.19, and 6.05 nm for curves (1),
(2), and (3), respectively, the WLC will intersect itself. For
the radius smaller than 4.57, 5.01, and 4.57 nm for curves
(1), (2), and (3), respectively, g, will be too large to wrap the
core.

IV. DISCUSSION

To conclude, we find that a WLC usually has various
elasticity energies per unit length at different positions. It
may be due to the uniform curvature of a cylindrical surface,
the g, oscillates almostly periodically between a maximum
and a minimum value. The g, value of WLCs on a cylindri-
cal surface has a tendency to be spatially uniform. The varia-
tion of g, is much smaller than that in the ellipsoidal cases.
The probability for dewrapping a polymer from a core at any
position is almostly equal, thus there is no particular position
for the WLC to be detached from the cylindrical surface
easily.

However, a WLC will detach from an ellipsoidal surface
beyond the threshold wrapping length. A WLC wrapping
around an ellipsoidal surface usually has higher elasticity
energy near the pole and the dewrapping occurs. One expects
that the wrapping-dewrapping transition can occur by the
controls of salt concentration. In agreement with experi-
ments, for high salt the weakening of DNA-core attraction
induces dewrapping [7].

The position of initially anchored point of a polymer on
the core surface will have a significant effect on its confor-
mation and threshold length. Figure 6 provides some ex-
amples. Our investigation shows that the polymer with
longer threshold length should initially contact the surface
near the belly region. Otherwise, the polymer will not wrap
the core successfully for high bending energy or be led to
intersect itself.

We note in passing that Ly, increases monotonically with
the radius of a sphere core but it will not extend to infinity.
For a larger radius, the Ly goes longer and the WLC may
suffer from intersecting itself. For a small radius, the bending
energy will be large enough to overcome the electrostatic
attraction between the WLC and the core and lead to dew-
rapping. Hence, we expect that there is an optimum radius
for the stability of DNA-histone complex, whose prediction
is beyond the scope of this paper.

Although we present applications of the governing equa-
tions to cylinder- and ellipsoid-shaped surfaces in this work,
derived equations are quite general and can be adopted to
investigate nanoparticles with some other shapes, such as
oblate or prolate surfaces. Meanwhile, our approach should
be also applicable to the issue of the dynamics of polymer
chain on a nanoparticle surface. In spite of curvature «(s),
the torsion term, 7(s), is also needed to describe a space
curve. The helix-free polymer energy may depend on the
torsion. It is reasonable to express its related energy in a
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similar form as the bending energy. The details are referred
to Appendix C. Segment-segment interactions within a poly-
mer chain should exert some effects on its conformation,
which are neglected in this work. We will leave them as a
future work.

Very recently, Allahverdyan et al. studied the adhesion of
double-stranded DNA on the flat surface [19]. In such a
study, interstrand potential between two strands of DNA has
been taken into account. It is of interest to combine some
ideas from the approach by Allahverdyan et al. and the ap-
proach of the present paper to study the adhesion of double-
stranded DNA on curved surfaces.

ACKNOWLEDGMENTS

Two of the authors (C.-H.L. and C.-K. Hu) were
supported by National Science Council of Taiwan under
Grants Nos. NSC 93-2112-M 001-027, NSC 94-2112-M001-
014, and NSC 94-2119-M-002-001, and Academia Sinica of
Taiwan under Grant No. AS-92-TP-A09. One of the authors
(Y.C.T.) was supported by NSC of Taiwan under Grants Nos.
NSC 92-2112-M-194-006, NSC 92-2120-M194-002, and
NSC 92-2218-E-194-022.

APPENDIX A: GEODESIC CURVE

In this Appendix, we will take the classic example, a geo-
desic on a surface to expound the method used in Sec. II. The
present method has the advantage that the derived equations
are expressed in terms of geometrical quantities such as «(s),
7(s), and T(s),... . Suppose S is a C* curved surface where
C” means the position vector of S is differentiable to infinite
order. The position vector of a point on the surface S can be
expressed as r(uy,uy)=(x(uy,uy),y(uy,uy),z(u;,u,)). Con-
sider a curve C lying on S with A and B as its initial and final
endpoints parametrized by u;=u,(s) and uy=u,(s), where s
is the arc-length of the curve C. The position vector of C is
expressed as r(u;(s),u,(s))=r(s), its unit tangential vector is
T(s)=dr(s)/ds, and its unit normal vector on S along C is
n(s).

We consider a family of curves Cy with A and B as two
fixed endpoints as parametrized in Eq. (8). As \ is fixed,
r(u,(s,\),u,(s,\)) represents a curve Cy from A to B. When
N#0, s is not the arc-length parameter of C).

Apparently, the tangent vectors T(s) is given by

dr_(S)=T(S) — O—T(l/tl(s,)\),l/tz(s,)\))
ds ds A=0
_dr(u(5,0),u5(5,0)) _ dr(u(s),uy(s))

ds ds (AD
When s is kept fixed and \ is varied, we derive another
family of curve C,. Its tangential vector is
ar(uy(s,N),uy(s,N))/IN. When X is null, we define the varia-
tional vector J(s) as Eq. (9). The variational vector J(s) is
decomposed into two components as in Eq. (10).
Along the curve C\ with fixed A, the contour length from
A to B is
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b lor or
— ds=f — - —ds,
as  os

(A2)
where
ﬁ — (91'(’41(537\),142(&)\)) ) (A3)
os as
Its derivative with respect to A can be rewritten as
dL(CA) f /@ @ J (as as)
N &s /o’fr (91‘
SO\ Js (9)\ é’
J s s (A4)
. /@ ﬂ
From Egs. (A1) and (9), we have
T(s)-T(s)=1, (AS)
and
&* d
ro)| _dis) A6)
AN ds

Substituting Egs. (A1), (A5), and (A6), into (A4) yields

—f a(s) -T(s)ds,
A=0 a ds

dL(C)

d\ (A7)

where a and b are the values of s at the endpoints. The
further simplification of Eq. (A7) can be proceeded by writ-
ing dJ/ds as

B L 0oyme) + hwns) x 11 = S
s ds
+1(5) k(s)N(s) + Z()n(s)XT(s) h(s )d n(s)

dT (s)

X T(s) + h(s)n(s) X —— (A8)

where Eq. (10) is used for the derivation. From Egs. (4) and
(6), it is easy to obtain the identities as follows:

N(s) - T(s) =0,

[n(s) X T(s)]- T(s) =0,
{dn( 5) A9)

s X T(s)} -T(s)=0.

The contribution from each term in Eq. (A9) to the right-
hand side of Eq. (A8) is null. Combining Egs. (5) with (7),
we also have
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dT(s)
ds

= k(s)N(s) = k,(s)[n(s) X T(s)]+ ,(s)n(s),
(A10)
and thus

dT(s)

n(s) X = Ky (s)n(s) X [n(s) X T(s)]

= k(H[T(s) - m(s)In(s) = [n(s) - n(s)]T(s)}

== Kk,(s)T(s). (A11)
By using Egs. (A8), (A9), and (All), we obtain
dJ(s) di(s)
ST = S =)o), (A12)
The substitution of Eq. (A12) into Eq. (A7) gives
dL(C) | (dl(s) ~ )
- f L h(s) () Jds
b
=[1(b) - l(a)] - f h(s)ky(s)ds.
(A13)
Because of I(a)=1(b)=0, we obtain
dL(Cy) b
d—)\* e J h(s) ky(s)ds. (A14)

For a curve C on a curved surface, the sufficient condition
for C to be a geodesic is the contour length of C to be a
minimum, i.e., dL(Cy)/ d\|,_,=0. Finally, we arrive at the
known condition, «,(s)=0, for a geodesic curve C [13].

APPENDIX B: DERIVATION OF GOVERNING
EQUATIONS IN DETAILS

In this Appendix, we will present the detailed derivation
of Eq. (15). Starting from Eq. (15) and combining Egs. (2)
with (A2), we have

IHyey Af (a;é e or L0 [or ar>
— == —A/——+K—A\/——|ds
O\ 2Jc \ON N os ds ON N ds Os

(B1)
With
dT(s)\?
K2|x=0=< dES)> (B2)
and
T _d’J(s)
dsoN )\_0_ ds* ’ B3)

Eq. (B1) can be expressed as

031903-8



WRAPPING CONFORMATIONS OF A POLYMER ON A...

OHpey | A f <2d2J(s) dT(s)
N |y 2J¢ s> ds
RACLLION T(s))ds (B4)
ds A=0

The term d*J(s)/d>s can be calculated straightforwardly as

2 2
d J(zs) _ d l(;)T(s) . di(s) dT(s) . d[l(s)K(s)]N(s)
ds ds ds ds ds
2
1)) T+ CE (s 1)
dh(s) (dn(s) ) dZ(Ss) (n (5) X dflgs)>
2
h(s)<d n(s) y T(S)) ” )<dn(s) dT(s))
ds
- A e 0, (B5)

by differentiating Eq. (A8) one time. From Egs. (4), (6), (5),
and (A10), one can easily obtain the following identities:

dT(s) dI(s) dT(s)
T(s)- ds =0, ds ds «(s)%,
N(s) - d’f{is) = K(s),
BB o sy x 1] B = 0,
(d';(s) < T(s )) ar(s) K,,<s>"‘;—(:).[T<s> X n(s)],
(n(s) " dT(s))‘dT(s)z ’
ds ds
2 2
(d;(zs) X T(s )) dT(s)_K() . dn(s)
2
+ [ T(5) X n(s)] - d(z(f),
(dn(s) " dT(s)) dT(s) _o. (B6)
ds ds ds
By employing Eq. (B6), we have
d*J(s) dT dl() d () d*h
IO ) A e+ 19 )+ L
‘”;‘S)(zx (s )d“(s) [T(s) % n(s)])
2
+ h(s)(xg(s)n(s) . ddLs(;) - Kg(S)K(S)2
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+1,(s)[T(s) X n(s)] - “(S) ) (B7)

The substitution of Egs. (A12) and (B7) into Eq. (B4) gives

% — f |:dl(s)5 ()2
N |yeo 2Jo L ds
2
1(s)2d"(s) K(s) + dh(s)zk A(s)
PO 4 22 203 o)
dzn(s)

+ h(s) <2K (s)n(s) - -3k (s)K(s)

2
+ 25, (5)[T(s) X n(s)]- d;(;))]ds. (BS)

Integration by parts for the derivative terms of I(s) and h(s)

in Eq. (B8) gives

L
j dl(”[s (5)2)ds = k()1 (5)]5 — f 1(s)
0 0

dx (S))ds, (B9)

(10()

L dPh(s) dh(s) _dr,(s)
JO 2, (o)lds = <2Kg(s) " 272—/1( ))

0

s) 2 ds, (B10)
ds?

0

and
f ‘”;(s)(4 (5 ) [T(s)Xn(s)]>ds
0
SO -
= h(s)| 4k,(s) -[T(s) X n(s)]

L
f h(S)—<4K (s) [T(S) X n(S)])
(B11)

Assume the values of I(s), h(s), and dh(s)/ds, which result in
the required boundary condition at both endpoints, vanish.
The substitution of Egs. (B9)—(B11) into Eq. (B8) yields Eq.
(15).

APPENDIX C: AN ADDITIONAL CORRECTION TERM—
TORSIONAL ENERGY

In this Appendix, we demonstrate to add an energy term
to Eq. (1) only for academic interest. According to the fun-
damental theorem of a space curve [13], its conformation can
be uniquely determined up to some rigid rotation or transla-
tion, by knowing its values of curvature and torsion at each
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point. For a general consideration (other than DNA polymer
case), elastic energy of a string may depend on the torsion.
We intend to calculate the energy related to the geometrical
torsion. In geometry,

B(s) =T(s) X N(s), (C1)

Egs. (4) and (6) form three mutually normal vectors at a
point s. They are related to each other via Frenet formulas
[13,20]. To characterize the feature of a space curve at a
point s, one may also introduce the changes of the triple unit
vectors with respect to the chain length. The derivative of
T(s) is shown in Eq. (5) and those of N(s) and B(s) take the
forms of

dNGs) _

1 — k(s)T(s) = 7(s)B(s),
S

(C2)

wm-mmm

(C3)
where «(s) and 7(s) are the curvature and torsion of a space
curve at 5. By observing Egs. (5), (C2), and (C3), we find
k(s) and 7(s) play very like actors. Therefore, the torsional
energy, H,,, should have very similar form of H,.,,

L
H = EJ 7 (s)ds. (C4)
2J)

Following the same fashion of obtaining Eq. (15), apart from
the more complicated calculation. Taking the derivative of
Eq. (C4) with respect to A we have

JH “f tor

EH ‘/@@ ,/ﬂ@)d
N Js (3)\ s >

Taking N\ to be null, the torsion square can be rewritten as

(C5)

dB(s) \*
ﬂm=<d>, (C6)
s
and by using Eq. (C1), we obtain
w0 (@)
[N )\=O_ N Js A=0
B ( #T dT N
=/ X + — X —
075 ONOs os N
dT  oN &N
+— X —+TX (C7)
N as ONds

By using Egs. (5) and (9), we can express the terms dN/J\
and #N/J\ds at \=0 as

IN
IN | =0

1 (N dZJ(S)>dT(S) R ()
_K(S)2 ) 5> ds +K(s) ds* ’
(CB)

and
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FN| 2 dK(s)< Ns) - dZJ(s))dT(s)
ONGs | oo K(s)> ds ds
1 (dN(s) dJ(s) NGS) d3J(s)>dT(s)
k(s)2\ ds Cds? TR ds’ ds
1 d*J(s) ) d*T(s)
N K(s)2<N(s) Cds? ds?
1 dr(s)dJ(s) 1 dJ(s)
k(s)?> ds ds® +K(s) ds® (©9)

The substitution of Egs. (C7)—(C9) into Eq. (C5) yields

L
Hior = Cf 7(s)N(s) - [— K(s) J( ) X T(s)
N =0 0
+ 2 m(‘”m T(s))N(s)
2

7'(s) <N(s) d J(s)) N(s) - 1 sz(S)T(s)
K(s) K(s)

¥ 1 d*J(s)
e o) T(s) X ]ds (C10)

The simplification of Eq. (C10) is carried out by calculating
the derivatives of J(s) to third order through Eq. (10). With
Egs. (C2) and (C1), it is useful to replace the dN(s)/ds and
B(s) terms by —k(s)T(s)—7(s)B(s) and T(s) X N(s), respec-
tively. The employment of the third term in Eq. (A9) and the
following identities can be used to eliminate many terms
with null contributions in Eq. (C10):

N(s) - [T(s) X T(s)]=0, N(s)-[N(s) X T(s)]=0,

N(s)~<%()><T(s)) 0, T(s)-n(s)=0. (Cl11)
The following two identities are also handy in calculations:
2
T LN = NG + ) D
S
= PN + k) KT) = B
dK(s) )
7o N6 = k()T (s) = c(s)(s)[T(s) X N(5)],
(C12)
d°N(s) d
5 = L= K(9)T(5) = 79)B(s)]
__ d’;(S)T(s [x(s)2 + 7(s)2IN(s)
‘”(s) [T(s) X N(s)]. (C13)

After a straightforward and tedious calculation, Eq. (C10)
can be rewritten as
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M| _ dl(s)( ) drls) dh(s) 7(s)x,(s) dzh(s)< 7(s)* (s) (s) d(s)
O\ >\=0_ Cfo { ds (s) H(s)(s) ds ds®  k(s)? ds* \ k(s)? (s - k(s)® ds
37’(5) dn(s)\ dh(s) (s)? dn( ) 7(s) dr(s) dn(s)
K(s) N(s) - ds >+ ds [_ZK(S)2 rol [T(s) X nis)] =2 k(s)? ds N(s) - ds
2 2 2
+ 20N R0 —4T<s)(T<> ”)] +h<s)[— 2 57 = m) - LA
K(s) ds® 2 K(s) K(s)
dn(s)  (s) drls) d*n(s) dn(s)\ = (s) d’n(s)
X n(s)] - ;s; - K(ss)z ’;Ss N(s) - ;Sz ~2(s )(T( ) S8 )+FZ)N(S).—;S: ]}ds. (C14)

Performing the integration by parts for the derivative terms of I(s) and Ai(s) in Eq. (C14) and setting [(s), h(s), dh(s)/ds, and

d?h(s)/ds? as null at both ends, we obtain

Wi = CfL LI(s)(— 47 (s)7(s)) + h(s)Y(s)]ds, (C15)
N | \=0 0
where
Y(s) = (= mr, 7)) + (- 72K_2Kg - TK_SK K +377*T' -n')" +[276k'T" -n' =377 >T" -n" +47T - n’
+27k 2k’ - (T X n)] = 2xn" - [kn+ k,(T X n)] - 37k,/2 - 7 °k'T' -n" = 27T - 0" + 7 >T" - n"".
(C16)
We substitute Eq. (C15) into Eq. (11) and Egs. (19) and (20) become
V' (s) + 4Ak(s) k' (s) + 4C7(s) 7' (s) =0, (C17)
A
EX(S)+CY(S)—[’y(S)+D]Kg(S)=O. (C18)
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