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We introduce an interacting random-walk model to describe the residence time of drug molecules undergo-
ing a series of sojourn times in the body before being permanently eliminated under either homogeneous or
heterogeneous conditions. We show that short-term correlations between drug molecules lead to Michaelis-
Menten kinetics while long-term correlations lead to transient fractal-like kinetics. By combining both types of
correlation, fractal-like Michaelis-Menten kinetics are achieved, and the simulations confirm previous analyti-
cal results.
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I. INTRODUCTION

Pharmacokinetics is the quantification of the course of a
drug through the body �1�. Drug molecules undergo many
processes during their residence in the body, including ab-
sorption, distribution, metabolism, and elimination. Because
many spaces within the body are confined or heterogeneous,
these processes are frequently nonlinear. An interacting
random-walk model is developed to relate the macroscopic
chemical kinetic behavior of the ensemble of drug molecules
to the microscopic interactions between individual mol-
ecules. Previously, it was shown that geometric heterogene-
ity can lead to fractal pharmacokinetics �2�. The goal of this
paper is to demonstrate that both long- and short-term inter-
actions between drug molecules can also generate fractal-like
kinetics.

II. ELIMINATION KINETICS

When a dose of drug is given as a bolus directly into the
vascular system, the resulting plasma concentration-time
curve decreases continuously from a maximum and is called
a clearance curve. For drugs rapidly distributed throughout
the body, the shape of the curve is determined predominantly
by the rate of elimination through enzymatic biotransforma-
tion. The kinetics describing this elimination depend on the
geometry of the reaction space and the degree of mixing of
the drug within the plasma. In homogenous, well-mixed me-
dia, the rate of a chemical reaction is directly proportional to
the product of the concentrations of the N reactants each
raised to the reaction order ni,

Ċi�t� = − k�
i=1

N

Ci
ni�t� , �1�

where Ci is the concentration of reactant i and k is the kinetic
rate coefficient. The reaction order is the number of concen-
tration terms that must be multiplied together to get the rate

of the reaction �3�. For a single step, ni is typically equal to
the molecularity, which is the number of molecules that are
altered during the reaction. When only one molecule is modi-
fied, the reaction is described by

Ċ�t� = − kC�t� . �2�

However, the rate of enzyme-catalyzed reactions can de-
viate from those predicted by Eq. �2�. Michaelis-Menten ki-
netics �4� is the standard formalism for describing these re-
actions. At high concentrations, saturation of the enzymes
limits the maximum reaction rate that can be achieved, while
at low concentrations the rate of formation of the enzyme-
substrate complex becomes significant and the reaction be-
comes dependent on the substrate concentration �5�. The rate
of Michaelis-Menten kinetics is given by

Ċ�t� = −
vmaxC�t�

KM + C�t�
. �3�

The parameter vmax is the maximum rate of the reaction, and
the Michaelis-Menten constant KM is the substrate concen-
tration at half the maximum rate.

In low-dimensional or heterogeneous spaces, Eqs. �2� and
�3� do not hold �6�. In the case of transient reactions, the
kinetic rate coefficient becomes time-dependent �7�:

k�t� = k0t−h, �4�

where

h = 1 −
ds

2
. �5�

The quantity ds �where 0�ds�2� is the spectral dimension
that describes the path of a random walker within the me-
dium �8�. The classical case corresponds to ds=2. Because
Eq. �4� has a singularity at t=0 for h�0, Schnell and Turner
�9� have suggested a modified form of Eq. �4� based on the
Zipf-Mandelbrot distribution, k�t�=k0��+ t�−h, where the con-
stant � is the critical time from which the rate constant is
driven by fractal effects. However, if � is very small, Eq. �4�
is a good approximation. The corresponding reaction rate is*Electronic address: rmarsh@ualberta.ca
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Ċ�t� = − k0t−hC�t� . �6�

Equation �6� has been incorporated into pharmacokinetics
through both noncompartmental and compartmental models.
The former includes the homogeneous-heterogeneous distri-
bution model introduced by Macheras �10� to quantify the
global and regional characteristics of blood flow to organs.
The latter includes the fractal compartmental model devel-
oped by Fuite et al. �2� in which a classical compartment was
used to represent the plasma while a fractal compartment
was used to represent the liver. Equation �6� has also been
incorporated into the Michaelis-Menten formalism, notably
by Kosmidis et al. �11� with the result that

Ċ�t� = −
vmaxC�t�

KM0th + C�t�
, �7�

where KM0 is the modified Michaelis-Menten constant.
In the case of steady state reactions, Anacker and Kopel-

man �6� found that the reaction rate is given instead by

Ċ�t� = − k0C�t�X, �8�

where X is the fractal reaction order related to the spectral
dimension of the random walk. Because Michaelis-Menten
kinetics occur within an environment with a pseudo-steady
state drug concentration �5�, Marsh and Tuszynski �12� pro-
posed that

Ċ�t� = −
vmaxC�t�X

KM + C�t�X �9�

for Michaelis-Menten reactions occurring within a heteroge-
neous or low-dimensional environment. It is important to
note that the steady state condition can be achieved in differ-
ent ways, even in the case of a single dose �12�. For example,
the recycling of drug molecules between the plasma and the
site of elimination can create a local steady state.

To summarize, any reaction for which h�0 or X�m
�where m is the molecularity of the reaction� is referred to as
following fractal-like kinetics �13�.

A. Asymptotic behavior

As well as being relevant to experimental and clinical
situations, clearance curves represent the asymptotic behav-
ior approached by systems with nonbolus administration.
Even if a pharmacokinetic system is driven for an initial
period �for example, through a continuous infusion or ab-
sorbed oral dose�, the system’s behavior is ultimately dissi-
pative since the concentration will decrease towards zero as
all the drug molecules ultimately leave the system. If we
consider the behavior of the kinetics equations discussed in
the previous section, the solution to Eq. �2� is simply an
exponential in time, and the solution to Eq. �6� is a stretched
exponential. For Michaelis-Menten kinetics �Eq. �3��, the so-
lution is linear at high concentrations �C�KM� and exponen-
tial at low concentrations �C�KM�. For transient fractal
Michaelis-Menten kinetics �Eq. �7��, the solution transitions
from an exponential to a stretched exponential. Finally, for
steady state fractal Michaelis-Menten kinetics �Eq. �9��, an

initial linear decrease is followed by a long-time power law
tail of the form �12�

C�t� � t�. �10�

The power exponent � is negative and can be related to the
fractal reaction order X through �12�

X = 1 −
1

�
. �11�

III. INTERACTING RANDOM-WALK MODEL

From a physical point of view, a group of drug molecules
can be treated as a many-body system of identical molecules.
The molecules are introduced into a confined, dissipative
medium, and they undergo transport and kinetic processes
until all of the molecules have been removed from the sys-
tem. For drugs administered directly into the vascular sys-
tem, the molecule residence time is determined predomi-
nantly by �i� the resistive effect of the temporary trapping of
drug molecules in cells and tissues, and �ii� the conductive
effect of permanent trapping due to metabolism and excre-
tion.

Because the residence time of a drug molecule can be
seen as the sum of many sojourn times within the body, we
can consider the molecule as performing a random walk in
time. In a simple random walk, a walker moves at every time
step to one of its nearest-neighbor sites with equal probabil-
ity. A more general process occurs when the length l of the
steps, or flights, is not constant but rather drawn from a dis-
tribution p�l�. The properties of the random walk follow the
central limit theorem if �i� the l values are not characterized
by any long-range correlations, and �ii� the distribution p�l�
is not too broad �14�. If either of these conditions is not met,
the walk can become anomalous. In this paper, we investi-
gate the first case, and in a follow-up paper we will discuss
the second scenario and model it using the continuous time
random-walk �CTRW� formalism.

In the current model, we define a temporal random walk
on a one-dimensional finite lattice with periodic boundary
conditions and two different kinds of lattice sites: plasma �P�
transport sites and permanent elimination �E� traps. This is
equivalent to assuming that the drug concentration in other
tissues achieves equilibrium with the plasma in a relatively
short time. Drug molecules are introduced onto P sites and
undergo a sequence of sojourn times in P sites until they are
removed from an E site. The residence time of a molecule is
denoted by � and can be expressed simply as

� = �
i=1

N

�i
ˆ , �12�

where �̂i is an individual sojourn time in a P site. Because �
is a macroscopic quantity and �̂ is a microscopic quantity,
Eq. �12� represents a simple statistical mechanical view of
the drug residence time. In order to isolate the dynamics of
the elimination process, the plasma sojourn time was taken
to be constant and equal to three time steps. In addition,

REBECCAH E. MARSH AND TERENCE A. RIAUKA PHYSICAL REVIEW E 75, 031902 �2007�

031902-2



molecules remained in E sites for one time step before being
removed from the lattice. If the value of �̂i is not constant but
rather drawn from a probability distribution, the process be-
comes a CTRW.

If each walker is independent, the total number of walkers
will decrease exponentially in time according to Eq. �2�.
However, if the walkers are allowed to interact, anomalous
behavior can result. To test whether these interactions can
reproduce fractal-like kinetics, both short-term and long-term
correlations were introduced into the model using a saturable
process and excluded volume effects.

This model can be mapped onto a stochastic compartmen-
tal model, with all the sites of a given type being interpreted
as forming a “compartment” and the transfer between P and
E sites being governed by a probability distribution function
�PDF�. However, the random walk model has a greater de-
gree of flexibility in handling interactions between mol-
ecules.

A C�� program was written using Microsoft Visual
C��.net �Redmond, WA� with a DrugMolecule class and a
DrugSite class. An instance of the DrugMolecule class was
created for each molecule to keep track of its plasma sojourn
time, �, number of plasma hits, NP, and current location and
site type. An instance of the DrugSite class was created for
each lattice site to hold information about its location, type,
and occupation status.

The Monte Carlo algorithm proceeds as follows.
�1� An L-length array �s0 ,s1 , . . . ,sL	 is created to represent

the lattice, with si representing the type of site at the ith
position. The site types are distributed randomly along the
lattice according to the fractions f i of the total number of
sites of type i �equal to P or E�.

�2� An N-length array �d0 ,d1 , . . . ,dN	 of drug molecules is
created to track the position of each molecule.

�3� An M-length sorted list �t0 , t1 , . . . , tM	 is created to
hold the update times of the molecules. The update time is
equal to the current time plus the sojourn time associated
with the type of site a molecule currently occupies. The list is
sorted in increasing order in time, so that t0 is the next time
at which the system will advance.

�4� The clock, which runs in Monte Carlo time steps, is
set to zero. The molecules are initially assigned to random P
sites, and the sorted list is populated with update times equal
to three time steps. Multiple occupancy of any site is not
allowed.

�5� The clock is moved forward to equal t0, and the mol-
ecule associated with that update time is selected.

�6� If the molecule is at an E site, it is removed from the
system. Otherwise, a new site is chosen according to the
sampling rules �cf. Sec. IV B�. If the new site is unoccupied,
the molecule moves to that site. If the site is occupied, the
molecule remains at its current site. A new update time is
generated for the molecule and added to the sorted list.

�6� Steps 5 and 6 are repeated until all of the molecules
have been removed from the lattice.

At intervals of nupdate moves, the elapsed time and occu-
pation number, Xi, for each site type are recorded. The occu-
pation number plays the role of the drug concentration. Un-
less otherwise indicated, the model parameters for the
current study were chosen to be L=200 000, N=10 000,

fE=0.05, and fP=0.95. The number of E sites was chosen to
be much less than the number of P sites.

IV. REPRODUCING ELIMINATION KINETICS

A. Michaelis-Menten kinetics

In order to simulate Michaelis-Menten kinetics, molecules
were allowed to jump anywhere on the lattice. However,

FIG. 1. The probability p that a molecule will move to an empty
elimination �E� site, given the number Ne of currently populated E
sites, with Ne

max=15 �solid circles�, Ne
max=30 �open circles�, and

Ne
max=45 �open triangles�.

FIG. 2. �a� Reaction rate as a function of plasma occupation
with Ne

max=30. The solid line represents a moving-average
trendline. �b� Reciprocal Lineweaver-Burk plot of the same data.
The solid line represents the best-fit obtained by regression analysis,
with corresponding values of vmax=1.14±0.01 and KM =317±8
�R2=0.958�.
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although a molecule always moved to an empty P site, it was
only moved to an empty E site if a random number drawn on
�0,1� was less than the probability p�Ne�. The quantity Ne is
the number of currently occupied E sites. To satisfy the con-
dition that p is 1 for low values of Ne and 0 for Ne=Ne

max, the
probability distribution was chosen to have the form

p�Ne� = 1 − 
 Ne

Ne
max�2

, 0 � Ne � Ne
max. �13�

Figure 1 shows p�Ne� for different values of Ne
max. The effect

of increasing Ne
max is to increase both vmax and KM. Figure 2

confirms that this distribution produces the correct behavior;

the plot of ẊP as a function of XP is hyperbolic and the
Lineweaver-Burk plot �a linearization of Eq. �3�� is linear.

Figure 3 shows a plot of XP following a bolus dose.
As expected for Michaelis-Menten kinetics, the high-
concentration behavior is linear and the low-concentration
behavior is exponential. The transition occurs at approxi-
mately XP=2000 molecules. Because this interaction only
persists for the duration of the E site sojourn time �three time
steps�, this saturation effect is an example of a short-term
correlation between the molecules.

B. Fractal-like kinetics

Transient fractal-like kinetics can be introduced into the
model by limiting the movement of molecules along the lat-

tice. For a simple random walk in which the molecules can
jump to any site on the lattice, there is a constant probability
�equal to fE� that a molecule is eliminated at a given time.
The probability is independent of the time that a molecule
has spent in P sites, or its “age.” In addition, the compart-
ments are homogeneous and well-mixed, and the system
lacks memory.

FIG. 3. �a� The plasma occupation following a bolus dose
of 10 000 drug molecules undergoing short-term interactions
�Ne

max	15�. �b� The decline is first linear and then transitions to
exponential.

FIG. 4. Reaction rate as a function of plasma occupation follow-
ing a bolus dose of 10 000 molecules undergoing short-term inter-
actions with Ne

max=15 and 
=100 �closed triangles�, 
=5 �open

triangles�, 
=2 �closed circles�, and 
=1 �open circles�. The ẊP

and XP values were averaged over five runs.

FIG. 5. �a� The plasma occupation following a bolus dose of
10 000 drug molecules undergoing long-term interactions �
=1�.
�b� The decline follows a stretched exponential.
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However, if the molecules are restricted to nearest-
neighbor moves, the probability of elimination is no longer
constant. Clusters of molecules will begin to form along the
lattice, and the interior molecules will have limited mobility.

The more interior a molecule is within a cluster, the more
time must elapse before it will be able to move and access an
E site. Therefore clustering creates an age-dependent effect.
To implement this modification in the model, molecules were
only allowed to move a maximum of 
 sites in either direc-
tion along the lattice. For large 
 ��50�, classical kinetics
were recovered.

This type of age discrimination in the elimination process
mimics understirred compartments �15�. The lower the value
of 
, the less efficient the mixing process. A physiological
analogy can be made to a drug that is transported through the
bloodstream and eliminated from the liver. Access to an en-
zyme site in the liver will depend not only on the blood flow
to the liver, but also on the degree of mixing within the
blood. The rate of reactions occurring within poorly mixed
environments has been shown to be slowed down in both
regular and disordered environments �16–18�.

Other stochastic models have been developed to study the
effects of low-dimensional media on enzyme-mediated reac-
tions. For example, Berry �19� and Kosmidis et al. �11� con-
sidered the spatial clustering of molecules within two-
dimensional percolation lattices. Although Matis and Wehrly
�20� used temporal clustering in their model, they used it to

FIG. 6. The power law dependence of k on t for a lattice with
long-term correlations �
=1�.

FIG. 7. �a� The plasma occupation following a bolus dose of 10 000 molecules undergoing both short-term and long-term correlations
�Ne

max=15 and 
=1�. The decline is �b� first linear and then transitions to �c� a power law.
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mimic situations in which drug molecules can adhere to each
other or to a foreign object, and the elimination probability
was the same for all molecules within a cluster. To the best of
our knowledge, the stochastic pharmacokinetics model de-
scribed here is unique in its use of both saturation and the
temporal clustering of events.

Figure 4 shows the effect of 
 on the reaction rate. At the
maximum plasma occupation, the rates are the same. How-
ever, as the concentration drops, the rate corresponding to

=100 drops linearly, while the rates corresponding to
lower 
 values decrease more drastically as clusters form
and then eventually taper off as the clusters disperse. Be-
cause the rate never regains the value of the simple random
walk, this suggest a long-time persistence of correlations be-
tween the molecules due to the formation and dispersion of
clusters.

Figure 5 shows the plasma occupation curve following a
bolus dose with 
=1. The curve exhibits a long-time tail
that is best described by a stretched exponential in time. To
confirm that this behavior is consistent with transient fractal-
like kinetics, k �calculated as �dXP /dt� /XP� was plotted as a
function of time �Fig. 6�. A power law dependence was
found, as predicted by Eq. �4�, with h=0.569±0.014 �R2

=0.965�.

C. Fractal-like Michaelis-Menten kinetics

When simulations were performed in the presence of both
short-term and long-term interactions, the plasma occupation

decreased in a triphasic manner �Fig. 7�. There was an initial
linear decline followed by a long-time power law tail and
then a final exponential segment. The mean value of the
power law tail exponent calculated between t=1000 and
13 400 and averaged over ten runs was �=−1.414±0.005
�R2=0.995±0.005�. The power law transitioned to an expo-
nential decay when less than 1% of the drug molecules re-
mained in the system. Therefore these results are consistent
with both Eq. �9� and experimental results found for the drug
mibefradil �12�, but indicate that the agreement breaks down
at very small drug occupation levels.

The PDF for � was calculated for the process illustrated in
Fig. 7 using 100 000 drug molecules. The function had a
long-time power law tail �Fig. 8� with an exponent of
−2.46±0.04 �R2=0.993�, which is equal to �+1. The number
of sojourn times will follow the same distribution, just scaled
by the sojourn time. Furthermore, the area under the curve
�AUC, a measure of the systemic exposure to the drug� ex-
hibited a nonlinear dependence on the dose, N. In fact, the
dependence followed a power law relationship for N
=5000–20 000 with a power exponent of −1.43±0.02 �R2

=0.997�. This value is consistent with � and means that the
long-time power law tail of the PDF is the main determinant
of the pharmacokinetic behavior of a drug undergoing
fractal-like Michaelis-Menten elimination.

V. CONCLUSION

A random walk with interactions was applied to investi-
gate questions relevant to pharmacokinetics. Methods from
statistical physics lend themselves well to problems in phar-
macokinetics because the methods deal with large-scale, ag-
gregated effects of the interaction between a large number of
molecules, such as a dose of drug molecules. This work pro-
vides evidence that interactions between drug molecules can
lead to anomalous, fractal-like kinetics. Using a combination
of short-term and long-term interactions, we were able to
reproduce various types of elimination kinetics and confirm
our previously derived equation for Michaelis-Menten kinet-
ics under heterogeneous conditions.

In future work, we plan to relax the assumption of a con-
stant sojourn time at each site, thus transforming the inter-
acting random walk into a general continuous time random
walk. Furthermore, more than one type of temporary trap-
ping site will be used to investigate the dose to a target site
outside of the plasma. In this way, the model will become
both hopping-controlled and trap-controlled.
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