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We study the low-frequency, long-wavelength dynamics of liquid crystal elastomers, crosslinked in the
smectic-A phase, in their smectic-A, biaxial smectic and smectic-C phases. Two different yet related formula-
tions are employed. One formulation describes the pure hydrodynamics and does not explicitly involve the
Frank director, which relaxes to its local equilibrium value in a nonhydrodynamic time. The other formulation
explicitly treats the director and applies beyond the hydrodynamic limit. We compare the low-frequency,
long-wavelength dynamics of smectic-A elastomers to that of nematics and show that the two are closely
related. For the biaxial smectic and the smectic-C phases, we calculate sound velocities and the mode structure
in certain symmetry directions. For the smectic-C elastomers, in addition, we discuss in some detail their
possible behavior in rheology experiments.
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I. INTRODUCTION

Liquid crystal elastomers �1� are soft amorphous solids
that have the macroscopic symmetry properties of liquid
crystals �2�. Usually, they consist of crosslinked side-chain or
main-chain liquid crystal polymers. In their smectic phases,
these elastomers possess a planelike, lamellar modulation of
density in one direction. In the smectic-A �SmA� phase, the
director describing the average orientation of constituent me-
sogens is parallel to the normal of the smectic layers whereas
in the smectic-C �SmC� phase, it has a component in the
plane of the layers.

Various unusual properties of smectic elastomers have
been discovered to date experimentally and/or theoretically,
some of which are truly remarkable. For example, in smectic
elastomers the crosslinking can suppress the Landau-Peierls
instability �3–5� that leads to a breakdown of one-
dimensional long-range order in other layered systems such
as stacked surfactant membranes �6,7� or conventional smec-
tic liquid crystals �8�. Depending on the chemical composi-
tion of the material �9�, the stabilizing effect of the elastic
network can be strong enough to allow for the persistence of
one-dimensional long-range order over several microns �10�.
SmA elastomers exhibit a non-Hookean elasticity when
stretched along the normal of the smectic layers with a high
Young’s modulus Y � for strains below a threshold of about
3% and a considerably smaller Y � for strains above that
threshold �11–13�. SmC elastomers prepared by crosslinking
in the SmA phase followed by a cooling into the SmC phase,
like nematic elastomers �14–18�, are predicted to exhibit the
phenomenon of soft elasticity �19–21�. The phase transition
from the SmA to the SmC phase is associated with a spon-
taneous breaking of the rotational invariance in the smectic
plane. The Goldstone mode of this symmetry breaking mani-
fests itself in the vanishing of certain shear moduli as well as
the vanishing of the energy cost of certain nonlinear exten-
sional strains.

It is the interplay between elastic and liquid crystalline
degrees of freedom that leads to these and other phenomena

that are neither present in conventional rubber nor in conven-
tional liquid crystals. The effects of this interplay are stron-
gest in ideal, monodomain samples of liquid crystal elas-
tomers, with a homogeneous orientation of constituent
mesogens. Generically, liquid crystal elastomers tend to seg-
regate into many domains, each having its own local Frank
director n specifying the direction of mesogenic order. In
order to avoid such polydomain samples, elaborate syntheti-
zation methods have been developed and applied to smectic
elastomers for more than 10 years now �22–24�. Most fruit-
ful, perhaps, have been multistage crosslinking techniques
that allow for monodomain samples that neither need to be
confined between director-aligning plates nor need to be kept
in director-aligning external fields. These techniques have
been used, for example, to synthesize elastomers with a per-
manent, macroscopically ordered SmA monodomain struc-
ture �25� as well as monodomain SmC elastomers that ex-
hibit reversible phase transitions to the SmA and isotropic
phases in response to temperature change �26,27�.

Despite the successes in understanding the static proper-
ties of smectic elastomers and the advances in their synthe-
sis, dynamical experiments on these materials, such as rhe-
ology experiments of storage and loss moduli or Brillouin
scattering measurements of sound velocities, have not been
reported to date. To interpret these kinds of experiments once
they are done, it is desirable to have theories for the low-
frequency, long-wavelength dynamics of smectic elastomers.
Recently, we introduced such a theory for SmC elastomers
�30�. Here, we present this work in more detail and we ex-
tend it to the SmA and biaxial smectic phases. To keep our
discussion as simple as possible, we will exclusively con-
sider elastomers, that have been crosslinked in the SmA
phase, so that the smectic layers are locked to the crosslinked
network �28,29�. To be specific, we will consider SmA elas-
tomers crosslinked in the SmA phase and soft SmC elas-
tomers that form spontaneously from these SmA elastomers
when temperature falls below the SmA-to-SmC transition
temperature. In addition to these materials, we study soft
biaxial smectic elastomers that also could form spontane-

PHYSICAL REVIEW E 75, 031711 �2007�

1539-3755/2007/75�3�/031711�18� ©2007 The American Physical Society031711-1

http://dx.doi.org/10.1103/PhysRevE.75.031711


ously from a SmA elastomer, at least in principle, but that
may be, as biaxial phases in general, hard to find in nature.
We include these elastomers in our study mainly because
their dynamics is similar to but simpler than that of soft SmC
elastomers and, therefore, has a potential pedagogical value.

Our theories fall into two categories. The first category is
pure hydrodynamics which describes the dynamics of those
degrees of freedom whose characteristic frequencies � van-
ish as wave number q goes to zero. These theories focus on
the very leading low-frequency, long-wavelength behavior
and apply for frequencies � such that ���1, where � is the
longest nonhydrodynamic decay time in the system. As in
conventional elastic media, our hydrodynamic theories in-
volve only the elastic displacement field u and not the direc-
tor n, which relaxes to the local strain in a nonhydrodynamic
time �n. The second category of theories explicitly includes n
and applies for a larger range of frequencies than pure hy-
drodynamics. One motivation for setting up these theories is
to better understand the role of n in the dynamics of smectic
elastomers. The other motivation is that dynamical experi-
ments, like rheology measurements, typically probe a wide
range of frequencies that extends from the hydrodynamic
regime to frequencies well above it, and that, therefore, theo-
ries going beyond hydrodynamics could be valuable for in-
terpreting these experiments. Our theories with displacement
and director assume that �n is the longest nonhydrodynamic
relaxation time, �=�n, and that �n is well separated from the
next longest nonhydrodynamic time �E, which we refer to as
elastomer time. The specific origin of �E is not essential to
our work. For example, �E might stem from Rouse-like dy-
namics of the polymers constituting the elastomeric matrix.
Provided the assumption �n��E holds, our dynamics with u
and n applies for ��n�1 and ��n�1.

The outline of the remainder of this paper is as follows.
Section II briefly reviews the well established Poisson
bracket formalism for coarse-grained variables as well as the
resulting equations of motion, when this formalism is applied
to liquid crystal elastomers. Section III discusses the dynam-
ics of SmA elastomers with strain and director. Sections IV
and V treat, respectively, the hydrodynamics of biaxial smec-
tic and SmC elastomers. Section VI presents our theory for
SmC’s with strain and director. Section VII contains con-
cluding remarks. There are two appendixes that, respectively,
compile results for elastic constants and provide some details
of our calculations.

II. DYNAMICAL EQUATIONS FOR LIQUID CRYSTAL
ELASTOMERS

In Ref. �31�, where we studied the dynamics of nematic
elastomers, we applied the Poisson bracket formalism for
coarse-grained variables to derive hydrodynamical equations
for the displacement and momentum density as well as equa-
tions of motion that in addition involve the Frank director.
The validity of these equations is, however, not limited to
nematics. Our hydrodynamical equations apply for conven-
tional elastomers as well as for the usual �one component�
liquid crystal elastomers in, e.g., their isotropic, nematic, and
smectic phases. Our dynamical equations involving n are

valid for any liquid crystal elastomer with a defined director,
like nematic and smectic elastomers. In this section we re-
view the dynamical equations derived in Ref. �31� to provide
important background information, to stage known results
that we will need as input as we move along and to establish
notation.

A. Poisson bracket formalism for coarse-grained variables

Stochastic dynamical equations for coarse-grained fields
�32,33� can be obtained by combining the Poisson bracket
formalisms of classical mechanics �34� and the Langevin
�35� approach to stochastic dynamics. The Poisson bracket
formalism ensures that the resulting equations of motion are,
in the absence of dissipation, invariant under time reversal.
The Langevin approach provides a description of dissipative
processes and noise forces. Let ���x , t�, �=1,2 , . . .. be a set
of coarse-grained fields that describe the long-wavelength,
low-frequency dynamics of a system, i.e., they are hydrody-
namic or quasihydrodynamic variables whose characteristic
decay times in the long-wavelength limit are much larger
than microscopic decay times. The dynamical equations for
���x , t� are first-order differential equations in time,

�̇��x,t� = −� ddx�� dt�����x,t�,�	�x�,t���

H


�	�x�,t��

− ��,	


H

�	�x,t�

, �2.1�

where H is the a coarse-grained Hamiltonian that describes
the statistical mechanics of the fields ���x , t�. In Eq. �2.1�
and in the remainder of this paper the Einstein summation
convention is understood. The first term on the right-hand
side is a nondissipative velocity, also known as the reactive
term, that contains the Poisson bracket ����x , t� ,�	�x� , t���
of the coarse grained fields. The reactive term couples �̇� to

H /
�	 only if �� and �	 have opposite signs under time
reversal �when external magnetic fields are zero�. The second
term on the right-hand side is a dissipative term. ��,	 is the
so-called dissipative tensor. It may depend on the fields
���x , t� and it may contain −�i� j, where �i	� /�xi. Its spe-

cifics are determined by three principles: �i� ��,	 couples �̇�

to 
H /
�	 only if �� and �	 have the same sign under time
reversal. �ii� By virtue of the Onsager principle �36�, it must
be symmetric in the absence of external magnetic fields. �iii�
��,	 must be compatible with the symmetries of the dynamic
system.

When Eq. �2.1� is augmented by a noise term ��, it rep-
resents a stochastic or Langevin equation that could be used,
for example, to set up a dynamic functional �37–39� to study
the effects of nonlinearities and fluctuations via dynamical
field theory. In this paper, we will ignore the effects of noise.

B. Hydrodynamic equations

Pure hydrodynamics describes the leading low-frequency,
long-wavelength behavior of a system, i.e., it accounts ex-
clusively for those degrees of freedom whose characteristic
frequencies � vanish in the limit of vanishing wave number.
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There are two general classes of hydrodynamic variables:
conserved variables and broken symmetry variables. A
single-component liquid crystal elastomer has five conserved
variables, viz. the energy density 
, the mass density �, and
the three components of the momentum density g. There are
three broken-symmetry variables, namely the three compo-
nents of the elastic displacement. Throughout this paper, we
will use Lagrangian coordinates in which x labels a mass
point in the unstretched �reference� material and R�x� labels
the position of the mass point x in the stretched �target�
material, so that the broken-symmetry displacement variable
is u�x�=R�x�−x. Since liquid crystal elastomers are, as any
elastomers, permanently crosslinked, the mass density and
the displacement are not independent. Rather, changes 
� in
mass density are locked to changes in volume such that in
the linearized limit 
� /�=−� ·u. Thus, there are in total
seven independent hydrodynamic variables and seven asso-
ciated hydrodynamic modes.

In the following, we will consider only isothermal pro-
cesses so that the energy density, which is associated with
heat diffusion, can be ignored. This leaves us with six hydro-
dynamical variables, the components of the momentum den-
sity gi�x� and the displacement ui�x�. These are independent
variables at the reference point x that satisfy the continuum
generalizations of the usual relations for the momentum and
displacement of a particle, 
gi�x� /
gj�x��=
ij
�x−x��,

ui�x� /
uj�x��=
ij
�x−x��, and 
gi�x� /
uj�x��=0. These re-
lations yield a nonvanishing Poisson bracket between ui�x�
and gj�x��, �ui�x� ,gj�x���=
ij
�x−x��. The g−g and u−u
Poisson brackets are zero. Using these results and the fact
that the coarse-grained kinetic energy reads Hkin
=
d3xg2 / �2��, one obtains the coarse-grained equations of
motion

u̇i =
1

�
gi, �2.2a�

ġi = −

H

ui

+ �ijkl� j�lu̇k. �2.2b�

Here and in the following we use the convention that indices
from the middle of the alphabet, �i , j ,k , l�, run from 1 to 3
�corresponding to the x, y, and z directions�. H=
d3xf is the
elastic energy describing the elastomer with f the corre-
sponding elastic energy density. The specifics of f depend on
the particular elastomeric phase under consideration and will
be discussed as we go along. The absence of any dissipative
term proportional to −
H /
ui in Eq. �2.2a�, which would
describe permeation, reflects the tethered or crosslinked char-
acter of the elastomer. Pure couplings of ġi to u̇k are forbid-
den because Eqs. �2.2� must obey Galileian invariance, and
thus the components of the dissipative tensor coupling
ġi to u̇k are of the form −�ijkl� j�l, with �ijkl being the viscos-
ity tensor. In our discussion of the hydrodynamics of the
biaxial smectic and the SmC phase, to be presented in Secs.
IV and V, we will restrict ourselves for simplicity to frequen-
cies � that are much less than the inverse characteristic time
�E

−1 associated with the viscosities. In this limit, the �ijkl can
be viewed as local in time, or equivalently, their temporal

Fourier transforms can be considered as being constant.
To discuss the dynamics of the individual smectic phases

in detail, it will be convenient to combine Eqs. �2.2a� and
�2.2b� into a set of second order differential equations for the
displacement components ui only. Switching from time to
frequency space via Fourier transformation, this set of equa-
tions can be expressed as

��2ui = − � j�ij��� , �2.3�

where �ij��� are the components of the stress tensor �= . The
specifics of the stress tensor, which depend on f and the
viscosity tensor, will be stated for the individual phases as
we proceed.

C. Dynamic equations with displacement and director

When the Frank director is included as a dynamical vari-
able, there is an additional nonvanishing Poisson bracket,
viz. �ni�x� ,gj�x���=−�ijk�k
�x−x�� �40,41�. Then, Eq. �2.1�
leads to the equations of motion

ṅi = �ijk�ku̇j − �

H

ni

, �2.4a�

u̇i =
1

�
gi, �2.4b�

ġi = � jik�k


H

nj

−

H

ui

+ 	ijkl� j�lu̇k. �2.4c�

The properties of the tensor �ijk are dictated by three con-
straints: First, the magnitude of the director must be con-
served, i.e., n · ṅ=0 implying ni�ijk=0; second, the equations
of motion must be invariant under n→−n implying �ijk must
change sign with n; and third, under rigid uniform rotations,
the director must obey ṅ= 1

2 ��� u̇��n. The constraints im-
ply that �ijk is of the form

�ijk =
�

2
�
ij

Tnk + 
ik
T nj� −

1

2
�
ij

Tnk − 
ik
T nj� , �2.5�

where 
ij
T =
ij −ninj is the projector on the subspace perpen-

dicular to n. There are no constraints on the value of �. The
second term on the right-hand side of Eq. �2.4a� is a dissipa-
tive term that describes diffusive relaxation of the director.
Its coefficient � has the dimensions of an inverse viscosity.
As before, there are no dissipative contributions to Eq. �2.4b�
because liquid crystal elastomers are tethered. There is no
dissipative contribution to Eq. �2.4a� involving 
H /
ui be-
cause the terms on the right-hand side of the equation must
be odd in ni owing to n→−n symmetry. Any such terms
must be of the form Aij
H /
uj, and it is impossible to con-
struct a tensor Aij satisfying the symmetries of the system
and making Aij
H /
uj odd under n→−n. A similar argu-
ment rules out a dissipative contribution to Eq. �2.4b� that
involves 
H /
nj. As before, Galileian invariance demands
that the dissipative coupling of ġi to u̇k are of the form
−	ijkl� j�l. Here we use the notation 	ijkl instead of �ijkl for
the viscosity tensor, so that we can cleanly keep track of
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differences between purely hydrodynamical theories and
theories with strain and director. In general, we will assume
that � and the 	ijkl are, like the �ijkl, independent of fre-
quency. In Sec. VI C, where we discuss the behavior of SmC
elastomers in rheology experiments, however, we will refrain
from this simplifying assumption and we will replace the
constants � and the 	ijkl by phenomenological functions
���� and 	ijkl��� of frequency.

III. SMECTIC-A ELASTOMERS—DYNAMICS WITH
STRAIN AND DIRECTOR

Macroscopically, SmA elastomers have uniaxial symme-
try. When they are crosslinked, as we assume, in the SmA
phase, the uniaxial symmetry is not spontaneous but rather
permanently imprinted and the material cannot possess soft
elasticity. In the small deformation limit, these elastomers are
macroscopically simply uniaxial rubbers �albeit with a very
large value of the modulus C1 for extension or compression
along the layer normal�. As such, their hydrodynamics is
identical to that of uniaxial solids �42�. Beyond the hydrody-
namic regime, however, one must expect an influence of the
director on the dynamics of SmA elastomers in which the
genuine difference between SmA and conventional uniaxial
elastomers shows up. Here we apply our dynamical equa-
tions with displacement and director to the SmA phase in
order to study these effects.

A. Elastic energy

As alluded to above, SmA elastomers are macroscopically
simply uniaxial rubbers, at least when strains are small.
Therefore, the harmonic stretching elastic energy density fu
of a SmA elastomer has exactly the same form as that of a
uniaxial solid �43�,

fu =
1

2
C1uzz

2 + C2uzzuii +
1

2
C3uii

2 + C4uab
2 + C5uaz

2 . �3.1�

We omit higher order terms in the strain because they are
inconsequential for our linearized dynamical equations. We
have chosen the coordinate system so that the z-axis lies in
the uniaxial direction. Here and in the following, indices
from the beginning of the alphabet, �a ,b�, take on the values
1 and 2 �corresponding to the x and y directions�. The uij are
components of the Cauchy-Saint-Venant �44,45� strain tensor
u= ,

uij�x� = 1
2 ��ik

T �kj − 
ij� �3.2a�

= 1
2 ��iuj + � jui� + ¯ , �3.2b�

where �ij =�Ri /�xj are components of the Cauchy deforma-
tion tensor �= . In Eq. �3.2b� we have dropped the nonlinear
part of the strain tensor, because, for our purposes, it is suf-
ficient to work to harmonic order.

For setting up a dynamical theory for SmA elastomers that
goes beyond the hydrodynamic limit, we need a more de-
tailed level of description that explicitly involves the Frank
director n. When n is included, the overall elastic energy

density f will have the following contributions:

f = fu + fn−tilt + fn−Frank + fcoupl, �3.3�

with fu as given in Eq. �3.1�. fn−tilt is a tilt energy density that
accounts for the energy cost when the director, which in an
equilibrium SmA elastomer is aligned along the normal N of
the smectic layers, tilts away from N. fn−Frank is the density
of the usual Frank energy that describes deviations from the
homogeneous equilibrium orientation of the mesogenic com-
ponent. fcoupl finally is the energy density of coupling be-
tween strain and director distortions.

Coupling the strain and the director brings about an intri-
cate conceptual problem: whereas the liquid crystalline fields
N and n transform as �rank 1� tensors in target space and are
scalars with respect to rotations in reference space, the strain
tensor u= is a �rank 2� tensor in reference space, and it is a
scalar in target space. Thus, in order to construct meaningful
combinations of u= and the liquid crystalline fields, we must
be able to represent these quantities in either space. The ma-
trix polar decomposition theorem �46� provides a route to
this representation. It allows us to convert �or rotate� any

reference space vector b̃ to a target space vector b via

b = O= · b̃ �3.4�

and a target-space vector to a reference space vector via

b̃ = O= T · b , �3.5�

with the ration matrix O= given by

O= = �= ��= T�= �−1/2 = 1= + �
= A + ¯ , �3.6�

where 1= is the unit matrix and where �
= A= 1

2 ��
=

−�
=

T� is the
antisymmetric part of the displacement gradient tensor �

=
de-

fined by �ij =� jui. In particular, we can rotate the target space
director n	�c ,nz� ,nz=�1−ca

2, where c is the so-called c di-
rector, to a reference space vector ñ	�c̃ , ñz� , ñz=�1− c̃a

2, and
rotate the unit vector ẽ= �0,0 ,1� specifying the direction of
the uniaxial axis in the reference space to a target-space unit
vector.

With the use of the polar decomposition technique, it is
not difficult to formulate the tilt and the coupling energy in
reference space variables. As mentioned above, in the equi-
librium SmA phase, the director prefers to be parallel to both
the layer normal N and the anisotropy axis e �47�, which are
parallel to each other. There are energy costs proportional to

�Ñ · ñ�2 and �ẽ · ñ�2 associated with deviations from this equi-
librium. These combine to yield a contribution to the tilt
energy proportional to c̃a

2 and higher order terms that are
unimportant here. Therefore, the leading contribution to the
tilt energy density is

fn-tilt = 1
2rc̃a

2 = 1
2rQa

2 + ¯ , �3.7�

where Qa=ca−�Aaz. At harmonic order, there is only one
contribution to the coupling energy that is compatible with
the uniaxial symmetry, viz.
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fcoupl = �4c̃auaz = �4Qauaz + ¯ . �3.8�

�The symbols �1, �2, and �3 are usually reserved for third-
order couplings that, however, do not matter here�. When
fn−tilt and fcoupl are combined, the result is identical in form
to the harmonic coupling energy density

fu,n = 1
2D1Qa

2 + D2uzaQa, �3.9�

appearing in the elastic energy density

fnem = fu + fn-Frank + fu,n, �3.10�

for a nematic elastomer, when the latter is described in terms
of strains and the Frank director �48�. The stretching energy
density fu and the Frank energy density fn−Frank in Eq. �3.10�
are the same as in Eq. �3.3�, albeit with the elastic constants
having, in general, different values. Moreover, r and �4 will
be different from D1 and D2. In nematic elastomers, the val-
ues of D1 and D2 are such that the shear modulus C5 is
renormalized by director relaxation to a value C5−nem

R =C5
−D2

2 /D1 that is zero for an ideally soft nematic elastomer or
nearly so for a nonideal semisoft nematic elastomer. The
corresponding renormalized shear modulus C5−SmA

R =C5
−�4

2 /r of a SmA elastomer, to the contrary, will always be
significantly larger than zero, when the elastomer was
crosslinked, as we assume, in the SmA phase.

B. Low-frequency, long-wavelength dynamics

Inserting the just discussed elastic energy of SmA elas-
tomers into the equations of motion with displacement and
director, Eq. �2.4�, we obtain dynamical equations for SmA’s
that are identical in form to those of nematic elastomers. The
only differences reside in the magnitude of the elastic con-
stants, viscosities and nonhydrodynamic relaxation times. In
addition, C5−nem

R can vanish in soft nematics but C5−SmA
R is

always significantly larger than zero in SmA elastomers
crosslinked in the SmA phase. Thus, solving the SmA equa-
tions leads to sound velocities, modes, etc., that have exactly
the same form as in nematics with C5−nem

R �0. To avoid un-
due repetition, we will refrain from reviewing these results
here in detail; rather we refer the reader directly to Ref. �31�.

IV. BIAXIAL SMECTIC ELASTOMERS—
HYDRODYNAMICS

When the shear modulus C4 in the elastic energy density
�3.1� becomes negative, as it will in response of biaxial or-
dering of the constituent mesogens of a SmA elastomer, the
system undergoes a phase transition to a broken-symmetry
state with D2h �orthorhombic� symmetry �19,20�. This
mechanism, at least in principle, could produce a soft or
semisoft biaxial smectic elastomer �19–21�. In this section
we study the dynamics of these elastomers. In the framework
of Lagrange elasticity theory, a model for their elastic energy
density exists thus far in a strain-only formulation but not in
a formulation with strain and director. Thus, we will restrict
ourselves here to pure hydrodynamics.

A. Elastic energy, viscosity tensor and hydrodynamical
equations

A biaxial smectic elastomer is macroscopically an elastic
body with D2h symmetry. Therefore, its stretching energy is
that of orthorhombic systems �43�, albeit with an important
difference: the modulus for shears in the plane of the smectic
layers �with our choice of coordinates the xy plane�, Cxyxy

R ,
vanishes for an ideally soft biaxial smectic elastomer or is
small for a semisoft one. For details of the derivation of the
stretching energy density of soft biaxial smectic elastomers,
we refer to Refs. �19,20�. If Cxyxy

R vanishes, shears uxy in the
xy-plane cost no elastic energy and, therefore, cause no re-
storing forces. Thus, bending terms proportional to ��y

2ux�2

and ��x
2uy�2 must be added to the harmonic elastic energy to

ensure mechanical stability. This leads to a overall elastic
energy density of the form

f = 1
2Czzzzuzz

2 + 1
2Cxzxzuxz

2 + 1
2Cyzyzuyz

2 + Czzxxuzzuxx + Czzyyuzzuyy

+ 1
2Cxxxxuxx

2 + 1
2Cyyyyuyy

2 + Cxxyyuxxuyy + 1
2Cxyxy

R uxy
2

+ 1
2B1��y

2ux�2 + 1
2B2��x

2uy�2, �4.1�

with bending moduli B1 and B2.
Like the elastic constant tensor Cijkl, the viscosity tensor

�ijkl of an orthorhombic system has nine independent param-
eters. It can be parametrized so that the entropy production
density Tṡ takes on the same form as the stretching energy
density, with Cijkl replaced by �ijkl and uij replaced by the
linearized form of u̇ij, i.e., u̇ij =�iu̇j +� ju̇i,

Tṡ = 1
2�zzzzu̇zz

2 + 1
2�xzxzu̇xz

2 + 1
2�yzyzu̇yz

2 + �zzxxu̇zzu̇xx

+ �zzyyu̇zzu̇yy + 1
2�xxxxu̇xx

2 + 1
2�yyyyu̇yy

2 + �xxyyu̇xxu̇yy

+ 1
2�xyxy

R u̇xy
2 . �4.2�

Equation �4.2� contains all contributions to Tṡ in the hydro-
dynamic limit. In writing it, we have assumed that all non-
hydrodynamic degrees of freedom, like the director, have
relaxed to their local equilibrium values in the presence of
u̇ij. �xyxy

R is an effective shear viscosity that is, like the cor-
responding shear modulus Cxyxy

R , renormalized by the relax-
ation of the director.

Now we possess all the ingredients that are required to
write down the hydrodynamical equations for biaxial smec-
tics. Inserting the elastic energy density �4.1� into Eq. �2.2�
and using the form of the viscosity tensor implied in Eq.
�4.2�, we obtain the equations of motion in the form of Eq.
�2.3� with the components of the stress tensor �= given by

�xx��� = Cxxxx���uxx + Cxxyy���uyy + Cxxzz���uzz,

�4.3a�

�yy��� = Cxxyy���uxx + Cyyyy���uyy + Cyyzz���uzz,

�4.3b�

�zz��� = Cxxzz���uxx + Cyyzz���uyy + Czzzz���uzz,

�4.3c�

�xy��� = 1
2Cxyxy

R ���uxy − B1�y
3ux, �4.3d�
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�yx��� = 1
2Cxyxy

R ���uxy − B2�x
3uy , �4.3e�

�xz��� = �zx��� = 1
2Cxzxz���uxz, �4.3f�

�yz��� = �zy��� = 1
2Cyzyz���uyz. �4.3g�

Here, Cijkl��� stands for

Cijkl��� = Cijkl − i��ijkl, �4.4�

and the renormalized frequency dependent modulus Cxyxy
R ���

is defined as

Cxyxy
R ��� = Cxyxy

R − i��xyxy
R . �4.5�

When the renormalized shear modulus Cxyxy
R is nonzero, in

which case the bending terms featuring B1 and B2 are unim-
portant for the hydrodynamic behavior, the stress tensor �4.3�
is identical to the hydrodynamic stress tensor for an ortho-
rhombic solid and therefore the equations of motion �2.3� are
identical to the hydrodynamic equations for an orthorhombic
solid in this case.

B. Sound velocities

To assess the mode structure of biaxial smectic elas-
tomers, we start with an analysis of propagating sound
modes in the dissipationless limit, i.e., in the limit where
viscosities �ijkl are zero. The sound modes have frequencies

��q� = C��,��q , �4.6�

where q= �q� and where � and � are the azimuthal and polar
angles of the wave vector q in spherical coordinates. In cal-
culating the sound velocities, one can neglect the bending
terms in the stress tensor �4.3�, even though these are non-
dissipative. As we will see further below, the bending terms
give rise to modes with frequencies �
q2 along the sym-
metry directions, where sound velocities vanish, and these
modes mix with dissipative ones to become overdamped dif-
fusive modes with �
−iq2. Therefore, the bending terms do
not contribute to the sound velocities of the propagating
modes. For simplicity, we will focus here on the ideally soft
case with Cxyxy

R =0. We will return to the more general case,
where Cxyxy

R can be nonzero, in Sec. IV C.
Setting the viscosities, the bending moduli K1 and K2 and

the shear modulus Cxyxy
R to zero and switching from the ref-

erence space coordinate x to the wave vector q via Fourier
transformation, the hydrodynamical equations simplify to

��2ux = �Cxxxxqx
2 + 1

4Cxzxzqz
2�ux + Cxxyyqxqyuy

+ �Cxxzz + 1
4Cxzxz�qxqzuz, �4.7a�

��2uy = Cxxyyqxqyux + �Cyyyyqy
2 + 1

4Cyzyzqz
2�uy

+ �Cyyzz + 1
4Cyzyz�qyqzuz, �4.7b�

��2uz = �Cxxzz + 1
4Cxzxz�qxqzux + �Cyyzz + 1

4Cyzyz�qyqzuy

+ � 1
4Cxzxzqx

2 + 1
4Cyzyzqy

2 + Czzzzqz
2�uz. �4.7c�

Inserting the frequency �4.6� into Eq. �4.7� and expressing

the components of q in spherical coordinates, one can solve
for the sound velocities C�� ,��. The resulting sound veloci-
ties are plotted schematically in Fig. 1. There are three pairs
of sound modes. One of these pairs �i� is associated with soft
shears in the xy plane. Its velocity vanishes for q along the x
and y directions, so that when viewed in the xy plane it has a
clover-leave shape. The remaining two pairs are associated
with nonsoft deformations. In the incompressible limit, these
pairs become purely transverse �ii� and longitudinal �iii�, re-
spectively. In the xy and xz planes, their velocities are non-
vanishing in all directions.

Figure 1 indicates that biaxial smectic elastomers, if they
can be produced, have the potential for technological appli-
cation. Since the mode pair �iii� is purely longitudinal in the
incompressible limit, its velocity will be much greater than
that of the remaining two pairs. The sound velocities of the
remaining pairs, which have different transversal polariza-
tions, are so that the velocity of pair �i� vanishes in directions
where the velocity of pair �ii� remains finite. Therefore, a
biaxial smectic elastomer could in principle be used to sepa-
rate the sound mode pair �i� from the sound mode pair �ii�, or
in other words, such an elastomer could in principle be uti-
lized in making acoustic polarizers. This kind of application
has been proposed a while ago for soft nematic elastomers
�54�. In our discussion of the hydrodynamics of soft SmC
elastomers, Sec. V, we will see that SmC’s also allow split-
ting of sound waves. It seems, as if the potential for acoustic
polarization is a generic feature of soft liquid crystal elas-
tomers.

(e)

z

−y

x

(i)

(a)
z

x

−y

(b)
(ii)

(iii)

−y

z

(c)

x

(iii)

(d)

(i)

z

x
(ii)

(iii)

(i)

(ii)

y

x

FIG. 1. �Color online� Schematic plots of sound velocities. �a�,
�b�, and �c� Spherical plots of, respectively, mode pairs �i�, �ii�, and
�iii�. �d� and �e� Polar plots in the xy and xz planes, respectively, of
all three sound-mode pairs.
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C. Mode structure in the incompressible limit

Now we turn to the mode structure, including dissipation,
in the incompressible limit. Even in this limit, the equations
of motion remain fairly complicated and their solutions have
the potential for unpleasant algebraic complexity. Therefore,
we will restrict ourselves in the following to the two simpli-
fied cases, where either qy or qz vanishes, respectively, as in
Figs. 1�d� and 1�e�. Despite these simplifications, the result-
ing equations of motion are still too complicated to be solved
in closed form. However, since we are interested in the long-
wavelength behavior, we can perturbatively determine solu-
tions in the form of a power series in the wave vector. These
solutions will turn out to be of the following two types: �i�
propagating modes with frequencies

�p = ± Cq − iDpq2 �4.8�

with sound velocities C and diffusion constants �49� Dp, and
�ii� diffusive modes with frequencies

�d = − iDdq2 ± �− �Ddq2�2 + Bq4 �4.9�

with diffusion constants Dd and bending terms B. For
B /Dd

2�1 the diffusive modes split up into slow and fast
modes

�s = − iB/�2Dd�q2, �4.10a�

� f = − i2Ddq2. �4.10b�

Specifics of the sound velocities, the diffusion constants, and
the bending terms are given in the following.

For qy =0, the equations of motion reduce to

��2ux = �Cxxxx���qx
2 + 1

4Cxzxz���qz
2�ux

+ �Cxxzz��� + 1
4Cxzxz����qxqzuz, �4.11a�

��2uy = � 1
4Cxyxy

R ���qx
2 + 1

4Cyzyz���qz
2 + B2qx

4�uy ,

�4.11b�

��2uz = �Cxxzz��� + 1
4Cxzxz����qxqzux

+ � 1
4Cxzxz���qx

2 + Czzzz���qz
2�uz. �4.11c�

One of the simplifications that we can enjoy for qy =0 is that
the equation of motion for uy decouples form the equations
of motion for ux and uz, which are coupled to each other. The
uy equation produces a pair of transverse propagating modes
polarized in the y direction, u � ẽy, with a sound velocity

Cy =�Cxyxy
R q̂x

2 + Cyzyzq̂z
2

4�
�4.12�

and a diffusion constant

Dp,y =
�xyxy

R q̂x
2 + �yzyzq̂z

2

8�
, �4.13�

where q̂i stands for qi /q. For the ideally soft elastomer,
Cxyxy

R =0, the sound velocity vanishes for qz=0, and the
above modes become diffusive with a diffusion constant,

Dd,y =
�xyxy

R

8�
q̂x

2, �4.14�

and a bending related constant,

By = 64�B2. �4.15�

In the limit 64�B2� ��xyxy
R �2, these diffusive modes for qz

=0 split up into a slow and a fast diffusive mode with fre-
quencies

�s,y = − i
4B2

�xyxy
R qx

2, �4.16a�

� f ,y = − i
�xyxy

R

4�
qx

2. �4.16b�

The equations of motion for ux and uz can be solved by
decomposing �ux ,uz� into a longitudinal part ul along q and a
transversal part uT. In the incompressible limit ul vanishes.
The equation of motion for uT produces a pair of propagating
transversal modes with polarization u � ẽT, where ẽT= �q̂z ,0 ,
−q̂x�. This mode pair has the sound velocity

CT =�4�Cxxxx + Czzzz − 2Cxxzz�q̂x
2q̂z

2 + Cxzxz�q̂x
2 − q̂z

2�2

4�

�4.17�

and a diffusion constant

Dp,T =
�xxxx + �zzzz − 2�xxzz

2�
q̂x

2q̂z
2 +

�xzxz

8�
�q̂x

2 − q̂z
2�2.

�4.18�

We complete our discussion of the hydrodynamics of bi-
axial smectic elastomers by turning to the case that q lies in
the xy plane. For qz=0, the equation of motion for uz de-
couples form those for ux and uy, which remain coupled to
one another. The uz equation yields a pair of transverse
propagating modes polarized along ẽz with sound velocities
and diffusion constants, which are of the same form as those
given in Eqs. �4.12� and �4.13�, albeit with q̂z replaced by q̂y
as well as Cxyxy

R and �xyxy
R replaced by Cxzxz and �xzxz, respec-

tively,

Cz =�Cxzxzq̂x
2 + Cyzyzq̂y

2

4�
, �4.19a�

Dp,z =
�xzxzq̂x

2 + �yzyzq̂y
2

8�
. �4.19b�

Since both elastic constants contributing to the sound veloc-
ity Cz are nonzero, even for an ideally soft biaxial smectic
elastomer, this sound velocity is nonzero in any direction in
the xy plane.

To solve the coupled equations for ux and uy, we proceed
as above, and we decompose �ux ,uz� into a longitudinal part
ul and a transversal part uT, which now is along ẽT= �q̂y ,0 ,
−q̂x�. In the incompressible limit, ul is suppressed, and of the
two coupled mode pairs only the transverse pair polarized
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along ẽT survives. The sound velocity and the diffusion con-
stant of this pair are, respectively, identical to Eqs. �4.17� and
�4.18�, however with q̂z replaced by q̂y, with Czzzz, Cxxzz, and
Cxzxz, respectively, replaced by Cyyyy, Cxxyy, and Cxyxy

R , and
with corresponding replacements for the viscosities,

CT =�4�Cxxxx + Cyyyy − 2Cxxyy�q̂x
2q̂y

2 + Cxyxy
R �q̂x

2 − q̂y
2�2

4�
,

�4.20a�

Dp,T =
�xxxx + �yyyy − 2�xxyy

2�
q̂x

2q̂y
2 +

�xyxy
R

8�
�q̂x

2 − q̂y
2�2.

�4.20b�

Since now Cxyxy
R appears in the sound velocity, the sound

velocity vanishes for the ideally soft elastomer if qx=0 or
qy =0. In either case, the modes become diffusive. For qy
=0, the frequencies of these diffusive modes are identical to
the frequencies of the diffusive modes discussed further
above. Therefore, in the limit 64�K2� ��xyxy

R �2 one again has
a splitting into slow and fast diffusive modes with frequen-
cies as stated in Eq. �4.16�. For qx=0, we find

Dd,T =
�xyxy

R

8�
q̂z

2, �4.21a�

BT = 64�B1. �4.21b�

In this case, a splitting up into slow and fast diffusive modes
occurs for 64�B1� ��xyxy

R �2. The frequencies of these slow
and fast diffusive modes read

�s,T = − i
4B1

�xyxy
R qy

2, �4.22a�

� f ,T = − i
�xyxy

R

4�
qy

2. �4.22b�

V. SMECTIC-C ELASTOMERS—HYDRODYNAMICS

In this section we investigate the dynamics of SmC elas-
tomers in the hydrodynamic limit. First we will review their
elastic energy density in a model with strain and director
�19,20�. This model will become particularly important in
Sec. VI. Here, we need a model elastic energy density in
terms of strain only, which we derive from the more com-
plete model by integrating out the director. Then we will
come to the actual hydrodynamics. We will write down the
complete hydrodynamical equations and we will extract the
sound velocities and the mode structure.

A. Elastic energy

When formulated in terms of strains and the Frank direc-
tor �19,20�, the elastic energy density f of a SmC elastomer
crosslinked in the SmA phase can be divided into three parts,

f = fu + fu,n + fn-Frank, �5.1�

where fu is the stretching energy density depending only on
u= , fu,n describes the coupling of the Frank director n to strain

variable, and fn-Frank is the density of the Frank energy. In the
following we choose the coordinate system so that the z axis
is parallel to the director of the initial SmA phase and the x
axis is parallel to the direction of tilt in the resulting equilib-
rium SmC phase. Stated more precisely, we choose our co-
ordinates so that the equilibrium reference space director
ñ0= �c̃0 , ñz

0� characterizing the undeformed SmC phase is of
the form ñ0= �S ,0 ,�1−S2�, with S= c̃x

0 being the order pa-
rameter of the transition. It should be emphasized that, in
general, one must distinguish carefully between the
reference-space equilibrium director ñ0 and the physical
equilibrium director n0. Note from Eqs. �3.4� and �3.6�, how-
ever, that to leading order in the displacement gradients �ij,
ñ0 and n0 coincide,

n0 = �S,0,�1 − S2� . �5.2�

For our linearized dynamical theories, only that of leading
order matters and, therefore, for our current purposes, we can
refrain from distinguishing ñ0 and n0.

With our choice of coordinates, fu can be written in the
same form as the elastic energy density of conventional
monoclinic solids �43�,

fu = 1
2Cxyxyuxy

2 + Cxyzyuxyuzy + 1
2Czyzyuzy

2 + 1
2Czzzzuzz

2

+ 1
2Cxxxxuxx

2 + 1
2Cyyyyuyy

2 + 1
2Cxzxzuxz

2 + Czzxxuzzuxx

+ Czzyyuzzuyy + Cxxyyuxxuyy + Cxxxzuxxuxz + Cyyxzuyyuxz

+ Czzxzuzzuxz, �5.3�

but with constraints relating the three elastic constants in the
first row. These latter constants can be expressed in terms of

an overall elastic constant C̄ and an angle �, which depends

on the order parameter S, as Cxyxy = C̄ cos2 �, Cxyzy

= C̄ cos � sin �, and Czyzy = C̄ sin2 �.
The coupling energy density fu,n can be stated as

fu,n = 1
2��
c̃y + �uxy + �uyx�2, �5.4�

where � is a coupling constant, where � and � are dimen-
sionless parameters, and where 
c̃y is the deviation of c̃y
from its equilibrium value c̃y

0=0. In the following it will be
more useful to work with the physical director than with its
reference space counterpart. Switching from 
ñ= ñ− ñ0 to

n=n−n0 via the transformation �3.4�, we get

fu,n = 1
2��Qy + �uxy + �uyx�2, �5.5�

with the variable Qy defined by

Qy = 
ny − S�Ayx − �1 − S2�Ayz, �5.6�

and where higher order terms in �ij have been discarded.
The remaining contribution to the total elastic energy den-

sity that we need to discuss here is the Frank energy density.
When expanded to harmonic order about the equilibrium di-
rector �5.2�, it becomes

OLAF STENULL AND T. C. LUBENSKY PHYSICAL REVIEW E 75, 031711 �2007�

031711-8



fn-Frank = 1
2Kxxxx��xnx�2 + 1

2Kyyyy��yny�2 + 1
2Kyxyx��xny�2

+ 1
2Kxyxy��ynx�2 + 1

2Kxzxz��znx�2 + 1
2Kyzyz��zny�2

+ Kxxyy�xnx�yny + Kxyyx�xny�ynx + Kxxxz�xnx�znx

+ Kyyyx�yny�ynx + Kyxyz�xny�zny + Kxyyz�ynx�zny ,

�5.7�

where we have replaced 
n by n for notational simplicity,
with the understanding, that it has only two components nx
and ny. We will stick to this abbreviated notation for the
remainder of this paper. The elastic constants Kxxxx and so on
are combinations of the original Frank constants, describing,
respectively, splay, twist, and bend distortions of the director
and the order parameter S. For specifics, see Appendix A 1.

As discussed above, the director is not a genuine hydro-
dynamic variable. Therefore, it should be integrated out of
the elastic energy as long as we focus on pure hydrodynam-
ics. Minimizing f over nx and ny, we find that these quantities
relax in the presence of strain to

nx = 0, �5.8a�

ny = S�Ayx + �1 − S2�Ayz − �uxy − �uyz

+
1

2�
�Kyxyx�x

2 + Kyyyy�y
2 + Kyxyz�z

2 + 2Kyxyx�x�z�

��S�Ayx + �1 − S2�Ayz − �uxy − �uyz� , �5.8b�

where terms of fourth and higher orders in derivatives have
been discarded. Inserting these results into f , we obtain an
effective elastic energy density of the form

f = fu + fbend, �5.9�

where fu remains as given in Eq. �5.3�, and where fbend is a
bending energy density given by

fbend = 1
2B1��x

2uy�2 + 1
2B2��z

2uy�2 + 1
2B3��x�zuy�2 + B4uy�z�x

3uy

+ B5uy�x�z
3uy + 1

2B6��y
2ux�2 + 1

2B7��y
2uz�2 + B8��y

2ux�

���y
2uz� . �5.10�

Specifics of the bending moduli B1, B2 and so on are given in
Appendix A 2.

The elastic energy density �5.9� implies that SmC elas-
tomers exhibit static soft elasticity. Suppose deformations are
not too large so that the bending contribution to Eq. �5.9�
may be neglected. Then, due to the above relations among
the elastic constants Cxyxy, Cxyzy, and Czyzy, deformations
characterized by Fourier transformed displacements u � ẽy
and wave vectors q � ẽ2= �−sin � ,0 ,cos �� or, alternatively,
u � ẽ2 and q � ẽy cost no elastic energy and hence cause no
restoring forces. In the following, we will occasionally
switch to a coordinate system that is rotated relative to the
original coordinate system though the angle � about the y
axis so that axes of the new system are ẽx�= �cos � ,0 , sin ��,
ẽy�= ẽy, and ẽz�= ẽ2. On the one hand, the effects of soft elas-
ticity are more evident in the rotated system. On the other
hand, the directions ẽx� and ẽz� will play a certain role in the
mode structure of SmC elastomers, as we will see below. In

the rotated system, the stretching energy density takes on the
form

fu = 1
2Cx�y�x�y��ux�y��

2 + 1
2Cz�z�z�z��uz�z��

2 + 1
2Cx�z�x�z��ux�z��

2

+ Cz�z�x�x�uz�z�ux�x� + Cz�z�y�y�uz�z�uy�y�

+ 1
2Cx�x�x�x��ux�x��

2 + 1
2Cy�y�y�y��uy�y��

2

+ Cx�x�y�y�ux�x�uy�y� + Cx�x�x�z�ux�x�ux�z�

+ Cy�y�x�z�uy�y�ux�z� + Cz�z�x�z�uz�z�ux�z�, �5.11�

where Cx�y�x�y�= C̄, Cy�y�y�y�=Cyyyy and where the remaining
new elastic constants are nonvanishing conglomerates of the
elastic constants defined via Eq. �5.3� and sines and cosines
of �. Note that, in this coordinate system, the elastic con-
stants Cx�y�y�z� and Cy�z�y�z� are zero, and that therefore the
elastic energy does not depend at all on uy�z�, implying there
is no energy cost for shears in the z�y� plane. If the elastomer
is crosslinked in the SmC phase, these moduli become non-
zero. If they remain small, the elastomer will be semisoft.

B. Hydrodynamic equations

Knowing the effective elastic energy density of SmC elas-
tomers in terms of the displacement variable only, Eq. �5.9�
in conjunction with Eqs. �5.3� and �5.10�, we are almost in
the position to write down hydrodynamic equations for SmC
elastomers. The only ingredient that is still missing is the
viscosity tensor. We will parametrize this tensor so that the
density of the entropy production from viscous stresses takes
on a form similar to that of Eq. �5.3�,

Tṡ = 1
2�xyxy

R u̇xy
2 + �xyzy

R u̇xyu̇zy + 1
2�zyzy

R u̇zy
2 + 1

2�zzzzu̇zz
2

+ 1
2�xxxxu̇xx

2 + 1
2�yyyyu̇yy

2 + 1
2�xzxzu̇xz

2 + �zzxxu̇zzu̇xx

+ �zzyyu̇zzu̇yy + �xxyyu̇xxu̇yy + �xxxzu̇xxu̇xz + �yyxzu̇yyu̇xz

+ �zzxzu̇zzu̇xz. �5.12�

As in Eq. �4.2�, we assume here that all nonhydrodynamic
degrees of freedom including the director have relaxed to
their local equilibrium values in the presence of strain, i.e.,
�xyxy

R , �xyzy
R , and �zyzy

R are effective viscosities that have been
renormalized by the relaxation of the director.

Collecting, we obtain a set of equations for the displace-
ment components that can be stated in the form of Eq. �2.3�
with the components of the stress tensor given by

�xx��� = Cxxxx���uxx + Cxxyy���uyy + Cxxzz���uzz

+ Cxxxz���uxz, �5.13a�

�yy��� = Cxxyy���uxx + Cyyyy���uyy + Cyyzz���uzz

+ Cyyxz���uxz, �5.13b�

�zz��� = Cxxzz���uxx + Cyyzz���uyy + Czzzz���uzz + Czzxz���uxz,

�5.13c�

�yx��� = 1
2Cxyxy

R ���uxy + 1
2Cxyyz

R ���uyz − B1�x
3uy − B3�x�z

2uy

− 2B4�x
2�zuy − 2B5�z

3uy , �5.13d�
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�yz��� = 1
2Cxyyz

R ���uxy + 1
2Cyzyz

R ���uyz − B2�z
3uy − B3�x

2�zuy

− 2B4�x
3uy − 2B5�x�z2uy , �5.13e�

�xy��� = 1
2Cxyxy

R ���uxy + 1
2Cxyyz

R ���uyz − B6�y
3ux − B8�y

3uz,

�5.13f�

�zy��� = 1
2Cxyyz

R ���uxy + 1
2Cyzyz

R ���uyz − B7�y
3uz − B8�y

3ux,

�5.13g�

�xz��� = �zx��� = 1
2Cxxxz���uxx + 1

2Cyyxz���uyy + 1
2Czzxz���uzz

+ 1
2Cxzxz���uxz, �5.13h�

where Cijkl��� without superscript R is defined as in Eq. �4.4�
and

C��
R ��� = C�� − i����

R . �5.14�

Here, we have used a compact notation with indices �, �
running over the pairs xy and zy. We will on occasion return
to this notation below. When the shear moduli C�� are non-
zero and independent, in which case the bending terms are
unimportant for the hydrodynamic behavior, the stress tensor
�5.13� is identical to the hydrodynamic stress tensor for a
monoclinic solid.

C. Sound velocities

In order to determine the mode structure of SmC elas-
tomers, we proceed as in our discussion of biaxial smectics
by first analyzing the sound-mode structure in the dissipa-
tionless limit. As before, any bending terms can be neglected
in this analysis. Setting all viscosities to zero, we extract
from the equations of motion the characteristic frequencies
in the form of Eq. �4.6�. The resulting sound velocities are
plotted schematically in Fig. 2. There are three pairs of sound
modes. One of these pairs �i� is associated with the soft de-
formations discussed in Sec. V A. Its velocity vanishes for q
along ẽy and ẽ2 so that when viewed in the y�z� plane it has
a clover-leaf-like shape. The remaining two pairs are associ-
ated with nonsoft deformations. In the incompressible limit,
these pairs become purely transverse �ii� and longitudinal
�iii�, respectively. In the y�z� and x�z� planes, their velocities
are nonvanishing in all directions. Note that, since the veloc-
ity of pair �i� vanishes in directions where the velocities of
the other modes remain finite, SmC elastomers are, like nem-
atic �54� and biaxial smectic leastomers, potential candidates
for applications in acoustic polarizers.

D. Mode structure in the incompressible limit

Having found the general sound-mode structure in the
nondissipative limit, we now turn to the full mode structure
in the incompressible limit. Due to the complexity of the
equations of motion, we once again focus on the softness-
related symmetry directions, cf. Figs. 2�d� and 2�e�. As in
Sec. IV C, the equations of motion yield propagating modes,
whose frequencies are of the form of Eq. �4.8� and diffusive
modes, whose frequencies are of the form of Eqs. �4.9� or

�4.10�. Specifics of the sound velocities, the diffusion con-
stants and the bending terms entering these frequencies are
given in the following.

First, let us consider the case that q lies in the xz plane. In
this case the equation of motion for uy decouples from the
equations of motion for ux and uz. The uy equation produces
a pair of transverse propagating modes polarized along ẽy
with a sound velocity

Cy =� C̄

4�
�cos �q̂x + sin �q̂z� =� C̄

4�
�q̂x�� �5.15�

and a diffusion constant

Dp,y =
�xyxy

R q̂x
2 + 2�xyzy

R q̂xq̂z + �zyzy
R q̂z

2

8�
. �5.16�

In the soft direction, i.e., for q � ẽz�, the sound velocity Cy
vanishes and these propagating modes become diffusive with
diffusion constant Dd,y =Dp,y and bending term

By =
B1q̂x

4 + B2q̂z
4 + B3q̂x

2q̂z
2 + 2B4q̂x

3q̂z + 2B5q̂xq̂z
3

�
,

�5.17�

cf. Eq. �4.9�. The equations of motion for ux and uz can be
solved by decomposing �ux ,uz� into a longitudinal part ul

along q and a transversal part uT along ẽT= �q̂z ,0 ,−q̂x�. In the
incompressible limit ul vanishes. The equation of motion for
uT produces a pair of propagating modes with polarization
u � ẽT, with sound velocity

(i)

(c)

(iii)

z�

−y�

x�

x�
z�

(a)

−y�
(i)

(b)

−y�
(ii)

x�z�

x�

(i)
(ii)

(d)

z�

(iii)

(iii)

y�

z�

(e)

(ii)

FIG. 2. �Color online� Schematic plots of sound velocities. �a�,
�b�, and �c� Spherical plots of, respectively, mode pairs �i�, �ii�, and
�iii�. �d� and �e� Polar plots in the x�z� and x�z� planes, respectively,
of all three sound-mode pairs. Plot �a� is magnified relative to the
remaining plots by a factor of 2.
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CT = �1/���Cxxxx + Czzzz − 2Cxxzz�q̂x
2q̂z

2 + �Cxxxz

− Czzxz�q̂xq̂z�q̂z
2 − q̂x

2� + 1
4Cxzxz�q̂z

2 − q̂x
2��1/2 �5.18�

and diffusion constant

Dp,T =
�xxxx + �zzzz − 2�xxzz

2�
q̂x

2q̂z
2 +

�xxxz − �zzxz

2�
q̂xq̂z�q̂z

2 − q̂x
2�

+
�xzxz

8�
�q̂z

2 − q̂x
2�2. �5.19�

Second and last, let us consider the case q � ẽy. There is a
pair of longitudinal propagating modes with u � ẽy that is sup-
pressed in the incompressible limit. There is a pair of elasti-
cally soft diffusive modes polarized along ẽz� with

Dd,z� =
�z�y�z�y�

R

8�
, �5.20a�

Bz� =
sin2 �B6 − sin 2�B8 + cos2 �B7

�
, �5.20b�

where �z�y�z�y�
R =sin2 ��xyxy

R −sin 2��xyzy
R +cos2 ��zyzy

R . Fi-
nally, there is a pair of propagating modes polarized along
ẽx� with

Cx� = �C̄/�4�� , �5.21a�

Dp,x� =
�x�y�x�y�

R

8�
, �5.21b�

with �x�y�x�y�
R =cos2 ��xyxy

R +sin 2��xyzy
R +sin2 ��zyzy

R .

VI. SMECTIC-C ELASTOMERS—DYNAMICS WITH
STRAIN AND DIRECTOR

In this section, we will treat the low-frequency, long-
wavelength dynamics of SmC elastomers within our formu-
lation with strain and director.

A. Equations of motion

Now we will assemble effective equations of motion for
the displacement variable u and the director. One of the main
ingredients entering the general equations of motion �2.4� is
the elastic energy of the SmC phase. Here we need the elas-
tic energy density with strain and director, Eq. �5.1�, that
comprises the stretching energy density fu, Eq. �5.3�, the
coupling energy density fu,n, Eq. �5.5�, and the Frank energy
density fn-Frank, Eq. �5.7�. The other important ingredient is
the viscosity tensor. Again, we parametrize this tensor so that
the entropy production density is of the form of Eq. �5.12�,
albeit now with �ijkl replaced by 	ijkl �all unrenormalized
thus far�.

Recall that we have expanded the coupling and Frank
energy densities about the equilibrium director �5.2� and that
the deviation from the equilibrium director has only two
components, which we denote for briefness by nx and ny. For
convenience, we will in the following not work with ny di-

rectly but rather with the composite variable Qy defined in
Eq. �5.6� instead. Then, the two equations of motion result-
ing from the director equation �2.4a� read

��t + �� + �Kyy����Qy + �Kyx���nx

= ��S�t − ����uxy + ���1 − S2�t − ����uyz

− �Kyy����S�Ayx + �1 − S2�Ayz� , �6.1a�

��t + �Kxx����nx + �Kxy���Qy

= �S�1 − S2��t�uxx − uzz� + ��1 − 2S2��1 − S2�tuxz

− �Kxy����S�Ayx + �1 − S2�Ayz� + �1 − S2�t�Axz,

�6.1b�

where

Kxx��� = − Kxxxx�x
2 − Kxyxy�y

2 − Kxzxz�z
2 − 2Kxxxz�x�z,

�6.2a�

Kyy��� = − Kyxyx�x
2 − Kyyyy�y

2 − Kyzyz�z
2 − 2Kyxyz�x�z,

�6.2b�

Kxy��� = − �Kxxyy + Kxyyx��x�y − �Kyyxz + Kxyyz��y�z,

�6.2c�

Kyx��� = − �Kxxyy + Kxyyx��x�y − �Kyyxz + Kyxyz��y�z.

�6.2d�

The equations of motion resulting from the momentum den-
sity and displacement equations �2.4b� and �2.4b� can be
written in the form of Eq. �2.3� with a stress tensor given by

�xx��� = Cxxxx���uxx + Cxxyy���uyy + Cxxzz���uzz

+ Cxxxz���uxz + �S�1 − S2�Kxx���nx + �S�1

− S2�Kxy����Qy + S�Ayx + �1 − S2�Ayz� , �6.3a�

�yy��� = Cxxyy���uxx + Cyyyy���uyy + Cyyzz���uzz

+ Cyyxz���uxz, �6.3b�

�zz��� = Cxxzz���uxx + Cyyzz���uyy + Czzzz���uzz + Czzxz���uxz

− �S�1 − S2�Kxx���nx − �S�1 − S2�Kxy���

��Qy + S�Ayx + �1 − S2�Ayz� , �6.3c�

�yx��� = 1
2��� + �S�Qy + 1

2 ����� + �S� + C̄ cos2 �

+ 	xyxy�t�uxy + 1
2 ����� + �S� + C̄ sin � cos �

+ 	yzyz�t�uyz, �6.3d�

�yz��� = 1
2��� + ��1 − S2�Qy + 1

2 ����� + ��1 − S2�

+ C̄ sin � cos � + 	yzyz�t�uxy + 1
2 ����� + ��1 − S2�

+ C̄ sin2 � + 	yzyz�t�uyz, �6.3e�

DYNAMICS OF SMECTIC ELASTOMERS PHYSICAL REVIEW E 75, 031711 �2007�

031711-11



�xy��� = �yx��� + 1
2 �� − 1�SKyy����Qy + S�Ayx

+ �1 − S2�Ayz� + 1
2 �� − 1�SKyx���nx, �6.3f�

�xz��� = 1
2Cxxxz���uxx + 1

2Cyyxz���uyy + 1
2Czzxz���uzz

+ 1
2Cxzxz���uxz + � 1

2 �� + 1� − �S2��1 − S2�Kxx���nx

+ Kxy����Qy + S�Ayx + �1 − S2�Ayz�� , �6.3g�

�zx��� = 1
2Cxxxz���uxx + 1

2Cyyxz���uyy + 1
2Czzxz���uzz

+ 1
2Cxzxz���uxz + � 1

2 �� − 1� − �S2��1 − S2�Kxx���nx

+ Kxy����Qy + S�Ayx + �1 − S2�Ayz�� , �6.3h�

�zy��� = �zy��� , �6.3i�

with Cijkl��� as defined in Eq. �4.4�.
Since these equations of motion are of considerable alge-

braic complexity, we will first consider the simplified case
where all the Kijkl are set to zero. This will allow us without
too much effort to make contact to the hydrodynamic equa-
tions derived in Sec. V B and to extract renormalized elastic
moduli that will be important for the behavior of SmC elas-
tomers in rheology experiments. We will return to the full
equations with the Kijkl included further below.

When the Kijkl vanish, the dependence of the stress tensor
and Eq. �6.1a� on nx drops out. The latter equation is then
readily solved with the result

Qy = − �
1 + i��3

1 − i��1
uxy − �

1 + i��2

1 − i��1
uyz, �6.4�

where we have introduced the relaxation times

�1 = 1/���� , �6.5�

�2=��1−S2 / �����, �3=�S / �����. As we will see further
below, our dynamical equations will predict nonhydrody-
namic modes, which are essentially director modes, with a
decay time �“mass”� �1 implying that �1 is essentially the
director relaxation time, �1=�n. To estimate the value of �n,
we note that the elastic constant � can be reexpressed in
terms of the parameters of semimicroscopic models such as
the neoclassical model of rubber elasticity �1�. For details on
the relation between the elastic constants of our elastic en-
ergy �5.1� and those of the underlying semimicroscopic mod-
els we refer to Ref. �20�. Then, we use the known values of
the semimicroscopic parameters to estimate the magnitude of
�. We find � to be of the order of 103 Pa. We are not aware
of any experimental or theoretical estimates of the rotational
viscosity �−1 of SmC elastomers. We expect it to be some-
what larger than the values of about 0.3�10−1 Pa s found in
SmC liquid crystals �50�, perhaps �−1�1 Pa s. This leads to
�n�10−3 s as a rough estimate of the director relaxation time
in SmC elastomers. This value is larger than the �n�10−2 s
reported for nematic elastomers �51,52�, which is consistent
with the expectation that restoring forces on the director are
greater in smectics than in nematics due to the layering.

Feeding Eq. �6.4� into the stress tensor �6.3� leads to an
effective stress tensor and corresponding effective equations

of motion in terms of the displacement variables only. This
effective stress tensor has exactly the same form as the hy-
drodynamic stress tensor �5.13� without the bending terms
and with the renormalized frequency-dependent elastic
moduli now given by

C��
R ��� = C�� − i�	�� −

i��1

1 − i��1
�A�� = C�� − i�	��

R + O��2� ,

�6.6�

with renormalized viscosities

	��
R = 	�� + �−1A��. �6.7�

In Eqs. �6.6� and �6.7� we have used our compact notation
for index pairs established in Eq. �5.14�. The individual A��

are given by Axyxy =�2�1+�3 /�1�2, Axyzy =���1+�3 /�1��1
+�2 /�1�, and Azyzy =�2�1+�2 /�1�2. Note from Eq. �6.6� that
we can identify the bare viscosities �ijkl and 	ijkl as well as
the renormalized viscosities ���

R and 	��
R , indicating the con-

sistency of our approaches without and with director.

B. Mode structure in the incompressible limit

Now turn to the equations of motion, Eqs. �6.1� and �2.3�
in conjunction with �6.3�, with the bending terms included
and considering the incompressible limit. As above, we will
focus on the directions where q= �qx ,0 ,qz� and q= �0,qy ,0�,
respectively. Some of the steps involved in solving these
equations of motion are sketched in Appendix B. Contrary to
the predictions of our purely hydrodynamical theories, the
modes resulting here are of three rather than of two different
types. As was the case in the hydrodynamics of biaxial smec-
tics and SmC’s, there are propagating modes with frequen-
cies in the form of Eq. �4.8� and there are diffusive modes
with frequencies as stated in Eqs. �4.9� and �4.10�. In addi-
tion to these modes, however, our theory with strain and
director produces nonhydrodynamic modes whose frequen-
cies remain finite in the limit of vanishing wave vector. Their
frequencies are of the form

�m = − i�1
−1 + iDmq2. �6.8�

These nonhydrodynamic modes with a zero-q decay time �1
are predominantly director relaxation modes, and �1 is the
director relaxation time �n. In the following we will discuss
the specifics of all three types of modes.

Let us begin by considering the case that q lies in the xz
plane. In this case the equation of motion for uy decouples
from the equations of motion for ux and uz. The uy equation
produces a set of transverse modes with u along ẽy. There is
a nonhydrodynamic mode with

Dm,y =
��	xyxy

R − 	xyxyq̂x + �	zyzy
R − 	zyzyq̂z�2

4�
. �6.9�

Moreover, there are propagating modes with a sound velocity
Cy that is identical to the sound velocity Cy resulting from
our hydrodynamic theory of Sec. V, see Eq. �5.15�, and with
a diffusion constant
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Dp,y =
	xyxy

R q̂x
2 + 2	xyzy

R q̂xq̂z + 	zyzy
R q̂z

2

8�
. �6.10�

In the soft direction, i.e., for q � ẽz�, these propagating modes
become diffusive with Dd,y =Dp,y and

By =
K̄1q̂x

4 + K̄2q̂z
4 + K̄3q̂x

2q̂z
2 + 2K̄4q̂x

3q̂z + 2K̄5q̂xq̂z
3

�
,

�6.11�

where the K̄’s are bending moduli that are combinations of
the Frank elastic constants, the order parameter S as well as

�, �, and �. Our results for these K̄’s are compiled in Ap-
pendix A 3. We would like to emphasize, that the hydrody-
namic theory and the theory with strain and director yield
identical results for the sound velocity Cy. Furthermore, Eqs.
�6.10� and �5.16� as well as Eqs. �6.11� and �5.17� show that
the results for the diffusion constants Dp,y and the bending
terms By are in absolute agreement, when the identifications

	xyxy
R =�xyxy

R and so on as well as K̄1=B1 and so on are made.
The equations of motion for ux and uz are solved by de-

composing �ux ,uz� into a longitudinal part ul, that vanishes in
the incompressible limit, and a transversal part uT. The equa-
tion of motion for uT yields a pair of propagating modes with
a sound velocity as given in Eq. �5.18�, with

Dp,T =
	xxxx + 	zzzz − 2	xxzz

2�
q̂x

2q̂z
2 +

	xxxz − 	zzxz

2�
q̂xq̂z�q̂z

2 − q̂x
2�

+
	xzxz

8�
�q̂z

2 − q̂x
2�2, �6.12�

and with u � ẽT, where ẽT= �q̂z ,0 ,−q̂x�. Note the full agree-
ment of Eqs. �6.12� with Eq. �5.19� when 	ijkl and �ijkl are
identified.

Finally, we turn to q � ẽy. In this case here is a pair of
longitudinal propagating modes with u � ẽy that is suppressed
in the incompressible limit. There is a nonhydrodynamic
mode with

Dm,xz =
	xyxy

R − 	xyxy + 	zyzy
R − 	zyzy

4�
, �6.13�

where u is in the xz plane with ux=���1+�3� / ����1+�2��uz.
There is a pair of diffusive modes with polarization u � ẽz�
that is related to elastically soft deformations. The diffusion
constant and the bending term of this mode pair reads

Dd,z� =
	z�y�z�y�

R

8�
, �6.14a�

Bz� =
sin2 �K̄6 − sin 2�K̄8 + cos2 �K̄7

�
, �6.14b�

where 	z�y�z�y�
R is the renormalized version of 	z�y�z�y�, cf. Eq.

�6.19�. Last, there is a pair of propagating modes polarized
along ẽx� with a sound velocity identical to that stated in Eq.
�5.21a� and with a diffusion constant

Dp,x� =
	x�y�x�y�

R

8�
, �6.15�

where 	x�y�x�y�
R =cos2 �	xyxy

R +sin 2�	xyzy
R +sin2 �	zyzy

R . Once
more, we point out the full agreement of the diffusion con-
stants and the bending terms obtained, respectively, through
our purely hydrodynamical theory and our theory with strain
and director when the proper identifications between the vis-

cosities and between K̄6 and B6, etc., are made. This agree-
ment on the one hand signals the consistency of our two
approaches. On the other hand, it reassures us that our alge-
bra and our final results are correct.

C. Rheology

In the hydrodynamic limit ��→0, physical elastic moduli
have the simple Maxwell �rubberlike� frequency dependence,
i.e., Cijkl���=Cijkl− i�	ijkl. At higher frequencies, they can
exhibit more complex behavior arising from nonhydrody-
namic modes. Our simple theory focuses on one set of non-
hydrodynamic modes, those associated with the director. It
provides a good description of the relaxation of the director,
but it provides a good description of the dynamic elastic
moduli only if �n is much greater than any other relaxation
time in the system, for example, those associated with the
relaxation of polymer configurations. If we assume �n��E,
then our theory makes specific predictions about the fre-
quency dependent elastic moduli and the corresponding ex-
perimentally relevant quantities, viz. the storage and loss
moduli defined, respectively, as the real and imaginary parts
of the frequency dependent moduli.

One consequence of Eq. �6.6� is that the corresponding
storage and loss moduli may exhibit unconventional dips and
plateaus when they are measured as functions of �. Because
rheology experiments typically probe a wide range of fre-
quencies that reaches to frequencies well above the hydrody-
namic regime, it seems useful to extend our discussion to
frequencies exceeding ���E

−1. In order to do so, we must
account for the frequency dependence of the viscosities and
�. The Rouse model �53�, though it certainly does not pro-
vide a microscopically correct description of liquid-crystal
elastomer dynamics, is known to provide for useful fitting
curves for the storage and loss moduli of elastomers. This
observation leads us to employ this model here and to as-
sume that the viscosities and � are, respectively, of the form
	ijkl���=	ijklfR�−i��E� and ����−1=�−1fR�−i��E� where

fR�x� =
3

�2x sinh���x�
���x cosh���x� − sinh���x�� ,

�6.16�

is the well-known Rouse function �53�. With these assump-
tions, we obtain the following phenomenological form for
the complex moduli C��

R ��� that incorporates the effects of
both director and elastomer modes:
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C��
R ��� = C�� +

	��

�E
hR�− i��E� +

��n/�E�hR�− i��E�
1 + ��n/�E�hR�− i��E�

�A��,

�6.17�

where hR�x�=xfR�x�. For �n��E, the storage moduli C��� pro-
duced by Eq. �6.17� show an unconventional plateau and
there is an unusual dip in the loss moduli C��� , cf. Fig. 3. If
�n��E, or �n��E, this is not the case because elastomer
modes will blur these plateaus and dips leading to conven-
tional rubberlike behavior �not shown�.

There is another interesting theoretical implication of Eq.
�6.6� that, however, will be very difficult to detect experi-
mentally. To discuss this implication, let us switch here to the
rotated reference space coordinates x� ,y� ,z�. Experimentally,
it will be hard to work with these coordinates, since the
corresponding rotation angle � depends on temperature. Set-
ting this problem aside, we note that there are two renormal-
ized shear moduli that vanish in the limit �→0, viz.

Cy�z�y�z�
R ��� = − i�	y�z�y�z� −

i��1

1 − i��1
�Ay�z�y�z�,

�6.18a�

Cx�y�y�z�
R ��� = − i�	x�y�y�z� −

i��1

1 − i��1
�Ax�y�y�z�,

�6.18b�

with viscosities

	y�z�y�z� = sin2 �	xyxy − sin 2�	xyyz + cos2 �	yzyz,

�6.19a�

	x�y�y�z� = cos 2�	xyyz + 1
2 sin 2��	yzyz − 	xyxy� .

�6.19b�

Ay�z�y�z� and Ax�y�y�z� can be inferred from Eqs. �6.19� upon
replacing 	xyxy by Axyxy and so on. Since Cy�z�y�z�

R ��� and
Cx�y�y�z�

R ��� vanish for �→0, we recover in this limit the
ideal static soft elasticity discussed in Sec. V A. At nonvan-

ishing frequency the system cannot be ideally soft but it can
be nearly so for � small. This deviation from ideal softness
due to nonzero frequencies was first discussed in the context
of nematic elastomers �54�, where this phenomenon was
termed dynamic soft elasticity. In a semisoft SmC, the stor-
age moduli Cy�z�y�z�

� ��� and Cx�y�y�z�
� ��� in the rotated frame

are nonzero at zero frequency. They will exhibit behavior
similar to that Fig. 3 if �n��E.

VII. CONCLUDING REMARKS

In summary, we have studied the low-frequency, long-
wavelength dynamics of SmA, biaxial smectic, and SmC
elastomers, assuming that these materials have been
crosslinked in the SmA phase. We employed two different
but related approaches: one formulation that does not explic-
itly involve the Frank director and that describes pure hydro-
dynamics and a second formulation that features the director
and that describes slow modes beyond the hydrodynamic
limit.

The hydrodynamics of SmA elastomers is qualitatively
the same as that of conventional uniaxial rubbers. Beyond
the hydrodynamic regime, however, the director has an im-
pact on the dynamics of SmA elastomers, in which the genu-
ine difference between SmA and conventional uniaxial elas-
tomers shows up. The low-frequency, long-wavelength
dynamics of SmA elastomers, as described by our theory
with the director, is qualitatively the same as that of nematic
elastomers, up to those aspects, where the value of the modu-
lus C5

R for shears in the planes containing the director enters.
For example, nematic and SmA elastomers possess three
pairs of hydrodynamic sound modes. One of the qualitative
differences is, that a soft nematic elastomer, where C5

R=0,
has two pairs of sound modes whose sound velocity vanishes
in the softness related symmetry directions, whereas for SmA
elastomers, where C5

R is significantly larger than zero, sound
velocities are nonvanishing in all directions. The other quali-
tative difference is that nematic elastomers exhibit dynamic
�semi�soft elasticity, i.e., the generalization of �semi�soft
elasticity to nonzero frequencies. SmA elastomers
crosslinked in the SmA phase, since they are not soft or
semisoft, cannot have this property.

Biaxial smectic and SmC elastomers possess, like nematic
and SmA elastomers, three pairs of hydrodynamic sound
modes. One of the sound-mode pairs in either elastomer is
associated with soft deformations. The sound velocity of
these pairs, which become purely transverse in the incom-
pressible limit, vanishes in the softness-related symmetry di-
rections. The remaining two sound mode pairs are associated
with nonsoft deformations. Their velocities remain finite in
the directions in which the velocities of the softness-related
modes vanishes. In the incompressible limit, these mode
pairs become purely transverse and longitudinal, and hence
the latter are effectively suppressed. The vanishing of the
velocities of the softness-related modes in certain directions
could be exploited, in principle, to separate these modes
from the remaining modes, which have different transverse
polarizations than the softness-related modes. Therefore, at

FIG. 3. Log-log plot of the reduced storage and loss moduli
C��� ��� /C�� �solid lines� and C��� ��� /C�� �dashed lines� versus the
reduced frequency ��E as given, respectively, by the real and
imaginary parts of Eq. �6.17� for �n /�E=103. For the purpose of
illustration we have set, by and large arbitrarily, 	�� / ��EC���=1 and
�A�� /C��=3.
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least theoretically, soft biaxial smectic and SmC elastomers
could be used to polarize acoustic waves.

Our theory with strain and director reveals that SmC elas-
tomers may have an unconventional behavior in rheology
experiments. It predicts that, as in nematic and SmA elas-
tomers, certain storage and loss moduli may show, respec-
tively, a plateau and an associated dip in the frequency range
�n

−1����E
−1. It also predicts that soft samples of these ma-

terials exhibit dynamic soft elasticity. Recently there has
been a controversy whether this unconventional rheology
and dynamic soft elasticity can be observed in liquid crystal
elastomers or not �55�. Thus far, this controversy revolved
around nematic elastomers. The few samples of nematic
elastomers on which rheology measurements have been per-
formed, produced little evidence for unconventional rheol-
ogy or dynamic soft elasticity. However, due to the limited
amount of data that is currently available and due to differ-
ences in their interpretation, the experimental picture still
gives reason for debate; both phenomena are neither clearly
verified nor clearly ruled out. The idea to use SmC elas-
tomers as an alternative testing ground for these phenomena
seems appealing. As far as dynamic soft or semisoft elastic-
ity is concerned, however, it will be difficult if not impos-
sible to realize soft or semisoft oscillatory shears experimen-
tally, because one must use a very specific, temperature-
dependent coordinate system. Regarding the plateau and the
dip in, respectively, the storage and loss moduli, these are
less likely to exist physically in smectics than in nematics,
because the director relaxation time in smectic elastomers is
probably shorter than in nematic elastomers.

Despite these difficulties, we hope that our theory encour-
ages rheology experiments on smectic elastomers, in particu-
lar, to see if unconventional rheology exist or not. Moreover,
we hope that our work motivates experimental investigations
of sound velocities in smectic elastomers, for example, Bril-
louin scattering experiments.
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APPENDIX A: ELASTIC MODULI

This appendix collects specifics about the Frank elastic
constants defined by Eq. �5.7�, the bending moduli defined
by Eq. �5.10� and the effective bending moduli appearing in
Sec. VI B.

1. Frank elastic constants appearing in Eq. (5.7)

We have

Kxxxx = K1 + K3
S2

1 − S2 , �A1a�

Kyyyy = K1, �A1b�

Kyxyx = K2�1 − S2� + K3S2, �A1c�

Kxyxy = K2
1

1 − S2 , �A1d�

Kxzxz = K1
S2

1 − S2 + K3, �A1e�

Kyzyz = K2S2 + K3�1 − S2� , �A1f�

Kxxyy = K1, �A1g�

Kxyyx = K2, �A1h�

Kxxxz = �K3 − K1�
S

�1 − S2
, �A1i�

Kyyxz = − K1
S

�1 − S2
, �A1j�

Kyxyz = �K3 − K2�S�1 − S2, �A1k�

Kxyyz = K2
S

�1 − S2
. �A1l�

2. Bending moduli appearing in Eq. (5.10)

We have

B1 = 1
4Kyxyx�S − ��2, �A2a�

B2 = 1
4Kyzyz��1 − S2 − ��2, �A2b�

B3 = 1
4 �Kyxyx��1 − S2 − ��2 + Kyzyz�S − ��2 + 4Kyxyz�S − ��

���1 − S2 − ��� , �A2c�

B4 = 1
4 �Kyxyx�S − ����1 − S2 − �� + Kyxyz�S − ��2� ,

�A2d�

B5 = 1
4 �Kyzyz�S − ����1 − S2 − �� + Kyxyz��1 − S2 − ��2� ,

�A2e�

B6 = 1
4Kyyyy�S + ��2, �A2f�

B7 = 1
4Kyyyy��1 − S2 + ��2, �A2g�

B8 = 1
4Kyyyy�S + ����1 − S2 + �� . �A2h�

3. Bending moduli appearing in Sec. VI B

We have

K̄1 = 1
4Kyxyx�� + �S��� − S� , �A3a�
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K̄2 = 1
4Kyzyz�� + ��1 − S2��� − �1 − S2� , �A3b�

K̄3 = 1
4 �Kyxyx�� + ��1 − S2��� − �1 − S2� + Kyzyz�� + �S�

��� − S� + 2Kyxyz��� + �S��� − �1 − S2�

+ �� + ��1 − S2��� − S��� , �A3c�

K̄4 = 1
8 �Kyxyx��� + �S��� − �1 − S2� + �� + ��1 − S2��� − S��

+ 2Kyxyz�� + �S��� − S�� , �A3d�

K̄5 = 1
8 �Kyxyx��� + �S��� − �1 − S2� + �� + ��1 − S2��� − S��

+ 2Kyxyz�� + ��1 − S2��� − �1 − S2�� , �A3e�

K̄6 = Kyyyy��� + �S��� + S� − S�� − 1��� − S�� , �A3f�

K̄7 = Kyyyy�� + ��1 − S2��� + �1 − S2� , �A3g�

K̄8 = Kyyyy�2��� + S� + �� + 3�S − �� − S��1 − S2� .

�A3h�

APPENDIX B: SOLVING THE EQUATIONS OF MOTION
IN THE SMECTIC-C DYNAMICS WITH STRAIN

AND DIRECTOR

Here we sketch our analysis of the equations of motion,
Eqs. �6.1� and �2.3� together with �6.3�, in order to obtain the
modes discussed in Sec. VI B.

Let us start by introducing the Fourier transforms of the
differential operators Kxx��� and so on defined in Eq. �6.2�,

q2Kxx 	 Kxxxxqx
2 + Kxyxyqy

2 + Kxzxzqz
2 + 2Kxxxzqxqz,

�B1a�

q2Kyy 	 Kyxyxqx
2 + Kyyyyqy

2 + Kyzyzqz
2 + 2Kyxyzqxqz,

�B1b�

q2Kxy 	 qy��Kxxyy + Kxyyx�qx + �Kyyxz + Kxyyz�qz� ,

�B1c�

q2Kyx 	 qy��Kxxyy + Kxyyx�qx + �Kyyxz + Kyxyz�qz� .

�B1d�

When qy =0 or qx=qz=0, the cross terms q2Kxy and q2Kyx
vanish. Writing Eqs. �6.1� in momentum space one observes,
that in this case, the equations for Qy and nx, decouple. This
decoupling simplifies the solution of the equations of motion
considerably and we will limit our following consideration to
momenta where this simplification applies.

When Eqs. �6.1� decouple, they are readily solved for
given displacements ux, uy, and uz with the result

Qy = − �

1 + i��3 +
S

��
q2Kyy

1 − i��1 +
1

�
q2Kyy

1

2
iqxuy

− �

1 + i��3 −
S

��
q2Kyy

1 − i��1 +
1

�
q2Kyy

1

2
iqyux

− �

1 + i��2 +
�1 − S2

��
q2Kyy

1 − i��1 +
1

�
q2Kyy

1

2
iqzuy

− �

1 + i��2 −
�1 − S2

��
q2Kyy

1 − i��1 +
1

�
q2Kyy

1

2
iqyuz, �B2a�

nx = �1 −
q2Kxx

i��−1�−1��S�1 − S2�iqxux − �S�1 − S2�iqzuz

+ �1 − S2���1 − 2S2� + 1�
1

2
iqzux + �1 − S2

����1 − 2S2� − 1�
1

2
iqxuz� . �B2b�

Substituting Eqs. �B2� into the stress tensor �6.3�, one ob-
tains effective equations of motion for the displacements
only.

As a specific example, let us now consider the case qy
=0 in some detail. The second case, qx=qz=0, can be treated
by similar means and will be left as an exercise to the reader.
For qy =0, the effective equation of motion for uy decouples
from those for ux and uz, which remain coupled. Expanding
in powers of q and �, we find the equation of motion for uy
to read

��2uy = � 1
4Cxyxy

R ���qx
2 + 1

4Cyzyz
R ���qz

2 + 1
4Cxyyz

R ���qxqz + K̄1qx
4

+ K̄2qz
4 + K̄3qx

2qz
2 + 2K̄4qx

3qz + 2K̄5qxqz
3�uy , �B3�

where we have dropped higher order terms that do not affect

our results. The bending moduli K̄1 and so on are as defined
in Appendix A 3. Solving Eq. �B3� for frequencies in the
form of a power series in q then leads to the nonhydrody-
namic mode with the diffusion constant stated in Eq. �6.9�
and the hydrodynamic modes with sound velocities, diffu-
sion constants and bending contributions as given in Eqs.
�5.15�, �6.10�, and �6.11�.

Finally, let us look at the coupled equations for ux and uz.
Proceeding like above, we obtain
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��2ux = �Cxxxx���qx
2 + 1

4Cxzxz���qz
2 + Cxxxz���qxqz�ux

+ � 1
2Cxxxz���qx

2 + 1
2Czzxz���qz

2 + �Cxxzz���

+ 1
4Cxzxz����qxqz�uz, �B4a�

��2uz = � 1
2Cxxxz���qx

2 + 1
2Czzxz���qz

2 + �Cxxzz���

+ 1
4Cxzxz����qxqz�ux + � 1

4Cxzxz���qx
2 + Czzzz���qz

2

+ Czzxz���qxqz�uz, �B4b�

as the leading contributions. Equations �B4� can be decou-
pled in the incompressible limit. To this end, we switch now

from the coordinate system with basis �ẽx , ẽy , ẽz� to a rotated
system with basis �q̂ , ẽy , ẽT� with ẽT= �q̂z ,0 ,−q̂x�. In the in-
compressible limit the longitudinal component ul of the dis-
placement vanishes. The equation of motion for the transver-
sal component uT along ẽT follows from Eqs. �B4� as

��2uT = q−2� 1
4Cxzxz����qz

2 − qx
2�2 + �Cxxxz���

− Czzxz����qxqz�qz
2 − qx

2� + �Cxxxx��� − 2Cxxzz���

+ Czzzz����qx
2qz

2�uT. �B5�

Solving this equation for � in the form of a power series in
q results in the propagating modes with a sound velocity and
a diffusion constant as resented in Eqs. �5.18� and �6.12�.
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