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Recently it was found that fluid smectic phases of bent core liquid crystals formed freestanding fibers of
extremely high slenderness ratios. Studies of these fibers showed that their structure was composed of con-
centric cylindrical smectic layers. For this configuration to be stable there must be an energy term that desires
bending of the smectic layers. We show that an energy term that deals with the divergence of the dipolar
direction can encourage layer bending if the layer chirality value is allowed to vary. The energy term associated
with holding the layer chirality is closely related to layer compressions and electrical self-interactions. For our
model, we assumed a simple smectic-C geometry with constant molecular tilt and cone angle defined by the
director with respect to the layer normal, but allowed a constant variation of the polar direction about the
director. Applying this simplified model to a free energy which accounts for director distortions, divergence of
the polar direction, biaxial layer strain, surface tension, and electrical self-interactions, we were able to show
consistency between the stable fiber radius and other properties predicted in our model to results from experi-
mental studies.
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I. INTRODUCTION

Fiber formation ranges from natural processes such as silk
drawn from spiders and silkworms to synthetic processes �for
fiber formation� used in the production of nylon and polyes-
ter fabrics, optical fibers, and even body armor �1�. All of
these are created by forming rigidity in the pulling process
that opposes the constricting effects of surface tension. This
rigidity can have various sources, such as a glassy transition
under cooling to the evaporation of solvents or polymeriza-
tion during the pulling process. Some of the earliest studies
of liquid crystal fibers appeared in columnar liquid crystals
and were possible due to the one dimensionality of the liquid
�2�. Fiber stability for columnar liquid crystals was associ-
ated with a compression term dealing with the increase of
column density perpendicular to the fiber direction �1,3�, so
while the surface tension would try to decrease the fiber’s
radius, the compression term would resist it. Estimation of
the minimum stable fiber radius for columnar liquid crystals
was calculated using the modified Plateau-Rayleigh �MPR�
instability which tested the stability of the fiber to diameter
fluctuations along the fiber length, and it was found that fi-
bers are stable to all fluctuations for radii greater than Rm �4�:

Rm = �/2B . �1�

Here ��0.03 N/m is the surface tension and B
�105 N/m2 is a compression modulus, thus giving Rm
�0.15 �m �1�. This value is actually about one order
smaller than that observed experimentally.

The study of bent core liquid crystal fibers is fairly new,
and much is unknown about their structure and properties.
The presence of helical filaments growing in the bent core
liquid crystal B7 phase was first reported in 1999, where it
was pointed out that polarization might have a crucial roll in
the formation of the helical filaments �5,6�. There were also
reports that the B7 phase actually prefers to form stable fibers
rather than stable thin films �5,7�. Characterization of the

helical filaments indicated that they were composed of cylin-
drically concentric smectic layers and that the helicity was
connected to the chiral symmetry breaking of the achiral
molecules �8,9�. Studies of freestanding fibers showed that
two bent core liquid crystal phases formed the most stable
fibers and were identified to be the B2 and B7 phases �4�. The
B7 phase preferred to form single stable fibers in a very nar-
row size range with radii between 1.5 and 2 �m, while the
B2 phase could only form fibers of much larger radii �4�,
which could be associated to bundling of these smaller fiber
units �4,10,11�. Interesting electrical properties of the fibers,
such as repulsion and attraction to transverse electrical fields,
push-pull attraction of bulk material to longitudinal electric
fields, and fiber breaking to dc electric field pulses, point
towards a charged behavior consistent with C1 symmetry
�i.e., polarization components both normal and parallel to the
smectic layer normal� �4,12�. Using mechanical oscillations
�10� and tensile force �12� measurements, the surface tension
of bent core fibers has been measured to be about 25 mN/m.
In measurements of the mechanical oscillations, a bulk en-
ergy term ��5 kPa was measured �12� that contributed to
the restoring force of the oscillating fiber. This term de-
pended on the concavity of the fiber and was proportional to
the volume, but its source was unknown.

The first theoretical explanation of bent core fiber stability
used the same MPR argument used for columnar liquid crys-
tals �see Eq. �1�� �4�. Just as for columnar liquid crystals, it
also gives about one order of magnitude smaller radius than
observed experimentally. Although it is tempting to explain
this discrepancy by assuming that defects weaken the struc-
ture of the fibers and push this threshold radius �Rm� to larger
values, in this case one would observe fibers in a wide range
of radii, depending on the number of defects, which would
vary from fiber to fiber. Experiments, however, clearly show
discrete stable fiber diameters, thus suggesting that another
mechanism stabilizes the fibers at radii over a micrometer.
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Here we propose a theoretical model that explains the
source of bent core liquid crystal fiber stability and connects
it to the molecular and phase structures of the constituent
materials.

II. THE MODEL

Our study probes fiber stability on three major bent core
phases: the SmAP, SmCP �B2�, and the SmCG. Previous the-
oretical considerations of these phases were laid out by
Brand, Cladis, and Pleiner in 1998, in which they discussed
the symmetries and possible macroscopic consequences of
these phases �13�. The basic molecular orientations with re-
spect to the undistorted layer normal for these phases are
sketched in Fig. 1 and can be fully described by two angles �
and �. In all of the phases, we see three important directions

described by the layer normal k̂, the director direction n̂, and
the polar direction p̂ which must be perpendicular to the
director to hold the head-tail symmetry.

In the SmAP phase, there exists a twofold symmetry axis
along two mirror planes �C2��. It is a polar phase where the

polar direction p̂ is perpendicular to layer normal k̂, which is
parallel to the director n̂. SmAP materials show in-plane bi-
refringence and ferroelectric or antiferroelectric type switch-
ing �14�.

The SmCP phase is also polar parallel to the layer plane,
but the molecular plane is tilted with respect to the layer
normal. This phase is interesting because of the formation of
distinct chiral domains even though the molecules are achiral
�7�. The smectic layers have a twofold rotational symmetry
�C2� about the polar direction, and the chirality arises from

broken mirror symmetry induced by the coupling of layer tilt
and polarization.

The B7 structures are characterized by helical superstruc-
tures, such as telephone-cord-like filaments formed while
cooling from the isotropic fluid. Some of these structures
cannot be switched by electric fields whereas others are swit-
chable, suggesting different phase structures. The electric-
field-induced optical and mechanical behavior of these swit-
chable B7 materials can be consistently explained by a
double tilted structure with C1 symmetry �15�. X-ray and
freeze fracture studies of nonswitchable B7 materials, how-
ever, indicate a polarization modulated �B7−mod� �16� or even
a digitized smectic structure that can be interpreted as a co-
lumnar phase composed of smectic ribbons. On the other
hand, we do not see any evidence in the literature which
would rule out local C1 symmetry �i.e., double-tilted director
structure in the smectic ribbons� of these original B7 materi-
als. In our model we will consider the SmCG model, and we
will find that a double tilted structure with ��0,� stabilizes
the formation of fibers and filaments.

The SmLP phase can be called the “leaning” smectic
phase and results from the polarization direction lying along
the tilt plane. Although this phase has never been found ex-
perimentally it has theoretical importance, since this pro-
vides the largest out-of-layer polarization for a given layer
tilt.

Regarding their fiber stability, our experiments showed
that SmAP materials do not form stable fibers; SmCP can
form both films and bundle of fibers, whereas the B7 mate-
rials form single and bundles of fibers, but they do not form
freestanding films.

Throughout our model, we assume a very simple smectic
structure consisting of concentric cylindrical layers running
through the entire length of the fiber �L� and from the outer
radius �R� of the fiber to some defect core radius �rc�. This
very simple model is shown in Fig. 2, and although not noted
in the figure, the cylindrical coordinate system that we will
be working in is as follows: r̂ pointing radial from the fiber

center, ẑ pointing along the fiber long axis, and �̂ being

mutually perpendicular to r̂ and ẑ such that r̂	�̂= ẑ. With
this coordinate system, we assume that the smectic layer nor-
mals lie along the radial coordinate r̂.

Although the geometry is simple, we allow the formation
of the general double-tilted SmCG phase characterized by
nonzero polar and azimuthal angles � and �, respectively.

FIG. 1. Illustration of the molecular orientation of the molecular
long axis n̂ and the polarization direction p̂ with respect to the

smectic layer normal k̂. In the SmAP phase, the long axis is parallel
to the layer normal direction, while the polarization direction can be
defined by an angle � about the director. The SmCP phase is de-
fined by a constant tilt angle �, and the polarization direction is
bound to the layer �xy� plane. In the SmCG phase, the orientation
can be identified by a layer tilt angle � and a polarization angle �
forming the most general molecular orientation of the three. In the
SmLP phase the polarization lies in the tilt plane defined by the
molecular long axis and the smectic layer normal.

FIG. 2. The fiber geometry used in our stability analysis. The
fiber has length L, outer radius R, and inner cutoff radius rc, where
the smectic properties are assumed to break down. This model
shows the layered structure consisting of concentric smectic layers
which are essential for fiber stability.
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For the sake of simplicity, we fix the tilt angle � and assume
that it cannot be changed by external fields. We also assume
that the polarization angle � is constant and independent of
the radial position, though we allow its uniform variation
under external fields. The azimuth angle is set to a constant
along the r� plane for simplicity and because previous ex-
perimental studies warranted this geometry �4�. With these
constraints, we can define the molecular long axis n̂ �direc-
tor�, the polarization direction p̂, and the molecular plane
normal m̂ in terms of these angles:

n̂ = cos �r̂ + sin ��̂ , �2�

p̂ = sin � sin �r̂ − cos � sin ��̂ + cos �ẑ , �3�

m̂ = sin � cos �r̂ − cos � cos ��̂ − sin �ẑ . �4�

By using n̂ and p̂, we can define the chiral order parameter 

of the layers as �17�


 = 2�r̂ 	 n̂ · p̂��r̂ · n̂� = sin 2� cos � . �5�

The layers have maximum chirality when cos �= ±1, corre-
sponding to the SmCP phase. For 0� �
 � �sin 2�, then the
layers have C1 symmetry �SmCG phase�. When �
 � =0, this
phase has Cs symmetry �SmLP phase�, and if the tilt plane
lies in the r� plane, then distortions of the layers do not
break the Cs layer symmetry.

Taking into account both the bulk and surface free ener-
gies, the total free energy F�R ,�� can be obtained by inte-
grating the free energy density fB�r ,�� over a cylindrical
volume and the surface energy density S��� over the surface
area:

F�R,�� = 2�L�
rc

R

fB�r,��r dr + 2�LRS��� . �6�

Then by dividing by 2�L, we can obtain the free energy per
length ��R ,�� as

��R,�� =
F�R,��

2�L
= �

rc

R

fB�r,��r dr + RS��� . �7�

Obviously, when the energy minimum occurs at R=rc, then
the bulk terms disappear and the surface term which is gov-
erned by surface tension dominates forcing the fiber to break.
However, if the minimum occurs when R
rc, then the bulk
energy may overcome the cost of the surface tension and
fiber stability can be achieved.

A. Bulk energy terms

1. Director distortions

This energy density accounts for the low-energy �Frank
free energy �1,18�� distortions of the director field in the
smectic system. Using the one-constant approximation for
the distortion elastic constant K and ignoring the K24 term,
our energy density takes the classical form �18�

FN�R� =
1

2
K���� · n̂�2 + ��� 	 n̂�2� =

1

2
K

1

r2 . �8�

The energy density from this term integrates out to have a
logarithmic relationship to the core radius rc as

�N�R� =
1

2
K ln� R

rc
	 . �9�

Below rc, the director distribution does not matter, and the
material is assumed to be either isotropic or a nematic fluid
whose director points along the fiber and is undistorted.

2. Dipolar divergence distortions

Linear divergence of the dipolar direction may contribute
to the free energy via two mechanisms: elastic �molecular
packing� and electrostatic interactions:

fD = c���� · p̂� + c���� · P� � 
 �c� + c�P0���� · p̂� = Ceff��� · p̂� .

�10�

The first term has an energy constant c� and is entirely elastic
in nature and can be determined from maximizing the mo-
lecular packing. The second term has an energy constant c�
and is related to electrostatic repulsion of a macroscopic po-

larization P� along p̂. Furthermore, if the total polarization
magnitude Po is constant, we can define an effective energy
constant Ceff which is a linear combination of the two effects.
Although we combine c� and c� in the Ceff term, the need to
separate these two mechanisms is essential because the elas-
tic c� term is independent of all other energy terms and only
drives splay of the molecular kink directions; however, the
electrostatic c� term is proportional to the macroscopic po-
larization which is present in other energy terms such as the
electric self-interactions.

Using the notation provided in Eq. �10�, we can easily
rewrite the dipolar divergence free energy density fD and free
energy per length �D in terms of the angles � and �:

fD�r,�� = Ceff��� · p̂� = Ceff sin � sin ��1/r� , �11�

�D�R,�� = Ceff sin � sin ��R − rc� . �12�

The signs of c� and c� can be positive or negative depending
on their molecular properties, but Eq. �12� can always be
negative by changing the sign of �, so �D can always op-
pose the effects of surface tension. Furthermore, �D is also
proportional to the fiber radius and has a tilt angle depen-
dence which eliminates this term in the SmAP phase where
�=0.

3. Electric self-interactions

This energy density has three components: the first term

deals with dielectric interactions with electric fields E� i cre-
ated by the diverging spontaneous polarization, the second
term takes into account the dielectric interactions with exter-

nally applied electric fields E� e, and the last term describes the
interaction between the spontaneous polarization and both
internal and external fields:
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fE =
1

2
D� i · E� i −

1

2
D� e · E� e − P� · �E� i + E� e� . �13�

The first and second terms have opposite signs because the
first is due to fields generated by constant charge and the
second arises from constant potential. In order to use a more
convenient form, we will add and subtract a term of the form

1/2�o�E� i+E� e� · �E� i+E� e�, where �o is the dielectric permittiv-
ity of free space. By regrouping the terms we can obtain the
following equation, where �̄ is the relative dielectric tensor

and Ī is the identity matrix:

fE =
1

2
�0��̄ − Ī�E� i · E� i −

1

2
�0��̄ − Ī�E� e · E� e − P� · �E� i + E� e�

+
1

2
�0�Ei

2 − Ee
2� . �14�

This form of the equation is useful because it shows that the
first and second terms are just interactions between the in-

duced polarization P� ind=�o��̄− Ī�E� and the electric fields sur-
rounding them. The last term deals with the effects of electric
fields in the absence of the dielectric material and occurs in
all space, while the others act only within the fiber. For our
current model we will be ignoring the effects of external
fields and consider only electric self-interactions. This re-
duces Eq. �14� to the following:

fE =
1

2
�0��̄ − Ī�E� i · E� i − P� · E� i +

1

2
�0Ei

2. �15�

Finally we will neglect the last term outside of the fiber
because in the real system there will exist free charges which
can drastically limit the effects of electric fields outside of
the fiber.

This form of the equation is useful to us for two reasons:
first, it limits the volume of integration to that of the fiber
and does not extend over all space; second, it allows us to
inspect the effects of the self interacting fields. Luckily, due
to the simple geometry of our model, we are able to derive
the internal electric field by using Gauss’s law inside the
fiber:

� � �0�̄E� i · dA� = −� � � ��� · P� �dV ,

� � �0�̄rrEir d� dz = − P0 sin � sin �� � � �1

r
	r dr d� dz ,

�0�̄rrEir = − P0 sin � sin ��r − rc� ,

E� i = −
P0��̄rr�−1

�0
sin � sin ��1 −

rc

r
	r̂ . �16�

This can be calculated exactly because over all other dimen-
sions except in the r̂ direction, we assumed that the polariza-
tion does not diverge and cannot form fields. Therefore only
the radial component of the electric field will exist, which
makes it an excellent candidate for this technique. Then by
plugging the results from Eqs. �16� for the internal electric

field into the reduced form of the free energy density �15�,
we are able to obtain the free energy density and free energy
per length in terms of � and �:

fE�r,�� =
P0

2��̄rr�−1

�0
�sin � sin ��2�1

2
� rc

r
	2

− 2
rc

r
+

3

2
� ,

�17�

�E�R,�� =
P0

2��̄rr�−1

�0
�sin � sin ��2�1

2
rc

2 ln� R

rc
	

− 2rc�R − rc� +
3

4
�R2 − rc

2�� . �18�

The inverse of the relative dielectric tensor appears in both
Eqs. �17� and �18�. This term operates only in the r̂ direction
and therefore is reduced to a single element of the inverse
tensor. This can be calculated by

��̄rr�−1 =
1

�1
�n̂ · r̂�2 +

1

�2
�m̂ · r̂�2 +

1

�3
�p̂ · r̂�2

=
1

�1
cos2 � +

1

�2
sin2 � cos2 � +

1

�3
sin2 � sin2 � ,

�19�

where �1, �2, and �3 are the eigenvalues of the dielectric
tensor in the molecular frame of reference.

4. Layer compression

Although our model assumes a constant tilt angle, which
for rod-shaped molecules would be equivalent to the layer
incompressibility condition, such is not the case here, where
we allow changes of �—i.e., the change of layer chirality. To
account for this in our model, we will use the classical layer
compression free energy density:

fC =
1

2
B�2 


1

2
B�d − d0

d0
	2

, �20�

where B is the layer compression modulus and � is the layer
strain, which accounts for variations of the layer thickness d
from that of its equilibrium value do. In order to take into
account the effects of changing the layer chirality, we must
introduce a new type of layer thickness. To describe bent
core molecules having a three-dimensional shape, we define

the shape tensor D̄ as

D̄mol = 
d1 0 0

0 d2 0

0 0 L
� , �21�

where d1, d2, and L are the molecular dimensions defined in
Fig. 3.

The effective layer thickness �assuming rigid molecules�
d changes when the polarization direction is varied as

d = �D̄k̂� · k̂ . �22�

In Fig. 3, we see that changing the polarization direction
can induce a minor change in the layer thickness, �, which is
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dependent on the direction of the polarization with respect to
the layer normal. Taking into account the angular variation of
the molecular coordinate system with respect to the layer

normal k̂ defined by � and �, we can express d as

d = d1 + �L − d1�cos2 � + �d2 − d1�sin2 � sin2 � . �23�

What is interesting about Eq. �23� is that the angular depen-
dences of d go with the square of the angles which does not
bias the net layer chirality of the system �in both maximum
chirality values sin �=0�. When this formalism is introduced
into Eq. �20� along with the assumptions of constant tilt
angle and �d2−d1� / �L−d1��1 and d1 / �L−d1�� �1, we ar-
rive at the following relationship:

fC��� =
1

2
B� d1 + �L − d1�cos2 � + �d2 − d1�sin2 � sin2 �

d1 + �L − d1�cos2 �0 + �d2 − d1�sin2 �0 sin2 �0

− 1	2



1

2
B� �d2 − d1�

�L − d1�
tan2 �0	2

�sin2 � − sin2 �0�2

=
1

2
Beff�sin2 � − sin2 �0�2, �24�

where �o and �o are the tilt and polar angles of the material
at their unstrained positions. What is interesting about the
polarization direction’s effect on the compression modulus is
an effective rescaling by a factor of about 5% assuming that
�d2−d1� is approximately 1 nm and the length is about 5 nm.

Beff = B�d2 − d1

L − d1
tan2 �0	2


 �105 Pa�� 1 nm

4 . 5 nm
tan2 �

4
	2


 5 kPa. �25�

This allows us to obtain a bulk elastic energy term that could
explain the unknown elastic energy term � measured by
Stannarius et al. �12�. Furthermore, the free energy per
length for this term would look like

�C�R,�� =
1

4
B�d2 − d1

L − d1
tan2 �0	2

�sin2 � − sin2 �0�2�R2 − rc
2�

�26�

and would oppose the effects of curvature induced by �D.
On a side note, similar terms to the energy density in Eq.

�24� can be derived from elastic theory as long as it is in-

variant under �n̂ , k̂�↔ �−n̂ ,−k̂� inversion. One possible can-
didate takes the form of variations of the square of the layer
chirality 
 from its undistorted state 
o:

fC� ��� =
1

2
Bc�
2 − 
0

2�2 =
1

2
Bc sin4 2��sin2 � − sin2 �0�2.

�27�

From Eq. �27�, we can see that the energy term in Eq. �24�
holds the layer chirality constant when external stresses are
not applied.

B. Surface term

The surface term provides an energy cost for creating an
interface between two media, in our case air and liquid crys-
tal. Assuming a biaxial tensor relationship for the surface
tension �̄ which couples the orientation of the local molecu-

lar coordinate system n̂, m̂, and p̂, to the surface normal k̂,
this energy density would take the following form:

S = ��̄k̂�k̂ . �28�

In our geometry the surface normal is along r̂, so we can
rewrite Eq. �28� as

S��� = �1�n̂ · r̂�2 + �2�m̂ · r̂�2 + �3�p̂ · r̂�2,

S��� = �1 cos2 � + �2 sin2 � cos2 � + �3 sin2 � sin2 � .

�29�

This results in a free energy per length

�S�R,�� = R��1 cos2 � + �2 sin2 � cos2 � + �3 sin2 � sin2 �� .

�30�

C. Core energy term

To examine the possible effect of the core on fiber stabil-
ity, we will overestimate its energy by assuming that the
defect core has enough distortion energy to completely melt
the liquid crystalline material in the core to the isotropic
phase. This energy can be estimated by assuming that the
fiber is in the liquid crystalline phase in thermal equilibrium
at temperature T below the isotropic transition temperature
To. Accordingly,

Ecore � �nkb�T0 − T� + �H�Vcore, �31�

where n is the number density of the molecules, kb is Boltz-
mann’s constant, � is the mass density, H is the sum of spe-
cific latent heats of the liquid crystal phases to the isotropic
phase, and Vcore is the volume of the defect core. Assuming

FIG. 3. A comparison of the layer thickness between the SmCP
and SmLP phases where both molecules have a layer tilt of � /4.
The SmCP phase has the polarization direction lying in the smectic
layer; however, the SmLP phase has the polarization direction lying
in the tilt plane. In both phases the layer spacing has been set to the
distance for the SmCP phase and both molecules touch the bottom
layer; however, the SmLP phase creates a small layer thickness
change � via the shape of the molecule.
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that the defect is a straight line running down the center of
the fiber, the defect volume can be written as the volume of
a cylinder of radius rc and length L. By replacing the number
density in �31� by the combination of mass density �, Ava-
gadro’s number NA, and molar mass M, we can calculate the
energy per length, �core, by dividing �31� by a constant factor
of 2�L as we did in Eq. �7�, and plugging in reasonable
values for the material properties we obtain

�core � ���NA

M
	kb�To − T� + �H�1

2
rc

2. �32�

III. RESULTS

Now that we have derived all of the possible energy con-
tributions, we can write the total energy per length as the
sum of these components:

�total�R,�� = �N�R� + �D�R,�� + �E�R,�� + �C�R,��

+ �S�R,�� + �core. �33�

This free energy has to be minimized for R and � for a given
set of property values to find the equilibrium structure. Fiber
stability for all lengths requires that the minimum of the
energy per length be negative and the radius at this minimum
be larger than rc. To simulate the real situations as closely as
possible, we have varied the parameters �o, �o, R, c�, c�, and
Po and have used reasonable fixed values for the remaining
parameters. Both the ranges and the fixed values are pro-
vided in Table I.

Before proceeding with the numerical calculations we
compare �core with the other terms in Eq. �33� using the
parameters given in Table I, furthermore assuming a 1-�m
fiber with �o=0, �=−� /2, �o=� /4, Po=10−3 C/m2, c�
=0.04 N/m, c�=11.2 V, and a typical molecular weight of
800 g/mol. At 10 °C below the isotropic-smectic transition

with a typical latent heat of 20 J /g we find from �32� that
�core�2.51	10−10 N. On the other hand, we find �total
=−4.85	10−9 N, showing that by neglecting the defect term
we introduce an error of less than 5%. Since the calculated
core energy is an overestimate, it is justified to neglect it in
our model. In any case, the core energy would mainly influ-
ence the stability transition range and not the stable fiber
radius. We also note that the director distortion energy per
length, �N=2.65	10−11 N, is even smaller than that of �core
and can be neglected as well.

With the remaining terms we would like to analyze the
relationships between the total spontaneous polarization Po,
the divergence terms c� and c�, and the effects of varying �o
and �o on fiber stability.

Numerical results were obtained by minimizing the en-
ergy per length �total with respect to R and � via a combi-
nation of derivative-free function minimization techniques
provided in the Matlab Optimization Toolbox, such as golden
section search and parabolic interpolation combined with un-
constrained nonlinear optimization techniques such as the
simplex search method. Combining these multiple tech-
niques helps guarantee that a minimum solution to Eq. �33�
can be obtained and that the solutions are not local minima
or maxima.

Polarization dependences were studied by varying the
polarization and calculating the stable fiber radius for
three situations. The first numerical calculation sets
c�=0.04 N/m and c�=0, which probe the behavior of purely
elastic splay of the polarization. The second set c�=11.2 V
and neglects c�, which probes dipolar divergence effects. Fi-
nally we simulate the general case which uses Ceff with c�
=0.04 N/m and c�=11.2 V and accounts for both sources of
dipolar divergence �Fig. 4�. What we see in this graph is that
polarization has a tremendous effect on fiber stability. The
energy cost due to electric self-interaction is extremely im-

TABLE I. List of simulated physical property values.

Variable Description Value

�o Equilibrium smectic tilt angle −� /2��o�� /2

�o Equilibrium polarization angle −���o��

rc Defect core radius 5	10−9 m

R Outer fiber radius 10−8 m�R�10−5 m

K Director elastic constant 10−11 N

Po Spontaneous polarization 10−4 C/m2� Po�10−1 C/m2

c� Elastic div. of dipole direction constant 0 N/m�c��0.055 N/m

c� Electric div. of dipole direction constant 0 V�c��55 V

B Layer compression modulus 105 Pa
d2-d1

L-d1

Approximately the width to length ratio of the
molecule

0.2

�1 Relative dielectric constant along n̂ 7

�2 Relative dielectric constant along m̂ 10

�3 Relative dielectric constant along p̂ 12

�1 Surface tension along n̂ 0.026 N/m

�2 Surface tension along m̂ 0.024 N/m

�3 Surface tension along p̂ 0.025 N/m
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portant in defining the stable fiber radius. This effect can be
best seen in the c�-only curve which has a “damping” in the
stable radius due only to electric self-interaction of �E. The
c� curve has a strong stability transition and does not form

very large stable fibers as compared to the c�. However, the
presence of polarization amplifies the stable fiber radius in
the Ceff curve and forms much more stable fibers. This leads
us to the following conclusions: fiber stability is strongly
related to the combined effects of c� and c� especially when
c� has a strength greater than the surface tension: otherwise,
there will be a strong stability transition which arises from a
competition between the c� term and electric self-interaction
greatly reducing fiber stability. Referring back to Sec. II A 2,
we emphasize again that even though the c� and c� are lin-
early combined, the resulting effect of the two mechanisms
can be very different due to the c� coupling to other energy
terms.

FIG. 5. Phase diagram which compares the effects of �1

=c�sin �o /� to �2=c�Po sin �o /� on fiber stability, where only Po is
varied in the calculation of �2 and c� is set to 11.2 V. The different
shading represents the stable fiber radius. A factor of sin � is intro-
duced into �1 and �2 to correctly account for the maximum out-of-
layer polarization that contributes to this effect. The stability thresh-
old �dashed line� marks the boundary between stable and unstable
fibers.

FIG. 6. Phase diagram which compares the effects of �1

=c� sin �o /� to �2=c�Po sin �o /� on fiber stability, Where only c�
is varied in the calculation of �2 and Po=10−3 C/m2. The shading
represents the stable fiber radius.

FIG. 7. The effects of tilt angle on the stable fiber radius for
various polarizations: Po=10−4 C/m2 ���, Po=10−3 C/m2 ���,
Po=10−2 C/m2 ���, and Po=10−1 C/m2 ���, when �o=0. We can
see that for all polarizations in the SmAP phase ��o=0� there is no
stable fiber with r
rc. However, there is a definite threshold be-
havior that occurs which is strongly dependent on the polarization.
Furthermore, we see that SmCP materials with larger polarizations
�Po
10−2 C/m2� can form stable fibers, but their radius is below
the MPR instability threshold �solid line�, Rm=0.15 �m, which
would be unstable to longitudinal diameter fluctuations.

FIG. 4. Numerical results for the polarization dependence on
fiber stability. Computations were performed on three situations for
�D; with c� only, c� only, or Ceff, and the results show some insight
into the mechanisms of fiber stability. The most striking difference
between the curves is the polarization range at which each term
dominates. The c� only term dominates at low polarizations while at
larger polarizations, Po
5	10−4 C/m2; the electric self-
interaction begins to shrink the stable fiber radius. For the c�-only
term, at low polarizations Po�5	10−3 C/m2, fiber stability does
not exist: however, above this value a transition occurs in which
fibers can form. The Ceff term that takes both of these behaviors into
account is stable over the entire range but dominates in the
midranges between 10−4 C/m2� Po�5	10−3 C/m2 and peaks at
around 5	10−4 C/m2.

STRUCTURE AND STABILITY OF BENT CORE LIQUID… PHYSICAL REVIEW E 75, 031701 �2007�

031701-7



The effects of electric self-interactions can be seen more
clearly in Fig. 5, which compares the effects of �1
=c�sin �o /� and �2=c�Posin �o /� to the simulated stable fi-
ber radius. What we see is that when �1+�2�1, denoted by
the dashed line, then fiber stability is not allowed. As one
moves along increasing �2, representing increasing polariza-
tion, we see that stability increases outside of the stability
threshold and eventually decreases as electric self-
interactions begin to dominate the free energy.

The effects of electric self-interaction on the stable fiber
radius are illustrated by comparing Fig. 5 to Fig. 6. In Fig. 5,
we see that polarization effects, such as electric self-
interaction can lower the stable fiber radius. On the other
hand, Fig. 6 compares the effects of �1=c� sin � /� to �2
=c�Po sin � /� on fiber stability when Po is held at
10−3 C/m2. What we see in Fig. 6 is that no bias on fiber
stability can be seen in the �1 to the �2 directions, which
confirms that a dominating effect in fiber stability is electric
self-interactions. This occurs due to the fact that when c� or
c� are varied they only affect the �D term; however, when
the polarization is varied this also affects �E as well, which
fights polarization divergence.

The angular dependences can be studied by varying the
layer tilt angle �o and the bulk polarization angle �o. The
first case inspects the SmAP/SmCP transition and the second
looks at the SmCP/SmCG/SmLP transitions. Using the prop-
erty values in Table I and varying only the corresponding
bulk angles, we obtain the curves in Figs. 7 and 8, showing
the effects of �o and �o on fiber stability, respectively.

The results of these numerical calculations can be sum-
marized as follows.

�i� The SmAP phase cannot form stable fibers via this
mechanism due to a lack of out-of-plane polarization. This
coincides with our experimental results, in which we were
not able to form fibers of the first SmAPA material �14�. It is
interesting to point out, however, that the threshold tilt de-
creases with increasing polarization. Therefore, if the SmAP
phase has a significantly large in-plane polarization, one

could form a fiber if a molecular tilt could be induced

through shearing the fiber about the �̂ direction.
�ii� The effect of increasing polarization in all phases is a

decrease in the average fiber radius, and fibers with large
polarizations �Po�5	10−3 C/m2� have a stable fiber radius
below the modified Plateau-Rayleigh instability limit and
would be susceptible to diameter fluctuations.

�iii� The SmCP phase does not form as stable of fiber as
the SmCG and SmLP phases, as seen by the larger stable
radii and the lower free energy per length in these phases as
shown in Fig. 8. This may explain the observations that
SmCP fibers exist only in bundles and not in single form.
Since experiments clearly show that B7 fibers are much more
stable than B2 �SmCP� fibers, this model is consistent with
the possibility that the B7 phases do indeed hold C1 �SmCG-
type� symmetries �4�.

IV. CONCLUSIONS

We presented a simple theoretical model assuming con-
stant tilt and azimuth angles of bent core molecules, but al-
lowing the rotation of the molecular plane with respect to the
tilt plane by an angle � away from the SmCP situation. We
showed that nonzero � values lead to the stability of single
fluid fibers. Assuming reasonable material parameters, we
found the minimum stable fiber radii in the micrometer
range, in agreement with the experimentally observed values.
Also in agreement with experimental observations, we
showed that the director tilt is necessary for fiber formation.
Finally, our model can explain an experimentally observed,
but so far not understood, bulk elastic term in a few kPa
range.

In the future we plan to proceed in two directions. On the
one hand, we will refine our model by allowing variations of
the angles with respect to position. On the other hand, we
will further simplify our model to find analytical expressions
that will relate the stable fiber radii directly to the shape of

FIG. 8. �a� Plot of stable fiber radius versus the value of �o at various polarization values: Po=10−4 C/m2 ���, Po=10−3 C/m2 ���,
Po=10−2 C/m2 ���, and Po=10−1 C/m2 ���. The bulk �o value has a significant effect on the stable fiber radius for small polarizations;
however, the corresponding stable radii are large. Larger polarizations also show this effect: however, their differences are much more
constrained. The largest stable single fibers occur in the SmLP phase ��o /�=0.5� and decrease as we move through the SmCG phase and
have a minimum in the SmCP phase. The MPR line �solid line� denotes the threshold from the modified Plateau-Rayleigh instability
threshold, below which no fibers are stable. �b� The free energy per length for the Po=10−3 C/m2 case with varying �o, which shows that
the free energy is minimized in the SmLP phase and has a maximum in the SmCP phase.
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molecules, thus making the model physically more trans-
parent.
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