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Velocity distributions and aging in a cooling granular gas
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We use large-scale molecular dynamics simulations to study freely evolving granular gases with dimension-
ality d=2,3. The system dissipates kinetic energy (or cools) due to inelastic collisions between granular
particles. The density and velocity fields are approximately homogeneous at early times, and the system is said
to be in a homogeneous cooling state (HCS). However, fluctuations in the density and velocity fields grow, and
the system evolves into an inhomogeneous cooling state (ICS). We study the nature of velocity distributions in
both the HCS and ICS. We also investigate the aging property of the velocity autocorrelation function.
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I. INTRODUCTION

There has been intense research interest in the static and
dynamical properties of granular materials or powders
[1-7]. These materials exhibit properties which are interme-
diate to those of fluids and solids. The understanding and
characterization of these properties poses both scientific and
technological challenges. One of the most important features
of granular materials is that the grains undergo inelastic col-
lisions, with the normal component of velocity being dissi-
pated on collision. This suggests two classes of dynamical
problems in the context of powders.

(a) The first class of problems concerns systems where the
energy dissipation is compensated by energy input from ex-
ternal driving. Thus the system settles into a nonequilibrium
steady-state behavior, which is usually characterized by com-
plex pattern dynamics. There are various standard geometries
for driving granular materials, e.g., horizontal or vertical vi-
bration on a platform [8], pouring through a chute [9], rota-
tion in a drum [10-12], etc. These experimental systems give
rise to diverse examples of pattern formation, which have
attracted much research attention.

(b) The second class of problems concerns the nonequi-
librium relaxation of an energized powder in the absence of
an external drive. The best-known problem in this class is the
cooling of an initially homogeneous system of inelastic par-
ticles. The inelastic collisions between particles result in the
loss of kinetic energy (or cooling), and the local paralleliza-
tion of particle velocities. In the early stages, the density
field is approximately uniform and the system loses energy
in a homogeneous cooling state (HCS) [13]. However, the
HCS is unstable to fluctuations in the density and velocity
fields, and the system evolves into an inhomogeneous cool-
ing state (ICS) [14-21]. The ICS is characterized by the
emergence and growth of particle-rich clusters, with particles
in a cluster moving in approximately parallel directions.

In this paper, we study the HCS and ICS of a granular gas
through large-scale molecular dynamics (MD) simulations.
In earlier work [20], we have characterized pattern formation
in the ICS for a two-dimensional inelastic gas via physical
quantities like the correlation function and structure factor
for the density and velocity fields; and the growth laws for
fluctuations in these fields. Here, we focus on the velocity
distributions in the HCS and ICS for cases with dimension-
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ality d=2,3. (In a recent letter [22], we have already pre-
sented some results in this context.) For an elastic hard-
sphere gas, an arbitrary velocity distribution rapidly evolves
to the Maxwell-Boltzmann (MB) distribution. However, the
situation is not so simple for granular materials with non-MB
distributions, e.g., power laws, stretched exponentials, etc.,
being reported in various studies [ 1-7]. In this paper, we also
study the autocorrelation function of the velocity field. The
nonequilibrium evolution of the granular gas gives rise to
aging or nonstationary behavior of the autocorrelation func-
tion, which we discuss here.

This paper is organized as follows. In Sec. II, we review
the phenomenology of the cooling problem. In Sec. III, we
present detailed numerical results from our MD simulations.
As mentioned above, we will focus on the nature of velocity
distributions in the HCS and ICS, and the aging of the ve-
locity autocorrelation function. Finally, Sec. IV concludes
this paper with a summary and discussion.

II. PHENOMENOLOGY OF THE COOLING PROBLEM
A. Homogeneous cooling state (HCS)

The HCS was first studied by Haff [13] and corresponds
to an approximately uniform state of the granular gas. We
consider an inelastic gas with identical particles (hard
spheres) of mass m=1 and diameter o=1. Consider a colli-
sion between particles labeled i and j. The postcollision ve-
locities of the particles are given in terms of the precollision
velocities by the following rule:

Y . Ate L
Vi =0i— > [7-(v;-v)l,
. - l+e . L L.
i=Uit 5 [n'(Ui—Uj)]n, (1)

where e (<1) is the coefficient of restitution. Here, 7 is a
unit vector parallel to the relative position of the particles,
and points from j to i at the time of collision.

The granular temperature is defined as 7=(v?)/d, where
(0?) is the mean-squared velocity. The homogeneous state
cools with time 7 as
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where w(7) is the collision frequency at temperature 7. From
kinetic theory, this has the approximate form [23]
ld-Dr2

T(d/2)

o(T) = x(mnT'2, (3)
where x(n) is the pair correlation function at contact for hard
spheres with density n. Equations (2) and (3) yield Haff’s
cooling law for the HCS:
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where T, is the initial temperature. A useful quantity is the
average number of collisions 7(¢) that a particle suffers until
time ¢. This is computed as

T(t)zfodt’w(t’)zz?dln[l+$t} (5)

The number of collisions increases logarithmically (rather
than linearly) with time as the system cools with time. In
terms of the collision time 7, Haff’s cooling law has a par-
ticularly simple form:

T(n =T, exp(—??’). (6)

The natural framework to study velocity distributions in
the HCS is the inelastic version of the Boltzmann transport
equation [7]. In the elastic case (e=1), an arbitrary initial
distribution rapidly evolves (~ few particle collisions) to the
MB distribution:

1\ ) )
PMB(J)z(;(z)> exp(—%), U(z) <Z> (7)

0

Here, v =(v,,vy,...) denotes the particle velocity. In the
near-elastic case (e=1), it has been argued that the distribu-
tion function is time-dependent due to the cooling process,

but has a scaling form which deviates from the MB function
[24,25]:

. 1 v
Fon= ugm'{ vom] w0 @
Here, v(z)(t)=2(172>/ d as before, and
1 o]
F(é) = —5 expl(= c2)§0 a,S,(c?). ©)

In Eq. (9), F(¢) has been expanded in terms of the Sonine
polynomials, which satisfy the orthogonality relation:
I'(n+dr2)

f dec? exp(= S, (¢S, (c?) = 5,
0 2n!
(10)

The first few Sonine polynomials (which we will use in this
paper) are
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The coefficients a, in Eq. (9) quantify the deviation from
the MB function. The normalization condition dictates a
=1. Further, a simple scaling argument yields a;=0 [7]. The
first nontrivial coefficient in the expansion is a,, and this has
been calculated from kinetic theory by Noije and Ernst (NE)
[25] as

16(1 —€)(1 =2¢?)
9 +24d + 8de — 41e +30(1 — e)e”

ar= (17)
The above scenario is only reasonable in the absence of cor-
relations in the HCS, as the Boltzmann equation is only valid
in this limit. Brey et al. [26] have performed Monte Carlo
(MC) simulations of the inelastic Boltzmann equation, and
confirmed the validity of Eq. (17). However, it is more rel-
evant to study the applicability of these results in a cooling
granular gas. In this context, Huthmann ef al. [27] have un-
dertaken MD simulations of inelastic hard spheres in d=2.
They evolved the system from an MB velocity distribution
and studied the evolution of the coefficient a,(z). In general,
the coefficients a,(z) are obtained from the expansion:

(1) = <c2">MBE (- 1) = ( -
I'(k+d/2)
() = Tan (18)

This yields the first few a,,’s as follows:
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a()=1- &:0, (19)

w()=-1+ <§f>ZB, (20)
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ay(t) = 1 6a, +4a; + ﬁ (22)
(')

as(t) =1+ 10a, — 10as + 5a, — 75— etc.  (23)
(€ ms

Huthmann et al. found that a,(¢) evolved from a,=0 (the MB
value) to a “steady-state” value which was consistent with
kinetic theory. However, the kinetic-theory prediction was
not valid in the ICS, and a, relaxed back to zero on a time
scale 7~ 30 collisions for e=0.4<1 (see Fig. 9 of Ref. [27]).
Similar results were obtained by Nakanishi [21], who found
that the “steady state” was transient even for values of e very
close to 1. This is associated with the buildup of correlations
prior to the onset of the clustering state, which we will dis-
cuss next. Further, Nakanishi found that the deviation from
the kinetic-theory prediction occurred considerably earlier
than the formation of visible clusters in the density field.

In recent work, Brilliantov and Poschel (BP) [28,29] have
used a more sophisticated expansion than NE [25] to calcu-
late the first two nontrivial Sonine coefficients (a, and a3) in
the HCS. The BP calculation accounts for the influence of as,
which is assumed to be negligible in the NE study. They
obtain the following expressions in d=2 [29]:

16 2 3 4
a,=———(—849+ 1170e —291e” + 708¢” + 2782¢

b(e)
— 6400¢” + 3120¢° — 480¢” + 240¢?), (24)
128 5 3 4 5
a;=-— m(m —342¢ — 54362 + 1340¢° + 66¢* — 1344e
(4
+720¢° — 160e” + 80¢®), (25)

b(e) =102 195 — 128 358¢ + 70 017¢> + 9060¢> + 15 950¢*
— 74 240¢° + 34 800¢° — 5600e” + 2800¢8. (26)
The corresponding d=3 results are [28]
a=— %(— 1623 + 1934e + 895¢” — 364¢> + 3510¢*

— 7424 + 3312¢° — 480¢” + 240¢%), (27)

128 2 3 4 5
az=— ﬂ(217 —386¢ — 669¢” + 1548¢” + 154¢™ — 1600e
cle

+816€° — 160e” + 80¢®), (28)
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FIG. 1. (a) Plot of analytical expressions for a, and a3 in d=2.
For a,, we show the Noije-Ernst (NE) result in Eq. (17) (Ref. [25]);
and the Brilliantov-Poschel (BP) result in Eq. (24) (Ref. [29]). For
as, we show the BP result in Eq. (25) (Ref. [29]). (b) Analogous to
(a) but for d=3. We plot the NE result for a, in Eq. (17); the BP
result for a, in Eq. (27) (Ref. [28]); and the BP result for a3 in Eq.
(28) (Ref. [28]).

c(e) =214 357 = 172 458¢ + 112 155¢> + 25 716¢> — 4410¢*
— 84 480¢° + 34 800¢° — 5600¢” + 2800¢°. (29)

We will subsequently compare our MD data with the results
obtained by NE and BP. In Fig. 1(a), we plot a, and a3 versus
e for d=2 and e € [0, 1]. We compute a, using the NE result
in Eq. (17) (solid line) and the BP result in Eq. (24) (dashed
line). Our MD results in this paper are obtained for e
€[0.7,1]. For these values of e, there is little difference
between agE and azBP. Further, the typical values of a; are 4
to 5 times smaller than the corresponding a,. Figure 1(b) is
the three-dimensional (3D) counterpart of Fig. 1(a).

Before discussing the ICS, we mention that the tail of the
distribution function does not obey a MB behavior, but rather
decays exponentially as F(c) ~exp(-Ac), where A is a con-
stant. This is referred to as overpopulation of the tail and was
first studied by Esipov and Poschel [30] and van Noije and
Ernst [25]. Tt has been confirmed in MC simulations of the
Boltzmann equation by Brey e al. [26], and also in MD
simulations by Huthmann er al. [27].

B. Inhomogeneous cooling state (ICS)

As mentioned earlier, the HCS is unstable to fluctuations
in both the velocity and density fields. This is depicted in
Fig. 2, which shows the evolution of these fields for a two-
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FIG. 2. Evolution snapshots of the density field (frames on left)
and velocity field (frames on right) for an inelastic granular gas in
d=2. These pictures are obtained for a system with particle number
N=262 144, packing fraction ¢=0.157, and restitution coefficient
¢=0.9. The size of the system is (1144.860)2. The details of the MD
simulation are provided in the text. The density field is obtained by
directly plotting the particle positions. The velocity field is obtained
by coarse-graining the system into boxes of size (17.9¢)? and plot-
ting the overall velocity vector for each box.

dimensional (2D) granular gas with e=0.9. Correlations de-
velop in the velocity field because particle collisions dissi-
pate the normal component and parallelize the particle
velocities. Of course, the overall momentum is conserved,
and this must be reflected in the ordered state also. The for-
mation of particle clusters can also be understood on simple
physical grounds. Consider a density fluctuation in the HCS.
In the denser regions, there is a more rapid collision of par-
ticles and faster cooling than in the dilute region. Thus the
pressure becomes lower in the denser regions, and particles
are sucked into these regions, reinforcing the density fluctua-
tion.

The nature of these instabilities can be clarified by a linear
stability analysis of the corresponding nonlinear hydrody-
namic equations. A detailed discussion of the instabilities has
been given by Brito and Ernst [31] and van Noije and Ernst
[32]. Essentially, pattern dynamics in the velocity field is
driven by a long-wavelength instability in the shear mode for
wave vectors k<k‘ (€) ~ V1—e?fore—1. Similarly, cluster-
ing in the density field is driven by long-wavelength (small-
k) instabilities in the heat mode. The critical wave vector for
heat modes is denoted as ky(€), and satisfies kg (€) <k (€).
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Again, we have kj,(€) ~\1-e? for e— 1. Thus the system
size L determines the instabilities which are observed.

(a) For L<2/k (€), there is no pattern formation in
either the velocity or density fields. In this case, the system
always remains in the HCS.

(b) For 2/k () <L <2mr/ky€), the system is char-
acterized by vortex formation in the velocity field but no
density inhomogeneities are formed. Again, the system re-
mains in the HCS for all times.

(c) For 2m/ki(e) <L, the granular gas exhibits both
vortex formation and clustering.

The time scale of the shear instability is considerably
faster than that of the heat mode. Thus there is a regime of
vortex-mediated dynamics in the HCS before the crossover
to the ICS. Here, we are interested in the thermodynamic
limit with L—cc, where the asymptotic state of the granular
gas is the ICS. In recent work, Das and Puri (DP) [20] have
studied pattern dynamics in the nonlinear ICS regime. They
have drawn analogies between the clustering process in
granular gases and phase-separation kinetics in binary mix-
tures. DP characterized pattern formation in the velocity and
density fields via the domain growth laws, and the scaling
behavior of the time-dependent correlation functions and
structure factors. DP argued that the streaming-and-
aggregation dynamics of the granular gas results in conser-
vation on the cluster length scale, which diverges with time.
Thus the asymptotic dynamics obeys a global conservation
law, which is a much weaker constraint than a local conser-
vation law. In related work, Wakou et al. [33] have demon-
strated that the evolution of the granular flow field can be
described via a time-dependent Ginzburg-Landau equation
for a nonconserved order parameter.

In this paper, our primary interest is the nature of the
velocity distribution functions in the HCS and ICS, and the
aging behavior of the velocity autocorrelation function. In
Sec. II A, we have mentioned that there is some understand-
ing of the non-MB velocity distributions in the HCS. How-
ever, we do not have a similar understanding of the velocity
distributions in the ICS. In the next section, we present de-
tailed numerical results to clarify velocity distributions in the
ICS for granular gases in d=2,3.

III. NUMERICAL RESULTS FROM MOLECULAR
DYNAMICS SIMULATIONS

A. Details of simulations

We used event-driven MD to simulate a system of inelas-
tically colliding particles [34,35]. The particles were identi-
cal with mass m=1 and diameter o=1. We did not consider
the rotational motion of the particles. The relation between
precollision and postcollision velocities is given in Eq. (1).
The granular gas consisted of N=10° particles confined in a
2D or 3D box with periodic boundary conditions. The box
sizes were chosen so that the number fraction was p=0.2 in
both cases, with packing fraction ¢=0.157 in d=2 and ¢
=(.105 in d=3. (In an earlier study, Kawahara and Nakan-
ishi [36] have investigated the free cooling of an inelastic gas
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FIG. 3. Time-dependence of the granular temperature in d=2,
shown on a linear-log scale. We plot the normalized kinetic energy
E(7)/E(0) vs 7 for ¢=0.95, 0.9, and 0.8. The solid lines denote
Haff’s law from Eq. (6).

with N=0.5X10% or N=10% and p=0.4. They studied the
velocity distributions up to collision time 7==300 for the case
with N=0.5X10%. The simulations reported here go up to
7=1000 for the 2D case, and 7=500 for the 3D case.)

The system is initialized by randomly placing particles in
a box. All these particles have the same speed but the veloc-
ity vector points in random directions so that 2;v;=0. This
system is relaxed to an MB velocity distribution by allowing
it to evolve until 7~ 100 with e=1, i.e., the elastic limit. This
serves as the initial condition for our simulation of inelastic
hard spheres.

We will subsequently present results for the time-
dependence of the temperature; velocity distribution func-
tions; and the aging of the velocity autocorrelation function.
‘We have obtained results for cases with ¢=0.7, 0.8, 0.9, and
0.95. All statistical results correspond to averages over 50
independent initial conditions.

B. Velocity distributions in the HCS and ICS

1. Two-dimensional case

In Fig. 2, we showed the evolution of the density and
velocity fields for the 2D case with ¢=0.9. In Fig. 3, we plot
the normalized kinetic energy E(7)/E(0) versus 7 for the 2D
case with ¢=0.95, 0.9, and 0.8. The data is plotted on a
linear-log scale—the initial exponential decay corresponds to
Haff’s cooling law for the HCS. The data deviates from
Haff’s law when correlations build up in the system. We
define the HCS —ICS crossover time 7, as the time where
the temperature deviates from the Haff prediction by more
than 10%. In Table I, we show the values of 7. in d=2 for
various values of e.

Next, we examine the velocity distribution functions in
the cooling system. In Fig. 4, we plot vyP(v,7) versus v/v,
(on a linear-log scale) for the 2D case at early times (7
<1.), where P(v,7) is the speed distribution at time 7. This
is obtained as follows. For a particular run, we calculate the
quantity
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TABLE I. Crossover times from the HCS to the ICS for differ-
ent values of e in d=2. We define the crossover time 7, as the time
when the temperature deviates from the Haff law by more than
10%.

e T,
0.95 82
0.9 32
0.8 13
0.7 8

N 172
5 2 Ui2
L ) (30)

Uo(T) = d N

The corresponding speed distribution P(v,7) is then com-
puted as a histogram over bins of width Av=0.08v,. To im-
prove statistics, we further average P(v,7) over 50 indepen-
dent runs. In Fig. 4, we show data for ¢=0.95 (7=11); e
=0.9 (7=7); ¢=0.8 (7=4); and ¢=0.7 (7=1). The particular
choice of 7 corresponds to the collision time when our MD
data for the second Sonine coefficient (a,) saturates to the
kinetic-theory prediction. (This will be discussed shortly.)
The solid line superposed on the data sets corresponds to the
MB function in d=2:

2

Pi’ié(v)=2—l§exp<— v_z)- (31)
Vo Vo

In a direct plot of the data in Fig. 4, the MD data and the MB

function are numerically indistinguishable. In the linear-log

plot, the tail of the MD data is seen to systematically differ

from the MB function in all cases, though the deviation is

/v

E
0 T2 3 45
v 0

FIG. 4. Scaled velocity distribution, voP(v,7) vs v/v, plotted
on a linear-log scale for the d=2 case. The data is shown at early
times (7<7.) for (a) ¢=0.95 (7=11); (b) ¢=0.9 (7=7); (c) ¢=0.8
(7=4); and (d) e=0.7 (7=1). The solid lines denote the MB distri-
bution in Eq. (31). The dashed lines denote G(c) from Eq. (32),
with values of a, and a3 obtained from our MD simulations. These
values are provided in Table II.
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FIG. 5. Analogous to Fig. 4, but at late times (7> 7,.). All data
sets correspond to 7=1000. In this case, we do not plot G(c) from
Eq. (32).

small. The dashed line denotes the function (c=v/v):
G(c) =2ce™[1 + arS(c?) + asSx(cA)],

4
Sy =1-262+ %

4 C6

2 _ 2, 3¢ &

S3(c?)=1-3¢"+ e (32)
where the Sonine coefficients a,,a; are calculated from the
MD data using Egs. (20) and (21). The numerical values of
these coefficients will be specified shortly. Notice that our
MD data does not show overpopulation of the tail [F(c)
~exp(—Ac)] [25,30] for the range of c-values over which we
have reliable data. This may be attributed to the relatively
high values of e in our simulations, and the corresponding
high c-values for crossover from the Gaussian tail to the
overpopulated tail.

In Fig. 5, we plot vyP(v,7) versus v/v, at late times (7
> 7.), again on a linear-log scale. We show data for ¢=0.95,
0.9, 0.8, and 0.7, all at 7=1000. The solid line denotes the
MB function, which is numerically indistinguishable from
the MD data on a direct plot. As a matter of fact, even the
linear-log plot does not show a systematic discrepancy be-
tween the MD data and the MB function. Thus the distribu-
tion reverts to a Gaussian at late times. This is due to aver-
aging over a large number of independent clusters, with
particle velocities in each cluster being approximately paral-
lel.

For a more quantitative study of the velocity distributions,
it is useful to examine the time-dependence of the Sonine
coefficients in Eq. (9). The explicit functional forms of a; to
as were provided in Egs. (19)—(23). As the initial velocity
distribution is of the MB form, a,(7=0)=0Vn>1. Let us
first discuss the behavior of the Sonine coefficient a,. In Fig.
6, we plot a,(7) versus 7 for d=2 and ¢=0.95, 0.9, 0.8, and
0.7. We show data for individual runs (dotted lines) and their
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FIG. 6. (a) and (b) Time-dependence of a, for d=2, ¢=0.95.
The dotted lines denote a, vs 7 for individual runs, and the solid
line is the corresponding average. The frames on the left and right
show the early time (up to 7=7,) and late-time behaviors, respec-
tively. A horizontal dashed line is drawn in (a) at a,=-0.0186,
corresponding to the NE kinetic-theory prediction in Eq. (17) (Ref.
[25]). (c) and (d) ay vs 7 for d=2, e=0.9. The dashed line in (c)
corresponds to a, =-0.026. (¢) and (f) a, vs 7 for d=2, ¢=0.8. The
dashed line in (e) is drawn at a,=-0.0219. (g) and (h) a, vs 7 for
d=2, ¢=0.7. The dashed line in (g) is drawn at a,=0.0012.

average (solid line). The frames on the left show the early
time behavior (up to 7=7,), and the frames on the right show
the behavior for extended times up to 7=1000. In the early
HCS (7<7,), the velocity correlations are negligible and the
predictions of kinetic theory should apply. For the cases e
=0.95, 0.9, and 0.8, a, saturates to a “steady-state” value on
a time scale of 7~ 10 collisions. The data sets in Figs. 6(a)
and 6(c) are consistent with the NE result in Eq. (17)—
denoted by a horizontal dashed line in the frames on the left.
(Recall that aI;E and a?*’ are equivalent for this range of
e-values, as shown in Fig. 1.) On the other hand, the data sets
in Fig. 6(e) (for ¢=0.8) saturate somewhat higher than the
value predicted by Eq. (17). Finally, the data sets in Fig. 6(g)
(for ¢=0.7) show no sign of settling at the kinetic-theory
prediction. Recall that kinetic theory is only applicable when
there are no velocity correlations—however, these build up
rapidly for e<<1 and low dimensionality. We define the satu-
ration time T, as the time when a, approaches closest to the
kinetic-theory prediction. For the case with e=0.7, the data
for a, versus 7 does not show a saturating behavior. In this
case, we define 7, as the time when a, crosses the kinetic-
theory value—we have 7,=1 for ¢=0.7. The scaled distribu-
tions in Fig. 4 were plotted for e=0.95, 0.9, 0.8, and 0.7 at
T= Tk
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FIG. 7. Analogous to Fig. 6 but for a3 vs 7. The horizontal
dashed lines are drawn at (a) a3=-0.0056; (c) a3;=-0.0094; (e)
a3=-0.0103; and (g) a3=-0.0093. These values of a3 correspond
to the BP result in Eq. (25) (Ref. [29]).

In Fig. 6, the frames on the left show that the data sets for
individual runs are comparable in the early time regime.
However, at later times (7> 7,), the individual data sets show
strong fluctuations around a,==0, in spite of the large system
sizes (N=10%) and extensive averaging (50 runs) in our
simulations. The ICS consists of clusters of particles stream-
ing in independent directions—an averaging over these clus-
ters is expected to yield a Gaussian distribution of velocities
[19,21,37]. Our late-time results are consistent with the MB
result a,=0, but the average value of a, still shows large
variations with 7.

Figure 7 is analogous to Fig. 6, but the data sets corre-
spond to as versus 7. Notice that Fig. 7 has similar features
to Fig. 6. However, in this case, even the data for e=0.7
approaches the kinetic-theory prediction of BP in Eq. (25).
This is denoted by the horizontal dashed lines in Figs. 7(a),
7(c), 7(e), and 7(g).

In Table II, we present average values for a,, as, a4, and
as versus 7 for e=0.95, 0.9, 0.8, and 0.7. These values are
shown for two different times: 7,, where a, first saturates to
the kinetic-theory prediction; and 7,, the HCS —ICS cross-
over time. We observe that the velocity distributions are pri-
marily described by the coefficients a, and as;—the values of
higher coefficients are smaller than a, by up to an order of
magnitude. In general, the behavior of higher coefficients is
analogous to that for a, in Fig. 6. There is an early time
regime where the data sets for independent runs are approxi-
mately coincident. At later times, there is a large variation in
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TABLE II. Numerical values for Sonine coefficients from our
d=2 MD simulations.

e=0.95 T=11 7,.=82
a, -0.0178 —-0.0135
as —-0.0049 —-0.0040
ay —-0.0006 —-0.0010
as —-0.00004 —-0.0002
e=0.9 =17 7,.=32
a, —-0.0246 -0.0177
as -0.0074 —-0.0053
ay -0.0013 —-0.0010
as —-0.00001 —-0.0001
e=0.8 =4 7.=13
a, -0.0164 —0.0080
as —-0.0076 —-0.0039
a, —-0.0021 —-0.0010
as —-0.0005 —-0.0003
e=0.7 =1 7.=8
a, 0.0010 0.0166
as —-0.0048 —-0.0026
a, —-0.0001 —0.0011
as —0.0006 —0.0008

the a, values for various runs—the corresponding averages
are consistent with a,=0.

2. Three-dimensional case

In Fig. 8, we show the evolution of the density and veloc-
ity fields for the 3D case with ¢=0.9. In Fig. 9, we plot
E(7)/E(0) versus 7 for ¢=0.95, 0.9, and 0.8. Again, the ini-
tial decay is described by Haff’s law in Eq. (6). As in the 2D
case, we define the HCS — ICS crossover time 7, as the time
where the average kinetic energy deviates from the Haff pre-
diction by more than 10%. The corresponding values for
7.(e) are shown in Table IIL

The scaled velocity distributions for the 3D case show
similar behavior as in the 2D case. At early times (7<<7,),
the tail of the distribution function shows a small but system-
atic deviation from the MB function. However, at late times
(7> 17.), the velocity distribution is consistent with the MB

TABLE III. HCS — ICS crossover times for various values of e
in d=3.

e T,
0.95 251
0.9 97
0.8 37
0.7 22
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=500

FIG. 8. Analogous to Fig. 2 but for the d=3 case. The pictures
correspond to 7=50 and 500 for a system with N=262 144, ¢
=0.105, and ¢=0.9. The system size is (109.44¢). The density
field (frames on left) is plotted by coarse-graining the system into
boxes of size (3.40)3. Boxes with more than 15 particles are marked
black, and other boxes are unmarked. For the velocity field (frames
on right), we coarse-grain the system into boxes of size (10.90)3
and plot the overall velocity vector for each box.

function, though there are fluctuations in the tail region. For
the sake of brevity, we do not show the 3D velocity distri-
butions here.

Next, let us study the time-dependence of the Sonine co-
efficients a, and as. In Fig. 10, we plot a,(7) versus 7 for
d=3 and ¢=0.95, 0.9, 0.8, and 0.7. Here, we only show
results for early times up to 7=7.. As in Fig. 6, the dotted
lines denote data from individual runs and the solid line de-
notes the average value of a,(7) versus 7. The data from
individual runs superposes at early times. The coefficient a,
saturates to the NE prediction in Eq. (17) for ¢=0.95, 0.9—
this is denoted by a horizontal dashed line. For e=0.8, the
“steady-state” value is higher than the kinetic-theory value,
as in Fig. 6(e). For ¢=0.7, a, does not saturate to its kinetic-

E(t) / E(0)

I W L
0 100 200 300 400
T

FIG. 9. Analogous to Fig. 3, but for the d=3 case.

0.02 ‘l I T I 0.02 T { T |
_(d) e=().95 | _(b) e=0.9]
M0 0
002" 76500 002
0.02 — . 0.02
(c) ! e:(l).s_
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F==————- I el
'0'020 15 30 0025020
T T

FIG. 10. (a) Time-dependence of a, for d=3, ¢=0.95. The dot-
ted lines denote a, vs 7 for individual runs, and the solid line is the
average. The frame shows the early time behavior (up to 7=7,). The
horizontal dashed line is drawn at a,=-0.0097, corresponding to
the NE result in Eq. (17) (Ref. [25]). (b) a, vs 7 for d=3, e=0.9.
The dashed line corresponds to a, =-0.0145. (c) a, vs 7 for d=3,
¢=0.8. The dashed line is drawn at a,=-0.0125. (d) a, vs 7 for
d=3, e=0.7. The dashed line is drawn at a,=0.0018.

theory value at all. The late-time behavior is not shown in
this case. As in the 2D case, the data from individual runs
shows large variations. The average value of a, is consistent
with a,==0, but is characterized by large fluctuations in spite
of the large system sizes and extensive averaging in our MD
simulations.

Figure 11 is analogous to Fig. 10, but shows the time-
dependence of a3 for 7<<7.. As in the 2D case, the typical
values of a, and as are up to an order of magnitude smaller
than a,. In Table IV, we present average values of a, —as at
two different times (7, 7,.) for ¢=0.95, 0.9, 0.8, and 0.7.

C. Aging of the autocorrelation function

The cooling granular gas is a nonequilibrium system, and
the corresponding velocity autocorrelation function exhibits

0.01 — . 0.01— [
() ! e=0|.95_ (b) N e=(|).‘)_
< 0
_ 1 I L | _
0'010 100 200 O’010 40 80
0.01— . 0.01— ,
_(C) ! e—(|1 8 _(d) I e=0 7|
'0'010 15 30 '0'010 10 20
T T

FIG. 11. Analogous to Fig. 10 but for as vs 7. The horizontal
dashed lines are drawn at (a) a3=-0.0020; (b) a3=-0.0039; (c)
a3=-0.0047; and (d) a3=-0.0048. These values of a; correspond
to the BP result in Eq. (28) (Ref. [28]).
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TABLE IV. Numerical values for Sonine coefficients from our
d=3 MD simulations.

e=0.95 =8 7.=251
a, —-0.0091 —0.0080
as —-0.0019 -0.0017
ay —0.0004 —-0.0003
as —-0.00001 —-0.00004
e=0.9 7=6 7.=97
a, —-0.0133 -0.0116
as —-0.0033 —-0.0028
ay —-0.0007 —0.0006
as —-0.0001 —0.0001
e=0.8 =2 7.=37
a, —-0.0078 —-0.0061
as —-0.0034 —-0.0028
ay —-0.0011 —0.0008
as —-0.0004 —-0.0002
e=0.7 =1 7.=22
a, 0.0018 0.0104
as —-0.0031 —-0.0024
ay —0.0009 0.0005
as —-0.0005 —0.0004

aging properties [38]. The autocorrelation function is defined
as follows:

2 (i(7,) - 07, (33)

where 7, is the waiting time or the reference time. The au-
tocorrelation is computed at 7 with respect to the state at 7,,.
[The angular brackets in Eq. (33) denote an averaging over
independent initial conditions.] For an equilibrium system,
A(r,,7) depends only on the time difference. However, for
nonequilibrium systems, A(7,,,7) has an explicit dependence
on both 7, and 7. It is straightforward to obtain this depen-
dence in the HCS [39]. Consider the collisions of the particle
labeled i. In a small time interval A7, the velocity of this
particle changes from v,(7) to v,(7+A7), where

17['(7'4' A’T)
v,(7) with probability 1 — AT,

171'(7) -

+ R
e{ﬁ -[vA7) — u]}7 with probability A7.

(34)

In Eq. (34), i is chosen from the distribution P(iz, 7), and
the collision direction 7 is drawn from a uniform distribution

P(#). Therefore
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FIG. 12. Autocorrelation functions for the case 7,,=0. We plot

A(r,,D=A(7,,71A(7,,7,) vs 7 for ¢=0.9, 0.8, and 0.7 and (a) d
=2, (b) d=3.

N

diA(Tw’T)—AliTO _2 (r )[v {7+ AAT) vi(n]

. (35)

where the bar denotes an integral over P(ii,7) and P(A).
Thus

diTA(TW,T)= (”6)12 diiP(i.7) f dili - G(r,)]

2 Nl 1
><{ﬁ~[17-(7)—ﬁ]}

(1+e)1
2d N%

—J(T)IZ]
(l+e)

= 4 —A(7,, 7). (36)

dl,_t)P(LZ T)[Ji(Tw) : Ji(T)

Thus the autocorrelation function in the HCS decays as

(1+e)(T T)}

A(7,,7) =A(T,, Tw)exp[

€
=dT, exp(— c_z'Tw>

2-;6)(7'— TW):|. (37)

Xexp{—

Equation (37) is the appropriate aging form for A(7,,, 7).

Let us first consider the decorrelation of the initial condi-
tion. In Fig. 12, we plot the normalized function A(7,,,7)
=A(r,,7)/A(7,,T,) versus 7 for 7,,=0 and ¢=0.9, 0.8, and
0.7. The 2D and 3D cases are shown in Figs. 12(a) and 12(b),
respectively. We have confirmed that the early time behavior
for 7,,=0 is consistent with Eq. (37). At later times, the decay
becomes slower than exponential as velocity correlations
build up prior to the ICS.
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FIG. 13. Autocorrelation functions for the d=2 case with differ-
ent values of the waiting time 7,,=10, 50, 100, and 200. We plot
A(r,,7) vs 7 for (a) e=0.9; (b) ¢=0.8; and (c) e=0.7. The solid
lines superposed on the data sets are the best fits to the function
f(D=[1+a(r,)(7—7,)]". The best-fit value of a(r,) is specified in
the figure.

Next, we study the decay of the autocorrelation function

for 7,,>0. In Fig. 13, we plot A(r,,7) versus 7 for the 2D
case with e=0.9, 0.8, and 0.7 and 7,,=10, 50, 100, and 200.

Notice that the decay of A becomes slower for larger values
of the waiting time—this is referred to as the aging property.
Further, the decay is slower than the exponential function
seen in the HCS. The data sets in Fig. 13 are fitted well by
the empirical function:

f(D=M+a(r-7)]", (38)

where a is a fitting parameter which depends on 7,. The
corresponding fits are shown as solid lines in the figure. At
later times, f(7) ~ 7!, which is reminiscent of the long-time
tails A(7) ~ 742 of the autocorrelation function for an elastic
hard sphere gas [34].

In Fig. 14, we plot A(7,,,7) versus 7 for the 3D case with
e=0.9, 0.8, and 0.7 and 7,,=10, 50, 100, and 200. As in the
2D case, the data sets are characterized by aging, with slower
decay for larger values of 7,,. In this case, we were unable to
fit the data sets to a simple functional form, perhaps due to
the limited time scales available in our simulations. For ex-
ample, we have examined log-log plots of the data in Fig. 14
and do not see any evidence of an extended power-law re-
gime. We are presently simulating the granular gas (with N
=10°) up to 7=1000 for the 3D case also. This is numerically
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FIG. 14. Autocorrelation functions for the d=3 case with differ-
ent values of the waiting time 7,,=10, 50, 100, and 200. We plot

A(7,,D vs 7 for (a) e=0.9; (b) e=0.8; and (c) e=0.7.

very challenging, but should clarify the functional form of
the autocorrelation function in d=3.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion
of the results presented here. We have undertaken large-scale
molecular dynamics (MD) simulations of freely evolving
granular gases with coefficient of restitution e € [0.7,1]. The
system initially loses energy (or cools) in a homogeneous
cooling state (HCS). At later times (7> 7,, where 7, is the
crossover time), the growth of fluctuations in the density and
velocity fields drives the system into an inhomogeneous
cooling state (ICS). In earlier work [20], we have studied the
pattern dynamics in the HCS and ICS, focusing on the evo-
lution morphologies and the cluster growth laws.

Our primary interest in this paper is the nature of velocity
distributions [denoted as P(v,7)] in the HCS and ICS. On a
direct plot, it is difficult to distinguish between the MD data
for P(v,7) and the Maxwell-Boltzmann (MB) distribution
function—the differences lie mainly in the tail region. There-
fore we model the velocity distributions by a Sonine polyno-
mial expansion [cf. Eq. (9)]. The magnitude of the Sonine
coefficients a, measures the departure from the MB distribu-
tion function. For the e-values considered here, the only rel-
evant coefficients are a,,as. The higher coefficients a,,as are
up to an order of magnitude smaller than a,. Further, for e
=0.95, 0.9 there is an early time regime where our MD re-
sults for a, and a3 are in good agreement with results from
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kinetic theory [25,28,29]. This regime becomes more ex-
tended for higher dimensionality and as e— 1. At late times
(7>17,), the data sets for a, versus 7 from individual runs
show large fluctuations, in spite of the large system sizes
(N=10°) used in our simulations. The average values of a,
also show large fluctuations in spite of extensive averaging
over 50 runs. The late-time data for a,, is consistent with the
MB values (a,=0), but even larger simulations are needed to
confirm this conclusively.

In this paper, we have also studied the aging behavior of
the velocity autocorrelation function A(7,,, 7), where 7,, is the
waiting time or reference time. In the cooling process,
A(r,,7) depends on both 7,, and 7. This should be contrasted
with the case of a stationary process, where A(r,,,7) only
depends upon the time difference (7—7,,). When both 7,, and
7 lie in the HCS, A(7,,,7) decays exponentially with 7 [cf.
Eq. (37)]. We have confirmed that our early time data for
A(7,,7) obeys Eq. (37). For later times, we observe that the
decay of A(7,,7) is slower than exponential, and the decay
time scale is slower for higher 7, i.e., the system exhibits
aging. For the d=2 case, the data is consistent with the func-
tional form f(7)=[1+a(7,)(7—7,)]"" over a large range of

PHYSICAL REVIEW E 75, 031302 (2007)

values of inelasticity e and waiting time 7,,. However, for the
d=3 case, we are unable to find an approximate functional
form for A(7,,, 7).

There remain many open problems in the context of the
freely evolving granular gas. In particular, our understanding
of the asymptotic ICS remains incomplete. We hope that the
results presented here will motivate further analytical and
numerical studies of this problem.
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