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Radial and axial segregation of granular matter in a rotating cylinder: A simulation study
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The phenomena of radial and axial segregation in a horizontal rotating cylinder containing a mixture of
granular particles of two different species have been modeled using discrete particle simulation. Space-time
plots and detailed imagery provide a comprehensive description of what occurs in the system. As is the case
experimentally, the nature of the segregation depends on the parameters defining the problem; the radial
component of the segregation may be transient or long lasting, and the axial component may or may not
develop. Simulations displaying the different kinds of behavior are described and the particle dynamics asso-
ciated with the axially segregated state examined. The importance of an appropriate choice of interaction for

representing the effective friction force is demonstrated.
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I. INTRODUCTION

The mechanisms responsible for some of the more sur-
prising features of granular matter continue to challenge un-
derstanding. In view of the fact that the behavior encoun-
tered often differs strongly from systems governed by
statistical mechanics and thermodynamics, there is little by
way of intuitive help from such theories in trying to under-
stand granular matter, both at rest and in motion. Segregation
is perhaps the most prominent of these features; the ability of
noncohesive granular mixtures to segregate into individual
species, despite the absence of any obvious entropic or ener-
getic benefit, makes this a particularly fascinating phenom-
enon.

Granular separation and mixing are central to many kinds
of industrial processing that span a broad range of size
scales; the capability for either causing or preventing segre-
gation can be central to the viability of a particular process.
Substantial economic benefits could be gained from a sys-
tematic understanding of the complexities of granular flow at
a level similar to fluid dynamics; the outcome would be im-
proved control, reliability, and efficiency, a notable advance
over currently used approaches that are often empirical.
Analogous segregation processes occur in nature, where an
understanding of the underlying mechanisms might benefit
resource management. Consequently, considerable effort has
been invested in exploring these phenomena, but, absent a
general theory of granular matter, much of the progress in
this field [1-4] relies on computer simulation.

There are a variety of conditions under which granular
mixtures segregate; these include shear [5,6], vibration
[7-9], and rotation [10-12]. Experiments on rotational seg-
regation, one of the more extensively studied systems experi-
mentally and the subject of the present paper, employ a hori-
zontal cylinder revolving at constant rate and partially filled
with a mixture of two species of granular particles. Given the
appropriate kinds of particles, and under suitable conditions,
the mixture spontaneously segregates into axial bands of al-
ternating composition. A substantial body of experimental
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data has been assembled, but because of the numerous pa-
rameters entering the experiment only a limited portion of
the multidimensional phase diagram has been explored. The
relevant parameters include the nature of the granular par-
ticles themselves, ranging from the most familiar forms of
granular matter such as sand, through various organic prod-
ucts, plastic and glass beads, to metal ball bearings. The
particles have a broad spectrum of elastic and frictional char-
acteristics, and sizes that range over several orders of mag-
nitude. The material can be in a dry or wet state, the latter
case known as a slurry. The cylinder can have different
shapes, most commonly one with a uniform circular cross
section. Further parameters include the cylinder diameter and
length, the rotation rate, the relative fractions and sizes of the
granular components, and the filling level of the container. In
marked distinction to fluid systems, there are no known scal-
ing relations that allow this parameter space to be reduced,
and while some systematic trends have been noted, there is
little guidance available for predicting the outcome of an
experiment involving some unexplored combination of pa-
rameters.

The most direct observations address the structure of the
upper surface [11], while more elaborate studies examine the
interior using, for example, noninvasive magnetic resonance
imaging (MRI) [13-15]. Axial segregation may be complete,
with each band composed exclusively of one particle species,
or it may be only partial, with bands characterized by higher
concentrations of alternating species. There is an additional
effect that occurs entirely beneath the surface leaving little
external evidence, namely radial segregation, which pro-
duces a core rich in small particles extending along the
length of the cylinder. Radial segregation occurs early in
experiments starting from a uniformly mixed state, and may
or may not persist once axial segregation appears. Axial band
formation might be regarded as a consequence of this core
intermittently bulging by an amount sufficient to reach the
outer surface [14]. The axial band patterns can also exhibit
time dependence; examples of such behavior involve coars-
ening, in which narrower bands gradually merge into broader
bands [16], and the appearance of traveling wave patterns on
the surface [17,18]. Further discussion of the experimental
history appears in [12,14,19], but information about this phe-
nomenon still continues to accumulate. More recent results
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showing the richness of the segregation effect and its dynam-
ics in dry and/or wet mixtures (slurries exhibit behavior that
is similar in many respects, despite the lubricating role of the
fluid medium) are described in [20-22]. The problem can be
extended in different directions, for example, Ref. [23] con-
siders mixtures with three and more granular components.
That there is little opportunity for scaling to play a role in
understanding this phenomenon is demonstrated in [24],
where the ratio of the cylinder and particle diameters deter-
mines whether axial segregation occurs and if its appearance
depends reversibly on rotation rate; the fact that the wave-
length of the axial pattern does not scale with cylinder diam-
eter is described in [25].

Given the complexity of the experimental situation and
the many lacunas in parameter space, it is hardly surprising
that theoretical progress has been limited. Continuous one-
dimensional models have been developed [26] in which the
dynamical variables are the local concentration difference
and the slope of the free surface; these describe the early
stages of segregation with traveling bands and subsequent
band merging, although experiment [27] has questioned their
ability to characterize the process correctly, and the obvi-
ously important three-dimensional aspects of the phenom-
enon are absent. The problem has also been studied using a
cellular automata approach based on a highly simplified
model [28].

The most detailed theoretical approach involves direct
modeling of the dynamics of granular particles, employing
the same computational methods used in molecular dynamics
simulation of atomistic systems. While there have been a
considerable number of such studies, covering a variety of
granular phenomena, there have been very few simulations
of granular particles in a revolving cylinder exhibiting axial
segregation. The first of these was an early, rather limited
treatment [29]. This was followed by a broader study [12],
that is extended by the present work, in which the formation
of multiple axial bands was demonstrated, and various as-
pects of the segregation phenomenon, such as band merging,
the absence of mixing in presegregated systems, and the
manner in which the behavior depended on the choice of
parameters, were investigated. The model differed from that
of the present paper in that the transverse restoring force
(discussed in detail below) was absent and a Lennard-Jones
type of normal repulsion was used rather than a linear force.
Exactly the same kind of axial band formation was subse-
quently reported in [30] (although this similarity was not
explicitly noted) using the same kind of model, but with the
linear force. The appearance of radial segregation is de-
scribed in [31], but only for a two-dimensional system.

The purpose of the present paper is to analyze a discrete-
particle model that exhibits both axial and radial segregation,
in which the appearance of the radial effect precedes the
axial, and then either disappears or persists as an axial core.
Experimentally, it is the smaller particles that are found to
congregate in the interior, and this feature is reproduced by
the simulations; one issue that was not resolved in the earlier
study [12] was the fact that the opposite behavior was en-
countered, but it will be shown that this is due to the choice
of interparticle forces. The goal here is not a systematic cov-
erage of parameter space, since the computational resources
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for this would be considerable, but rather a demonstration of
the typical kinds of outcome with just a few examples of
parameter dependence; indeed, due to a lack of detailed re-
producibility under different initial conditions, as will be-
come apparent subsequently, obtaining a comprehensive pic-
ture of the ‘“average” behavior would require multiple
simulation runs for each parameter set. Typically, the major-
ity of runs described here involve larger systems than before,
with a bigger particle size difference and a more slowly ro-
tating cylinder; these changes, together with the additional
work required by the force computations, called for a greater
computational effort than previously.

II. SIMULATION METHODOLOGY
A. Granular models

The models used for granular simulation are generally
based on spherical particles whose resistance to overlap is
expressed in terms of a continuous potential function
[5,32,33]. In addition to this excluded-volume repulsion, par-
ticles are subject to forces that aim to replicate the effects of
inelasticity and friction. There are limitations to the accuracy
of such models, with one empirical measure of success being
the degree to which the essence of the phenomenon under
study is captured.

Consider a pair of granular particles i and j with diam-
eters d; and d;, respectively. The repulsive force between
particles depends linearly on their overlap,

£, =k,(dj—ripty, ri;<dy, (1)

where r;;=r;—r; is the particle separation, r,»j=|r,-j, and d;;
=(d;+d;)/2 is the effective diameter. An alternative is the
Hertz interaction that depends on the 3/2 power of the over-
lap [34], whereas in [12] the repulsive part of the Lennard-
Jones interaction was used. Dissipative forces act for the
duration of each collision. The first of these is velocity de-
pendent damping along the line between particle centers,

ij>

fy=- Yn(f'ij : Vij)f‘ij, (2)
that depends on the component of relative velocity v;;=v;
—v; parallel to r;;. Here, v, is the normal damping coeffi-
cient, assumed to be the same for all particles. The total
normal force between particles is then f,=f,+f,.

Frictional damping acts transversely at the point of con-
tact to oppose sliding while particles are within interaction
range,

f, = — min(y vyl w e, ) V5, (3)

where the relative transverse velocity of the particle surfaces
at this point, allowing for particle rotation, is

dio,+d.w:
s _ A A 1 1 !
V= V= (B vip)By = ( di+d, ) X1, (4)

and w; is the particle angular velocity. The value of ¥/
depends on the particle types c; and c;, and u/ is the static
friction coefficient that limits the transverse force to a value
dependent on [f,|.
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In a model of this type there is no true static friction, a
practical consequence of which would be stick-slip motion.
A way of at least partially overcoming this limitation, though
not strictly a correct means of incorporating the effect, is to
introduce a tangential restoring force that acts during the
collision and depends on the cumulative relative displace-
ment at the point of contact [5,31,32]. This force has the

form fg:—kguij, where

u;= f vi(ndr (5)
(coll)

is evaluated as a sum of vector displacements over the inter-
val the particles have been in contact; the magnitude of f, is
also limited by u<i|f,|. In addition, to avoid occasional un-
realistically large displacements (although this does not ap-
pear to affect the behavior), if [u;>0.1, an arbitrarily cho-
sen limit, it is reset to zero (a form of ratcheting intuitively
motivated by the asperities responsible for friction); an alter-
native treatment appears in [35]. This history-dependent
force was not present in [12]; the results below suggest that it
plays an important role in achieving the correct form of ra-
dial segregation. The total transverse force is f,=f,+f,.

The curved cylinder wall and the flat end caps are treated
as rough and smooth boundaries, respectively. The interac-
tion of particles with the curved boundary (together with
gravity) drives the system, so this force includes the same
components as the interparticle force. On the other hand, to
minimize spurious effects associated with the end caps, only
f, and f, act there. Further details concerning the interactions
(with the exception of f,) appear in [12], together with a
discussion of the friction coefficients and the particle-wall
force computations. Other aspects of the simulation follow
standard molecular dynamics (MD) procedures [36]; neigh-
bor lists are used to efficiently organize the force computa-
tions, the translational and rotational equations of motion are
integrated with the leapfrog method, and parallel processing
can improve performance.

B. Parameters

Those parameters that also appeared in [12] have been
assigned similar values here. The first of these is the gravi-
tational acceleration, g=35, which then relates the dimension-
less MD units used in the simulation to the corresponding
physical units. Thus, if Ly, is the length unit (in mm), then
the time unit is Ty;p=~1072y5L,,p s. If the cylinder rotates
with angular velocity ) (MD units), the actual rotation rate
is Q/Q7Typ) =7.1Q/\Lyp Hz; for 3 mm particles,
=0.1 is equivalent to 25 rpm, a typical experimental value.

Axial segregation tends to develop slowly, leading to long
simulation runs. Computational cost can be reduced by using
the largest possible integration time step; the step size ot is
limited by the highest particle speeds encountered and here
the value used is 6t=5X 1073 (MD units). Numerical stabil-
ity considerations then set a lower bound on the collision
time to ensure it remains much larger than &t (typically
30-40 times). Collisions between particles in the slowly
varying bulk interior can be protracted events, but the oppo-
site is true for particles bouncing rapidly along the upper free
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surface, and this in turn constrains coefficients such as par-
ticle stiffness. For the present work, most runs use k,
=1000 in Eq. (1). Increasing this to, e.g., 103 would require a
tenfold reduction in &t and a much longer computation; how-
ever, since there are ~10* steps/revolution, some runs al-
ready exceed 107 steps, so this is not presently feasible in
general.

The relatively small cylinder diameters and fill levels used
here (details below) limit the compression forces that par-
ticles can experience. At the base of a static column of 10
small particles the overlap (which can be regarded as com-
pression) will be 5% (for k, and g as given), an amount that
is unlikely to alter the qualitative behavior; indeed, tangential
forces will be enhanced for softer particles that experience a
greater number of longer-lasting contacts. (Particles with the
712 repulsion that is part of the force used in [12] have an
overlap three times larger; the ultimately greater resistance of
this force to compression asserts itself only at five times the
depth.) Systems with substantially thicker layers will require
a stiffer volume interaction (and consequently a smaller &).

The values of the remaining parameters from [12] are as
follows. In Eq. (2), y,=5. The coefficients in Eq. (3) are
y?*=10, and in general y*=1"=2, except for a few cases
where all y,=10; the particle-wall values are identical. The
relative values of the static friction coefficients, e.g.,
wb?l uss, are set equal to the ratio of the corresponding 7,
values, with the larger of the pair equal to 0.5. Finally, the
value of the parameter introduced with Eq. (5) is k,=500,
although, as with most parameter settings, there is consider-
able latitude, and all that is required at this exploratory stage
is for the results to appear qualitatively reasonable.

The nominal particle diameter is the interaction cutoff in
Eq. (1). For small particles, to maintain consistency with
[12], d;=2"6~1.122 (MD units), while for big particles d,
=bd,. The actual particle sizes are uniformly distributed over
a narrow range [d;—0.2,d,] for small particles, and likewise
for big; the mean diameter of the small particles is then close
to unity. Particles all have the same density, so the big to
small mass ratio (before allowing for the random size distri-
bution) is 3. The relative population of big and small par-
ticles is chosen to give equal volume fractions; for most runs
b=1.8, with a big particle fraction of 0.15.

The cylinder diameter D and length L have value ranges
30-40 and 120-360 (MD units), respectively. (A conse-
quence of the use of soft potentials is that the effective D and
L values are reduced by approximately one unit.) The aspect
ratio L/D, a quantity having some influence on the number
of axial segregation bands [25], lies between 4 and 12. The
cylinders used here are relatively narrow, with D less than 30
times the mean particle diameter, a limitation that has been
found experimentally to influence behavior [24]; even so, the
number of particles in a simulation can exceed 70 000. An-
other connection between experiment and simulation is the
dimensionless Froude number Fr=02D/ 2g, the ratio of cen-
trifugal to gravitational acceleration. Experimentally Fr
~1073-10"', and to ensure the simulations remain in the
correct regime, the value should not be allowed to become
too large; this sets an upper limit to (), and for the simula-
tions Fr<<0.2.

031301-3



D. C. RAPAPORT

PHYSICAL REVIEW E 75, 031301 (2007)

TABLE 1. Summary of runs discussed in the text; the top row includes the default settings used unless indicated otherwise.

Size, etc. Forces* Outcome

Id* L D p N b Q M* k, ke yS  R® ng' Rd® AX"
A 240 40 0.30 71 600 1.8 0.2 M 1000 500 2 1620 P 12
B 360 30 57 600 0.1 2630 T 17—11
C 160 40 47 300 0.1 1800 P 7
D 120 30 0.50 35900 470 P —
E 120 30 18 800 2940 T 6
F 120 30 18 800 R 1310 T 5
G 120 30 18 800 R 1310 T 7—4
H 120 30 0.40 24200 730 P —
1 120 30 0.45 29 300 590 P —
J 120 30 18 800 0.1 4290 T 6—3
K 360 30 57 600 2960 T 17—12
L 160 40 47 300 3320 P 7
M 120 30 18 800 0 2040 1 3
N 120 30 18 800 0 R 1030 1 5
0 120 30 0.45 29 300 0 830 P —
P 120 30 19 200 1.5 6350 — 7—5
0 120 30 19 200 1.3 2760 — 6
R 120 30 18 800 2000 2610 T 6—3
S 120 30 18 800 10 6350 P 2!
T 180 30 16 800 S 2840 — 2
U 180 30 16 800 S 10 2440 P —
Vv 160 40 0.18 27 900 S 6110 — 2—4

“Runs are denoted in the text as #A, etc.

bCylinder length L and diameter D, filling density p, number of particles N (rounded to nearest 100), big particle size b, angular velocity (.

“M/S: Mixed or segregated initial state.

YValues of force coefficients: ks kg, and )/;:S; all others are constant with values listed in the text.

R denotes repeat of preceding run with different initial state.
'Run length, in cylinder revolutions.

®Radial segregation: permanent, transient, inverted, or none.
hAxial segregation: initial and final band count, or none.
'Partial segregation only.

C. Measuring segregation

Quantitative measures of the overall intensity of axial and
radial segregation are used to augment direct observation.
The time-dependent axial segregation, S,(¢), is evaluated
from binned counts along the axis weighted by particle mass,

_ {p°ny(q) = n(q)]),

S
“ by, +n,

(6)

where n,(q) and n,(q) are the number of big and small par-
ticles in a slice (width =2.5) centered at g along the axis,
(...)4 denotes an average over all slices, and 7, and n; are the
totals. Binned counts are less suitable for evaluating the ra-
dial segregation, S,(f), because, if done in the same way as
the space-time plots discussed below, not all particles would
be able to contribute. An alternative measure, based on the
mean-square radial distance of each type of particle from its
center of mass, is therefore used,

(=) = D) = ()Y
" (ry=(r)? '
where (r,) and (r,) denote the mean distances of big and
small particles from the axis, and (r) the overall mean. Time

is expressed in terms of the number of cylinder revolutions,
ng.

S

()

III. RESULTS

Due to the very nature of the segregation effect, not all of
its features are readily quantifiable. The functions S,(r) and
S,(1), Egs. (6) and (7), provide a global summary of pattern
development, but lack detailed information concerning the
number of axial bands, the sharpness of the boundaries be-
tween segregated regions and the regularity of the band pat-
tern. The use of space-time plots, coded using either color or
grayscale level, provides a much more detailed picture of
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how both axial and radial segregation evolve with time. Such
plots show the relative populations, weighted by particle vol-
umes, in appropriately oriented slices. For the axial plots,
slices are normal to the cylinder axis; while this does not
provide the same information as the surface populations seen
in experiment, it will be similar provided that radial inhomo-
geneity is weak. For the radial plots, slices are parallel to the
upper free surface of the material; the nominal surface slope
is determined by a linear fit to the inner 2/3 of the surface
away from the curved boundary, and only the particle popu-
lations in a slab of similar width normal to the surface are
counted, to avoid bias due to the shape of the region.

Even more detailed information can be extracted from
snapshots of the entire system, in which particular subsets of
particles can be selected for viewing; images of this kind
can, for example, reveal interior organization analogous to
that observed experimentally with MRI. An even richer vi-
sual approach employs animated recordings showing the full
temporal development of the system. An animation of this
type consists of an extended series of snapshots, recorded at
regular intervals throughout the run; all the information
needed for the analysis that follows is in fact obtained from
configurations reconstructed from such recordings.

The runs described here are cataloged in Table I; they are
labeled alphabetically for reference and listed in the order
they first appear in the discussion. Run lengths were not
specified in advance; a run was generally allowed to continue
for as long as something interesting was happening, or until
it seemed that the system had stabilized (the possibility of
premature termination can never be ruled out), or until
changes appeared to be occurring too slowly to warrant con-
tinuation.

Most runs are begun from a uniformly mixed initial state,
and in a few cases, from a state that is presegregated into two
axial bands. The particles are placed on a lattice and assigned
small random velocities (details that vanish after just a few
collisions); particle species is either randomly assigned ac-
cording to relative concentration, or, in the presegregated
case, determined by axial position. A change of random num-
ber seed allows repeated runs of systems that are otherwise
identical.

In all cases the cylinder is capped at the ends. Use of an
axially periodic cylinder leads to similar pattern develop-
ment, establishing that caps are not required for segregation.
However, as in [12], the entire band structure is then subject
to axial drift. Since there is no evidence that the caps affect
the results (apart from relaxing the requirement for an even
number of bands in the periodic case) they can be used with-
out concern.

In view of the extensive simulations involved, it is inter-
esting to consider the computational performance. For a sys-
tem of 47 000 particles, and a partly parallelized computa-
tion running on a dual 3.6 GHz Intel Xeon workstation, the
simulation proceeds at a rate of approximately 23 000 time
steps/hr, equivalent to 3.7 revolutions/hr at {1=0.2; some of
the runs therefore extend over several weeks. Contrast this
with a typical experiment that can be run at, e.g., 1000
revolutions/hr, irrespective of the number of particles.
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axial

radial

FIG. 1. (Color online) Axial and radial space-time plots for run
#A (ng=1620, L=240, L/D=06); red and blue (or medium and dark
gray) denote higher volume fractions of big or small particles.
Time, expressed as cylinder revolutions, is along the horizontal
axis, and the vertical axis measures axial or radial (the latter normal
to the free surface) position.

A. Axial and radial segregation

The first two runs discussed are among the more exten-
sive carried out. While similar in respect to the initial radial
segregation that peaks after some 10-20 revolutions and the
appearance of multiple axial bands, in one instance radial
segregation persists while in the other it practically vanishes.
The details of these two runs, #A and #B, will be described
using axial and radial space-time plots, together with pictures
of the final states that reveal the nature of the internal struc-
ture, and with graphs of segregation as measured by S, and
S,. Both runs suggest that a steady final state has been
achieved, although, given the experimentally observed long-
term slowdown in the bond merging rate, there is no way of
completely excluding future changes of this type, no matter
how long the run.

Figure 1 shows the axial and radial space-time plots for
run #A. Radial segregation appears very early in the run and
a core of small particles persists throughout, although the
outer layer rich in big particles disappears from the radial
plot once axial banding begins; after the 12 axial bands have
formed the pattern appears stable, with no hint of any future
change.

Images of the final state of run #A appear in Fig. 2. The
first is an oblique view of the full system showing the 12
alternating bands. The others are views looking down in a
direction normal to the surface that show big and small par-
ticles separately. These interior views reveal that while the
bands of big particles are not entirely separate, there are
visible divisions between them, and that the bands of small
particles are joined by a central core extending the length of
the system.

Figure 3 shows the space-time plots for run #B. Here,
unlike #A, radial segregation is a transient effect lasting less
than 200 revolutions; furthermore, the early axial pattern is
not maintained, and the initial 17 bands are eventually re-
duced to 11 due to the vanishing of the small particle bands
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FIG. 2. (Color online) Final state of run #A; the full system, and
views showing just the big and small particles (colored silver and
gold).

at the ends and the merging of two pairs of big particle bands
(eliminating two more small particle bands). During the lat-
ter portion of the run, extending over more than half its total
length, there is no suggestion of further pattern change. Band
coarsening is a well-known experimental result, with the
band count falling roughly logarithmically with time [20],
although the dependence can be more complicated than this
[22].

The images in Fig. 4 show the final state of #B. Band
separation is practically complete in this case, with essen-
tially no misplaced big particles, and only the faintest rem-
nant of a small particle core.

The development of axial and radial segregation, S, and
S,, for these two runs is shown in Fig. 5. The graphs reflect
what has already been noted in the space-time plots and im-
ages, namely, that a preference for small particles in the core
persists over the duration of #A, but not #B; the presence of
this core affects the magnitude of S,, which is smaller in #A
than in #B.

The images in the next two figures provide examples of
radial segregation in cases where the effect is well devel-
oped. Figure 6 shows #C after 60 revolutions; this run even-

axial

radial

FIG. 3. (Color online) Axial and radial space-time plots for #B
(ng=2630, L=360, L/D=12).
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FIG. 4. (Color online) Final state of #B.

tually develops axial segregation. The complete system is
shown, together with three narrow slices (of thickness 0.03L)
at the midpoint and at a distance 0.1L from either end.

Figure 7 shows #D after 260 revolutions (graphs of S, and
S, for this run appear later). The view is along the axis, after
slices of thickness 0.1L are removed from each end; on the
left all particles are shown, while on the right just the big
particles appear. There is a visible opening extending along
the entire length (0.8L) near the center of the small particle
core; while the simulations do not produce a totally pure
core, radial segregation is strong despite misplaced big par-
ticles; this rather short run showed no hint of imminent axial
segregation.

Two general observations concerning segregation emerge
from these (and subsequent) simulation runs. When radial
segregation occurs it takes the form of a core of small par-
ticles surrounded by big particles (there is an exception that
is discussed below); this is also the case experimentally, al-
though in the simulations the core boundaries are not as
sharp and the effect appears to develop more slowly. There is
no preferred particle type near the end caps nor a tendency
for bands to nucleate there; bands can form at different axial
positions at different times; sometimes bond formation is al-
most simultaneous and sometimes not.

B. Reproducibility

The issue of reproducibility is of particular importance
since conclusions must take into account the variability of

0.8 T T T T T T T T T
r PNV VNNV VYISV NV 7
L & l
L ol MAAAA i
N
06 - AAMAMAAAAA o #A axial ]
Foa - #Aradial A
g N s #Baxial |
g=! e .
= R « #Bradial A
o0 04 o o T f, -
3 - ]
P Mo tw 1
%] [ S - " ... " ]
Lo SR |
02 = 7
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O4 4 4, A sat
g;‘D At 4 AA‘A‘“‘“A 202 an aaasts aabanddo a4 aena, A ]
00 L | L L L L | L L L ]
0 1000 2000 3000

revolutions

FIG. 5. Time-dependent axial and radial segregation, S, and S,,
for runs #A and #B; time is expressed in cylinder revolutions.

031301-6



RADIAL AND AXIAL SEGREGATION OF GRANULAR...

PHYSICAL REVIEW E 75, 031301 (2007)

FIG. 6. (Color online) Views of #C after 60 revolutions; the full
system and three slices are shown.

the behavior, such as different intermediate or terminal band
counts. Multiple runs would be required, as is normal experi-
mentally. In most cases this condition has not been fulfilled,
but an example of three runs involving systems that are iden-
tical, apart from the initial random state, is considered here
(and one further example appears later).

Figure 8 shows the axial and radial space-time plots for
run #E, together with the axial plots for the shorter runs #F
and #G. The behavior differs (although S, and S, are only
weakly affected); each exhibits early radial segregation, but
they differ in regard to axial band development. This is just
what happens experimentally under appropriate conditions
[20]; some aspects of the segregation (S, and S,) are reason-
ably robust, while others (the band details) may vary signifi-
cantly between runs. A preferred wavelength governing the
axial band pattern could exist, but since development history
can influence outcome, it is probably only meaningful to
refer to a mean number of bands (and a mean wavelength).

C. Parameter dependence

When comparing simulation to experiment, the param-
eters defining the system fall into two categories. There are
those that are readily changed in an experiment, such as the
cylinder rotation rate, the fill level, and even the cylinder
size; experimental results may cover a range of these param-
eters in order to demonstrate trends or construct phase dia-
grams. The others are related to the properties of the particles

FIG. 7. (Color online) Views of #D after 260 revolutions (see
text for explanation).

axial

FIG. 8. (Color online) Axial and radial space-time plots for run
#E (ng=2940) and, on the same scale, axial plots for #F and #G
(ng=1310) with different initial states (L=120, L/D=4).

themselves; while there are numerous types of granular ma-
terial available for experimental study, efforts have tended to
focus on a rather limited subset, so that a systematic cover-
age of behavior in terms of material properties is presently
unavailable.

Changing the fill level can alter the nature of the segrega-
tion, as seen experimentally with slurries [21]. Figure 9
shows S, and S, for four runs differing only in their fill level,
#E, #H, #1, and #D (because of the slight reduction in effec-
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FIG. 9. Axial and radial segregation (the graphs for the latter
peak early in each case) for runs #E, #H, #I, and #D with increasing
fill level.
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tive cylinder size mentioned earlier, p=0.45 corresponds to a
cylinder that is approximately half full, while for p=0.3 the
layer depth is close to %D). In #E, transient radial segrega-
tion is followed by axial, while in the other three cases only
radial segregation occurs. These and other runs suggest that a
sufficiently high fill level favors permanent radial segrega-
tion and at the same time suppresses axial segregation. Vali-
dation of the model, and determining how closely it repro-
duces experiment, requires that behavioral trends under a
change of parameters be reproduced correctly; while experi-
ment suggests band suppression at low fill levels [21], this
applies to slurries, and the degree of similarity between dry
and wet mixtures has yet to be studied systematically.

The cylinder angular velocity () is the parameter most
readily changed in an experiment. The ) dependence (using
the values 1=0.2 and 0.1) for three pairs of runs that are
otherwise the same has been examined; the run pairs are #E
and #J that eventually produce 6 and 3 bands, #K and #B that
produce 12 and 11 bands and, lastly, #L and #C that both
produce 7 bands (a tentative result in the case of #C). A
feature common to each of these pairs is that S, is slightly
larger at reduced ().

The influence of other parameters will be mentioned only
briefly. Runs #M and #N show the effect of removing the
tangential restoring force, k,=0 in Eq. (5), in a sense making
the particles less “grainlike.” The runs are otherwise similar
to #E and, apart from the function used for f, in Eq. (1), now
resemble [12]; so do the results, in which axial segregation is
now accompanied by inverse radial segregation. This out-
come confirms the importance of f, for obtaining the correct
radial behavior. Early in these runs weak normal radial seg-
regation occurs, but it becomes inverted when the axial
bands appear. Different behavior is encountered at a higher
fill level; run #0O, which is related to run #/ in a similar way,
shows normal radial but no axial segregation. Outcomes such
as these hint at the complex interplay of parameters and call
for an extensive coverage, with multiple runs, prior to draw-
ing conclusions.

Another key parameter is b, the relative size of the big
particles. In run #P, b is reduced to 1.5, and 5 axial bands
appear, but no measurable radial segregation; b is further
reduced to 1.3 (the preferred value in [12]) in run #Q, result-
ing in 6 bands. In the opposite direction, it is questionable
how large b can become without having to increase cylinder
diameter to avoid serious size effects (and, to maintain aspect
ratio, also its length), but for 5=2.1 (not shown), depending
on fill level, both radial and axial segregation can be ob-
tained; experiment typically involves b= 3 or greater.

Making the particles slightly less compressible by dou-
bling k,, in run #R, leads to initial radial segregation, and
eventually three axial bands. A more substantial increase in
k, would, as noted earlier, require a smaller &¢. Further runs
(not shown) similar to #A, but with k, and all the other in-
teraction coefficients increased by factors of 10 or 100, and
with suitably reduced of, produce the same segregation ef-
fects, confirming that this aspect of the model does not sig-
nificantly influence the behavior. A similar conclusion ap-
plies to granular chute flow [35]. For a final example of
parameter dependence (requiring further study), run #S is
similar to #E except that y'*=9"=10; radial segregation oc-
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FIG. 10. (Color online) Band merging in run #B where small
particles from the middle band disperse allowing the big particle
bands to merge; the views show the full system and the particles
from the bands involved, both before and after the event.

curs, suggesting that this effect can be driven by particle size
difference alone, and eventually two weakly developed axial
bands appear (the outcome of this long run is less clear than
usual since a final state had yet to develop).

D. Particle motion

The configurational snapshots recorded during the runs
enable postrun analysis of the motion of individual or se-
lected groups of particles over extended intervals. An even-
tual goal for this kind of analysis is developing a capability
for relating local organization and dynamics at the level of
individual particles to the behavior at a scale where the col-
lective nature of segregation is exhibited. Two examples will
be considered here.

The first is the merging of two bands of big particles,
accompanied by the dispersal of the small particles from the
disappearing middle band. A merge event of this type occurs
in run #B (see Fig. 3) between revolutions 700 and 1200. The
upper portion of Fig. 10 shows three views prior to the event,
namely the full system, and the selected bands of big and
small particles (the latter also revealing small particles that
intrude into the big particle band, a detail hidden from the
outside). The lower portion shows three views at the comple-
tion of the event, namely the full system, and all the previ-
ously selected particles in their new positions, principally
within the bands directly involved. Even though there is es-
sentially no residual small particle core at this stage of the
run, small particles are able to migrate across the big particle
bands more readily than the converse; selective migration of
this kind will be even more apparent in the next example. An
interesting feature revealed by these images is that while the
small particles are dispersed in both directions, more seem to
have traveled to the right where the original band of big
particles was somewhat narrower; while such behavior might
not be unexpected, it is gratifying to see it actually occurring.

The second example also involves run #B, but now for
monitoring the steady state over a relatively long interval
between revolutions 1230 and 2600. The first view in Fig. 11
is of the entire system at the beginning; the next two views
show the adjacent, slightly overlapped bands of big and
small particles selected for tracking. The last two views show
all the selected particles in their final positions (since the
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FIG. 11. (Color online) Particle migration and confinement over
an interval of almost 1400 revolutions during run #B; the views
show the full system at the start of the interval together with the
selected bands of big and small particles, and the same sets of big
and small particles at the end.

band structure is stationary, views of the entire system during
the interval are practically indistinguishable); although quite
a few small particles (but constituting only a tiny fraction of
the band population) have migrated out of the band in both
directions, almost no big particles have done likewise, dem-
onstrating that they are effectively confined for lack of an
escape path. Departing particles are replaced by others, but
these are not shown. This form of analysis can also be car-
ried out experimentally by adding tracer particles to existing
bands [22], revealing that confinement is indeed a strong
effect.

E. Presegregated systems

An alternative perspective is provided by systems that be-
gin in an axially segregated state, a problem also studied
experimentally with MRI [22,37]. Various scenarios exist, of
which preserving the original state and axial mixing repre-
sent two extremes, while rearrangement into some other
band pattern is also a possibility. Examples of all three types
will be considered. Very little change occurs over the dura-
tion of run #7. Figure 12 shows its final state, and from the
top and bottom views it is apparent that the interface has
adopted a curved form. The views showing big and small
particles separately reveal that comparatively small numbers
of each type have penetrated into the opposite region; inter-

FIG. 12. (Color online) Final state of #7T; top, bottom, big, and
small particle views.
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axial

radial

FIG. 13. (Color online) Axial and radial space-time plots for #U
(ng=2440, L=180, L/ D=6).

estingly, in this example big particles also appear to be par-
ticipating in the migration.

Mixing is most easily achieved by setting all the friction
parameters equal (as in #S, where only a weak axial effect
was seen). Figure 13 shows the outcome of this in run #U,
the initial axial segregation vanishes promptly and a certain
amount of radial segregation appears.

The final scenario, the appearance of an altered axial band
pattern, occurs in run #V (similar to #L but with fewer par-
ticles), shown in Fig. 14. The most prominent feature here is
the splitting of the small particle band by a new band of big
particles. The process involves particle migration in both di-
rections; from the recorded configurations (not shown) it ap-
pears that small particles follow an interior path while big
particles tend to prefer a path close to the curved cylinder
wall; the dynamics of this process is yet another aspect of the
overall problem needing further study.

F. Surface profiles

The motion of particles along the upper free surface plays
a role in the segregation process, although the importance of
this contribution and the mechanism involved is open to
question. The detailed form of the surface is therefore of

axial

revolutions

FIG. 14. (Color online) Axial space-time plot for #V (ng
=6110, L=160, L/D=4).
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FIG. 15. (Color online) Averaged surface profiles for big and
small particles (big and small points) for run #L (D=40).

interest, although it is not readily characterized and, for a
specific particle mixture, it will depend on fill level, rotation
rate and cylinder diameter. The profile of the free surface
typically varies slightly with position along the axis once
axial segregation has occurred. For these reasons, just one
instance is included here. Experimental examples, ranging
from strongly S shaped to almost linear, appear in [38].

Figure 15 shows the axially averaged surface profile near
the end of run #L, where there are seven bands; big and small
particles are treated individually, and the results represent an
average over ten configurations spaced six revolutions apart.
The profiles are reasonably close to linear (curved profiles
similar to [12] can be obtained at lower fill levels); the big
particles appear slightly below the small because it is the
particle centers that are monitored. There are deviations ad-
jacent to the curved cylinder wall, but here the data binning
produces some distortion. Whether the slight deviations from
linearity are important for the segregation process remains to
be seen. Except at the start, there is no obvious change in this
profile over the entire run.

IV. CONCLUSION

Simulations based on a simple particle-based model of
granular matter have been used to demonstrate the occur-
rence of both radial and axial segregation in a rotating cyl-
inder containing a two-component granular mixture. The ear-
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lier inability to reproduce radial segregation correctly has
been resolved; for the type of model considered, this is due
to the omission of a component of the frictional force that
helps resist sliding during collisions. The different forms of
segregation observed are indicative of a large, complex pa-
rameter space, as is the case experimentally.

In order to learn more about the phase diagram and deter-
mine which parameters dominate in different regimes, a sys-
tematic study, including multiple realizations due to repro-
ducibility issues, is required. The results suggest many
questions of the “what if”” type; of necessity, the answers will
also have to await further work. The model itself is open to
critical examination, in particular, how the components of
the interparticle force influence the behavior (one example
has already been given), as well as the relevant ranges of the
force parameters. More generally, in view of the way static
friction is represented, how reliable is the model altogether (a
question equally applicable to similar models appearing else-
where)?

In theoretical fluid dynamics, stability analysis [39] is
used to determine when symmetry breaking is advantageous.
No analogous theory exists for the granular segregation phe-
nomena described here, and the question of what distin-
guishes the different segregation modes from one another,
and from the uniformly mixed state, remains open; is it, for
example, the ability to optimize energy dissipation, thereby
ensuring the most efficient flow? The segregation band
coarsening slows with increasing band width, and the states
eventually reached have varying numbers of bands and de-
grees of pattern regularity; here the question is whether such
patterns are stable, or are they slow transients en route to
even further coarsening? Another issue is the relation be-
tween the radial and axial segregation processes; are they
independent phenomena that just happen to coexist (perhaps
in competition) in most, but not all situations, or does the
former actually drive the latter? Finally, no attempt has been
made to probe the underlying mechanisms beyond the exer-
cises in particle tracking; if simulation can be shown to re-
produce experiment reliably, then, in view of the level of
detail provided, it may prove an important tool for exploring
the complexities of segregation.
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