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We apply the spectral method, recently developed by the authors, to calculate the statistics of a reaction-
limited multistep birth-death process, or chemical reaction, that includes as elementary steps branching A
→2A and annihilation 2A→0. The spectral method employs the generating function technique in conjunction
with the Sturm-Liouville theory of linear differential operators. We focus on the limit when the branching rate
is much higher than the annihilation rate and obtain accurate analytical results for the complete probability
distribution �including large deviations� of the metastable long-lived state and for the extinction time statistics.
The analytical results are in very good agreement with numerical calculations. Furthermore, we use this
example to settle the issue of the “lacking” boundary condition in the spectral formulation.
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I. INTRODUCTION

The statistics of rare events, or large deviations, in chemi-
cal reactions and systems of birth-death type have attracted a
great deal of interest in many areas of science including
physics, chemistry, astrochemistry, epidemiology, population
biology, cell biochemistry, etc. �1–14�. Large deviations be-
come of vital importance when the discrete �noncontinuum�
nature of a population of “particles” �molecules, bacteria,
cells, animals, or even humans� drives it to extinction. A
standard way of putting the discreteness of particles into
theory is the master equation �1,2� which describes the evo-
lution of the probability of having a certain number of par-
ticles of each type at time t. The master equation is rarely
soluble analytically, and various approximations are in use
�1,2�. One widely used approximation is the Fokker-Planck
equation which usually gives accurate results in the regions
around the peaks of the probability distribution, but fails in
its description of large deviations—that is, the distribution
tails �15–17�. Not much is known beyond the Fokker-Planck
description. In some particular cases �especially, for single-
step birth-death processes� complete statistics, including
large deviations, were determined by applying various ap-
proximations directly to the pertinent master equation
�10,12,14,17–23�. A different group of approaches employs
the generating function formalism �1,5,8�; see below. Here
the master equation is transformed into a linear partial dif-
ferential equation �PDE� for the generating function, and this
PDE is analyzed and solved by various techniques such as
the method of second quantization �24–26� or the more re-
cent time-dependent WKB approximation �16,27�. Recently,
we combined the generating function technique with the
Sturm-Liouville theory of linear differential operators and
developed a spectral theory of rare events �28,29�. In this
theory the problem of computing the complete statistics of
�not necessarily single-step� birth-death systems reduces to
solving an eigenvalue problem for a linear differential opera-
tor, the coefficients of which are determined by the reaction
rates.

In this paper we apply the spectral method to the paradig-
matic problem of branching A+X→2X and annihilation X
+X→E, where A and E are fixed. This multistep single-

species birth-death process describes, for example, chemical
oxidation reactions �18,30�. If the branching rate is much
higher than the annihilation rate �the case we will be mostly
interested in throughout the paper�, a long-lived metastable,
or quasistationary, state exists where the two processes �al-
most� balance each other. Still, this long-lived state slowly
decays with time, because a sufficiently large fluctuation ul-
timately brings the system into the absorbing state of no
particles from which there is a zero probability of exiting. In
this type of problems one is interested in the extinction time
statistics and in the complete probability distribution, includ-
ing large deviations, of the quasistationary state �formally
defined as the limiting distribution conditioned on nonextinc-
tion�. Turner and Malek-Mansour �18� calculated the mean
extinction time in this system by solving a recursion equation
for the extinction probability. More recently, Elgart and Ka-
menev �16� reexamined this problem in the light of their
time-dependent WKB approximation for the generating func-
tion. Their insightful method readily yields an estimate of the
mean extinction time, but only up to a �significant� preexpo-
nential factor. The quasistationary distribution for this system
has not been previously found, and calculating it will be our
objective. In the language of the spectral theory, the mean
extinction time represents the inverse eigenvalue of the
ground state, while the quasistationary distribution is deriv-
able from the ground-state eigenfunction.

The paradigmatic branching-annihilation problem, con-
sidered in this paper, has an additional value, as it helps settle
one unresolved issue of the spectral theory. In previous
works �28,29� we considered reactions that conserve parity
of the particles. Parity conservation provides an additional
boundary condition for the PDE for the generating function
which ensures a closed formulation of the problem already at
the stage of the time-dependent PDE. The branching-
annihilation process, considered in the present work, does
not conserve parity. As we will show, the “lacking” boundary
condition emerges here �and in a host of other problems of
this type� only at the stage of the Sturm-Liouville theory.

Here is how we organize the rest of the paper. In Sec. II
we apply the spectral method and reduce the governing mas-
ter equations to a proper Sturm-Liouville problem. In Sec. III
we employ a matched asymptotic expansion to approxi-
mately calculate the ground-state eigenvalue and eigenfunc-
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tion and obtain the long-time asymptotics of the generating
function. This asymptotics is used in Sec. IV to extract the
quasistationary probability distribution and compare it with
our numerical results. In Sec. V we calculate the mean ex-
tinction time and extinction probability distribution and com-
pare these results with the previous work and with our nu-
merics. Some final comments are presented in Sec. VI.

II. GENERATING FUNCTION AND SPECTRAL
FORMULATION

We consider the branching and annihilation reactions

A→
�

2A and 2A→
�

0,

where � ,��0 are the rate constants. The �mean-field� rate
equation for the number of particles n�t�, dn /dt=�n−�n2

predicts a nontrivial attracting steady state ns=� /���.
Fluctuations invalidate this mean-field result due to the exis-
tence of an absorbing state at n=0. However, when ��1,
there exists a long-lived fluctuating metastable �or quasista-
tionary� state, which slowly decays in time, implying a slow
growth of the extinction probability. The statistics of this
quasistationary state and of the extinction times are in the
focus of our attention here.

The master equation for the probability Pn�t� to find n
particles at time t can be written as

d

dt
Pn�t� =

�

2
��n + 2��n + 1�Pn+2�t� − n�n − 1�Pn�t��

+ ���n − 1�Pn−1�t� − nPn�t��, n � 1,

d

dt
P0�t� = �P2�t� . �1�

We introduce the generating function �1,2,8�

G�x,t� = �
n=0

�

xnPn�t� , �2�

where x is an auxiliary variable. Once G�x , t� is known, the
probabilities Pn�t� can be recovered from the Taylor expan-
sion:

�Pn�t� =
1

n!

�nG�x,t�
�xn �

x=0
. �3�

By virtue of Eqs. �2� and �3�, G�x , t� must be analytical, at all
times, at x=0. Equations �1� and �2� yield a single PDE for
G�x , t� �16�:

�G

�t
=

�

2
�1 − x2�

�2G

�x2 + �x�x − 1�
�G

�x
. �4�

Conservation of probability yields one �universal� boundary
condition for this parabolic PDE: G�1, t�=1 �31�. What is the
second boundary condition? Note that G�x=−1, t� must be
bounded at all times, as it is equal to the difference between
the sum of the probabilities to have an even number of par-
ticles and the sum of the probabilities to have an odd number

of particles. Now, the steady-state solution of Eq. �4�,
Gst�x�=G�x , t→ � �, which obeys the equation

�

2
�1 − x2�

d2Gst

dx2 + �x�x − 1�
dGst

dx
= 0, �5�

must also be bounded at x=−1. Then Eq. �5� immediately
yields a second boundary condition Gst� �x��x=−1=0, where the
prime stands for the x derivative. Combined with Gst�1�=1,
this condition selects the steady-state solution Gst�x�=1 de-
scribing an empty state.

Now let us introduce a new function g�x , t�=G�x , t�
−Gst�x�=G�x , t�−1 �which obeys Eq. �4� with a homogenous
boundary condition g�x=1, t�=0 and is bounded at x=−1�
and look for separable solutions, gk�x , t�=e−�kt	k�x�. We ob-
tain

�1 − x2�	k��x� + 2�x�x − 1�	k��x� + 2Ek	k�x� = 0, �6�

where Ek=�k /�. One boundary condition is of course
	k�1�=0. The second boundary condition comes from the
demand that 	k�x� be bounded at x=−1. Then Eq. �6� yields
a homogenous boundary condition

2�	k��− 1� + Ek	k�− 1� = 0, �7�

for each k=1,2 , . . . . Notice that the eigenvalue Ek enters the
boundary condition. Rewriting Eq. �6� in a self-adjoint form

�	k��x�exp�− 2�x��1 + x�2��� + Ekw�x�	k�x� = 0, �8�

with the weight function

w�x� =
2e−2�x�1 + x�2�

1 − x2 , �9�

we arrive at an eigenvalue problem of the Sturm-Liouville
theory �32�. Once the complete set of orthogonal eigenfunc-
tions 	k�x� and the respective real eigenvalues Ek, k
=1,2 , . . ., are calculated, one can write the exact solution of
the time-dependent problem for G�x , t�:

G�x,t� = 1 + �
k=1

�

ak	k�x�e−�Ekt, �10�

where the amplitudes ak are given by

ak =

	
−1

1

�G�x,t = 0� − 1�	k�x�w�x�dx

	
−1

1

	k
2�x�w�x�dx

. �11�

As all Ek are positive, Eq. �10� describes decay of initially
populated states k=1,2 , . . ., so the system ultimately ap-
proaches the empty state G�x , t→ � �=1. Being mostly inter-
ested in the case of ��1, we note that while the eigenval-
ues of the “excited states” E2 ,E3 , . . . scale like O����1
�33�, the “ground-state” eigenvalue E1 is exponentially small
�18�. Therefore, at sufficiently long times ��t=�t�1, the
contribution from the excited states to G�x , t� becomes neg-
ligible, and we can write
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G�x,t� = 1 + a1	1�x�e−�E1t. �12�

So we need to calculate the ground-state eigenvalue E1, the
eigenfunction 	1�x�, and the amplitude a1. �Actually, the ei-
genvalue E1 was calculated earlier �18�, but we will rederive
it here.� Note that, as E1 is exponentially small, the boundary
condition �7� for the ground state reduces, up to an exponen-
tially small correction, to

	1��− 1� = 0. �13�

III. GROUND-STATE CALCULATIONS

Throughout the rest of the paper we assume ��1. As E1
is exponentially small, the last term in Eq. �6� is important
only in a narrow boundary layer near x=1, and we can solve
Eq. �6� for 	1�x��	�x� by using a matched asymptotic ex-
pansion; see e.g., Ref. �34�. In the “bulk” region −1
x�1
we can treat the last term in Eq. �6� perturbatively. In the
zeroth order we put E1=0 and arrive at the steady-state equa-
tion �1+x�	��x�−2�x	��x�=0, whose �arbitrarily normal-
ized� solution, bounded at x=−1, is 	b

�0��x�=1. Now we put
	b�x�=1+�	b�x�, where �	b�x��1 and obtain in the first
order

��	b��x�e−2�x�1 + x�2��� = −
2E1e−2�x

1 − x2 �1 + x�2�. �14�

Solving this equation, we obtain the bounded solution for
	b�x�

	b�x� = 1 − 2E1	
0

x e2�sds

�1 + s�2�	
−1

s �1 + r�2�e−2�r

1 − r2 dr . �15�

This solution, which obeys the boundary condition �7�, is
almost constant in the entire region −1
x�1 except in the
boundary layer near x=1 �to be defined later on�. To find the
probabilities Pn�t�, we will need to calculate the derivatives
of 	b�x� at x=0. As long as 1−x�1/�, we can neglect the
r2 term in the denominator of the inner integral in Eq. �15�
and obtain

	b�x� 
 1 − 2E1	
0

x e2�sds

�1 + s�2�	
−1

s

�1 + r�2�e−2�rdr

= 1 −
E1

�
� e

2�
�2�	

0

x e2�s

�1 + s�2� 

�2� + 1�

− 
�2� + 1,2��1 + s���ds , �16�

where 
�� ,z�=�z
�s�−1e−sds is the incomplete gamma func-

tion �35�. Using the expansion �36�


��� − 
��,z� = �
j=0

�
�− 1� jz�+j

j ! �� + j�
, �17�

we can evaluate the integral in Eq. �16� and obtain

	b�x� 
 1 −
E1

2�2�
j=0

�

�2 + j,− 2�� − 
�2 + j,− 2��1 + x��

j ! �2� + j + 1�
.

�18�

One can check that the perturbative solution in the bulk is
valid �that is, �	b�x��1� as long as 1−x�1/�.

In the boundary layer 1−x�1 we can disregard, in Eq.
�6�, the �exponentially small� last term and arrive at the same
equation as before: �1+x�	��x�−2�x	��x�=0. The solution
obeying the required boundary condition at x=1 is

	bl�x� = const � 	
1

x

e2�s�1 + s�−2�ds


 C�1 − e−2��1−ln 2� e2�x

�1 + x�2�� , �19�

where C is a yet unknown constant. To find E1 and C we can
match the asymptotes of the bulk and the boundary-layer
solutions in the common region of their validity 1/��1
−x�1. Let us return to the first line of Eq. �16� and evaluate
	b�x� in this region. The inner integral receives the largest
contribution from the vicinity of r=0, while the outer inte-
gral receives the largest contribution from the vicinity of s
=x. Therefore, we can extend the upper limit of the inner
integral to infinity and obtain �see Appendix A�

	b�x� 
 1 − 2E1	
0

x e2�sds

�1 + s�2�	
−1

�

�1 + r�2�e−2�rdr


 1 −
2E1

��

��
	

0

x e2�s

�1 + s�2�ds


 1 −
2E1

��

�3/2

e2�x

�1 + x�2� . �20�

Now, by matching Eqs. �19� and �20�, we obtain

E1 =
�3/2

2��
e−2��1−ln 2� and C = 1. �21�

One can see that the ground-state eigenvalue E1 is exponen-
tially small in �. Equation �21� yields the mean extinction
time ��E1�−1 �see Sec. V� which coincides with that ob-
tained, by a different method, by Turner and Malek-Mansour
�18�.

Equations �15� and �19� yield the ground-state eigenfunc-
tion

	1�x� 
 �	b�x� for 1 − x � 1/� ,

	bl�x� for 1 − x � 1.
�22�

Now we use Eq. �11� to calculate the amplitude a1 entering
Eq. �12�. Let the initial number of particles be n0, so G�x , t
=0�=xn0. Evaluating the integrals, we notice that �i� the main
contributions come from the bulk region 1−x�1/� and �ii�
it suffices to take the eigenfunction 	b�x� in the zeroth order:
	b

�0��x�
1. Furthermore, when n0�1, the term xn0 under the
integral in the numerator is negligible compared to 1. So, for
n0�1, the numerator and denominator are approximately
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equal to each other up to a minus sign. Therefore, a1
−1
�and independent of n0� which completes our solution �12�
for times �t��−1.

IV. STATISTICS OF THE QUASISTATIONARY STATE
AND ITS DECAY

What is the average number of particles n̄�t� and the stan-
dard deviation ��t� at times �t��−1? Using Eqs. �2� and
�12� with a1=−1, we obtain

n̄�t� = �
n=0

�

nPn�t� = �xG�x=1 = �e−�E1t. �23�

Furthermore,

�2�t� = n2̄ − n̄2 = �
n=0

�

n2Pn�t� − ��
n=0

�

nPn�t��2

= ���xx
2 G + �xG − ��xG�2��x=1

= �3�

2
+ �2�1 − e−�E1t��e−�E1t, �24�

where we have used for 	1�x� its boundary layer asymptote
	bl�x�, Eq. �19�, with C=1. At intermediate times
�−1��t�E1

−1 one obtains a weakly fluctuating quasista-
tionary �metastable� state. Here the average number of par-
ticles,

n̄ 
 � , �25�

coincides with the attracting point of the mean-field theory,
while the standard deviation

� 
 �3�

2
�1/2

�26�

coincides with that obtained from the Fokker-Planck ap-
proximation; see Appendix B. Note that ��t� from Eq. �24� is
a nonmonotonic function. This stems from the fact that the
quasistationary probability distribution around n
� decays
in time, whereas the extinction probability P0�t� grows. At
times �E1t�1 the standard deviation �
�3� /2 corre-
sponds to the unimodal quasistationary distribution around
n
�, whereas at �E1t�1, �→0 corresponds to the uni-
modal Kronecker � distribution at n=0. At intermediate
times �E1t
1, the distribution is distinctly bimodal. The
maximum standard deviation �max
� /2 is obtained for
e−�E1t
1/2. Figure 1 shows the n̄�t�and ��t� dependences.

Let us now proceed to calculating the complete probabil-
ity distribution Pn�t� of the �slowly decaying� quasistationary
state, conditional on nonextinction. For n=0 we obtain

P0�t� = G�x = 0,t� = 1 − e−�E1t �27�

which, at �E1t�1, is much less than unity. For n�1 Eqs.
�3� and �12� yield

Pn�t� = � −
1

n!

dn	b�x�
dxn �

x=0
e−�E1t, �28�

where 	b�x� should be taken from Eq. �16�. After some al-
gebra �see Appendix C�, we obtain, for n�1,

Pn�t� =
2E1

n

�2��n−1e2�
�2��

�2� + n� 1F1�2�,n + 2�,− 2��e−�E1t,

�29�

where 1F1�a ,b ,x� is the Kummer confluent hypergeometric
function �35�. To avoid excess of accuracy, we need to find
the large � asymptotics of Eq. �29�. To that aim we use the
identity �35�

1F1�2�,n + 2�,− 2�� =

�n + 2��

�2��
�n�

� 	
0

1

e−2�ss2�−1�1 − s�n−1ds �30�

and consider separately two cases n�1 and n=O�1�.
For n�1, the integral in Eq. �30� can be evaluated by the

saddle point method �34�. Denoting ��s�=−2�s+2� ln�s�
+n ln�1−s� we obtain

Pn�t� 

2E1

n!

�2��2��n−1e2�

�2��1 − s*�2 + ns*
2
e−2��s*−ln�s*��+n ln�1−s*�−�E1t,

�31�

where s*=1+q− �q2+2q�1/2 is the solution of the saddle
point equation ���s�=0 and q=n / �4��. Equation �31� can
be simplified in three limiting cases. In the high-n tail
n���1, we have s*
2� /n�1 and

Pn�t� 

22�−3/2

��n
�2�

n
�n+2�

en−2�−6�2/n−�E1t. �32�
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FIG. 1. �Color online� �a� The average number of particles as a
function of time at �t�1/� as described by Eq. �23� �solid line�
compared with the prediction from the rate equation n̄�t�
�
�dashed line�, for �=30. The inset shows a blowup at intermediate
times �−1��t�E1

−1 where the curves almost coincide. �b� The
standard deviation from Eq. �24� versus time for the same �.
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In the low-n tail 1�n��, we have s*
1−�n / �2�� and

Pn�t� 

22�−2

��n
�2�

n
�n/2+1/2

en/2−2�−�E1t. �33�

Finally, for �n−� � ��, s*
1/2− �n−�� / �6��, and we ob-
tain

Pn�t� 
 �3���−1/2e−�n − ��2/�3��−�E1t. �34�

For �E1t�1 this result describes a normal distribution with
mean � and variance 3� /2, in agreement with Eqs. �25� and
�26� and with the predictions from the Fokker-Planck equa-
tion; see Appendix B.

Now we turn to the case of n=O�1�. Then it is always
n��. Here it is convenient to rewrite the integral in Eq.
�30� as

	
0

1

e��s�s−1�1 − s�n−1ds , �35�

where ��s�=2��ln s−s�. The function ��s� has its maxi-
mum exactly at s=1, the upper integration limit. The largest
contribution to the integral comes from the small region
O�1/��� near s=1. Therefore, it suffices to expand ��s� up
to the second order in �s−1�2, replace the factor s−1 by 1, and
extend the lower integration limit to −�. The result is

e−2�	
−�

1

e−��s − 1�2
�1 − s�n−1ds =

e−2� 
�n/2�
2�n/2 . �36�

Therefore, for n=O�1�, we obtain

Pn�t� 

2E1�4��n/2−1
�n/2�

n!
e−�E1t, �37�

which, for n�1, coincides with that given by Eq. �33�.
Figure 2 compares our analytical result �31� with �i� a

numerical solution of the �truncated� master equation �1�
with �d /dt�Pn�t� replaced by zeros and P0=0, �ii� the predic-
tion from the Fokker-Planck equation for this problem �Eq.
�B2� of Appendix B�, and �iii� the Gaussian distribution �34�
for �E1t�1. In the central part all the distributions coincide.

The Fokker-Planck approximation strongly underpopulates
the low-n tail and overpopulates the high-n tail. On the con-
trary, the Gaussian approximation strongly overpopulates the
low-n tail and underpopulates the high-n tail. Our analytical
solution �31� is essentially indistinguishable from the nu-
merical result, even at small values of n. Actually, it is in
good agreement with the numerics already for �=O�1�, and
the agreement improves further as � increases.

We also computed the ground-state eigenvalue by solving
Eq. �4� numerically with the boundary conditions G�1, t�=1,
�xG�−1, t�=0 and the initial condition G�x , t=0�=xn0. At
times �t�1/�, the numerical ground-state eigenvalue E1

num

can be found from the following expression:

E1
num = −

1

�t
ln�1 − Gnum�0,t�� , �38�

where Gnum�x , t� is the numerical solution for G�x , t� and the
result in Eq. �38� should be independent of time. A typical
example is shown in Fig. 3, and a good agreement with the
theoretical prediction �21� is observed.

V. STATISTICS OF THE EXTINCTION TIMES

The quantity P0�t�, given by Eq. �27�, is the probability of
extinction at time t. The extinction probability density is
p�t�=dP0�t� /dt. Using Eq. �27�, we obtain the exponential
distribution of the extinction times:

p�t� 
 �E1e−�E1t at �t � 1. �39�

The average time to extinction is, therefore,

�̄ = 	
0

�

tp�t�dt 
 ��E1�−1 =
2��

��3/2e2��1−ln 2�. �40�

This is in full agreement with the result of Turner and Malek-
Mansour �18� and in disagreement with the prediction from
the Fokker-Planck approximation, given by Eq. �B5�, and
with the prediction from the Gaussian approximation, given
by Eq. �B7�; see Appendix B.

Figure 4 compares the analytical result �27� for P0�t� with
the extinction probability P0

num�t�=Gnum�0, t� found by solv-

20 40 60
−25

−20

−15

−10

−5

ln
P
n(
t)

n

FIG. 2. �Color online� The natural logarithms of the analytical
result �31� for the quasistationary distribution �dots�, of the distri-
bution obtained by a numerical solution of the �truncated� master
equation �1� �solid line�, of the stationary solution �B2� of the
Fokker-Planck equation �dashed line�, and of the Gaussian distribu-
tion �34� �dash–dotted line�, for �=30 and �E1t�1.
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FIG. 3. �Color online� Shown is the ratio of the numerical
ground-state eigenvalue E1

num from Eq. �38� and the approximate
analytical value of E1 from Eq. �21�, for �=20 and n0=100. The
deviation from 1 is about 5.6%—that is, within error O�1/��.
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ing Eq. �4� numerically as described at the end of the previ-
ous section, and a very good agreement is observed.

VI. FINAL COMMENTS

We calculated, at intermediate and long times, the com-
plete probability distribution, including the quasistationary
distribution of the long-lived metastable state, and the extinc-
tion time statistics in a �non-single-step� branching-
annihilation reaction. To this end we employed the spectral
method, recently developed by the authors �28,29�. We also
used this example to illustrate how the “lacking” boundary
condition of the spectral method emerges in the theory.

The spectral method reduces the problem of finding the
statistics to that of finding the ground-state eigenvalue and
eigenfunction of a linear differential operator emerging from
the generating function formalism. The quasistationary dis-
tribution that we have calculated analytically is in excellent
agreement with numerics. The two widely used “rival”
approximations—the Fokker-Planck approximation and its
reduced version, the Gaussian approximation—perform well
only in the peak region of the quasistationary distribution.
They both fail in the tails of the distribution and, as a result,
cause exponentially large errors in the estimates of the mean
extinction time.

It is worth reiterating that, for single-step birth-death sys-
tems, the quasistationary distribution can be found directly
from a recursion equation for Pn, obtained by putting P0=0,
assuming a zero flux into the empty state, and replacing
�d /dt�Pn�t� by zeros in Eq. �1�; see, e.g., �12�. For multi-step
systems such recursion equations are not generally soluble
analytically.

In conclusion, the spectral method is a powerful tool for
calculating the quasistationary distributions and extinction
time statistics of a host of multistep birth-death processes
possessing a metastable state and an absorbing state.
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APPENDIX A

Here we will derive the result given by Eq. �20�. First, we
calculate the inner integral

I1 = 	
−1

�

�1 + r�2�e−2�rdr = � e

2�
�2�


�2�� . �A1�

As ��1, we can use the large-argument asymptotics of
the 
 function and obtain

I1 
��

�
. �A2�

Second, at ��1, the integral

I2 = 	
0

x e2�s

�1 + s�2�ds � 	
0

x

e2���s�ds , �A3�

where ��s�=s−ln�1+s�, receives the largest contribution in
the vicinity of s=x �remember that 1−x�1�. Then, expand-
ing ��s� around s=x, we obtain

��s� = x − ln�1 + x� +
x

1 + x
�s − x� + ¯ . �A4�

Extending the lower integration limit to −� and evaluating
the remaining elementary integral we obtain, in the leading
order,

I2 

e2�x

��1 + x�2� . �A5�

APPENDIX B

What are the predictions from the Fokker-Planck �FP� ap-
proximation for the quasistationary distribution and the mean
extinction time of the branching-annihilation problem? The
FP description introduces an �in general, uncontrolled� ap-
proximation into the exact master equation �1� by assuming
n�1 and treating the discrete variable n as a continuum
variable. The FP equation can be obtained from Eq. �1� by a
Kramers-Moyal “system size expansion” �1,2� �in our case,
expansion in the small parameter �−1�1�. Using this pre-
scription, we obtain after some algebra

�P�n,t�
�t

=
�

2
�−

�

�n
�2n�� − n�P�n,t��

+
1

2

�2

�n2 �2n�2n + ��P�n,t��� . �B1�

The quasistationary distribution of the metastable state cor-
responds to the �zero-flux� steady-state solution of the FP
equation. In the leading order in 1/� we obtain

Pst�n� 
 �3���−1/2e�−n+�3/2�� ln��2n+��/�3���, �B2�

where only the central �Gaussian� part of the distribution
contributes to the normalization. In fact, the distribution �B2�
is accurate only in the peak region �n−� � �� �see Sec. IV�,
where it reduces to a Gaussian distribution with mean � and
variance 3� /2:
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FIG. 4. �Color online� Shown are the extinction probability
P0�t� �Eq. �27�� �dashed line� and the numerical solution of Eq. �4�
�solid line� at x=0, for �=20 and n0=100.
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PGauss�n� = �3���−1/2e−�n − ��2/�3��. �B3�

Were the FP equation �B1� valid for all n, one could use it to
find the mean time to extinction �FP �conditional on nonex-
tinction prior to reaching the quasistationary state� by a stan-
dard calculation; see, e.g., Ref. �1�. This calculation would
yield

�FP 
 2	
0

�

en�1 +
2n

�
�−3�/2

dn	
n

� e−k�1 +
2k

�
�3�/2

�k�2k + ��
dk .

�B4�

As ��1, the inner integral receives its main contribution
from the vicinity of k=�. The outer integral receives its
main contribution from the vicinity of n=0. Therefore, one
can use the saddle point method for the inner integral and a
Taylor expansion for the outer one. The result is

�FP 
��

3

1

��3/2e���3/2�ln 3−1�. �B5�

Comparing it with Eq. �40�, one can see that the FP approxi-
mation gives a poor estimate of the mean extinction time, as
it introduces an exponentially large error.

The central �Gaussian� part of the quasistationary distri-
bution, �n−� � ��, Eq. �B3�, can be correctly obtained
by keeping only leading-order terms, in the small parameter
�n−� � /��1, in the FP equation:

�P�n,t�
�t

=
�

2
�−

�

�n
�2��� − n�P�n,t�� +

1

2

�2

�n2 �6�2P�n,t��� .

�B6�

Indeed, the zero-flux steady-state solution of this equation
yields the Gaussian distribution �B3�.

Finally, what would be the prediction for the mean extinc-
tion time from the reduced FP description—that is, the one in
terms of Eq. �B6�? Here one would obtain

�gauss 
 2	
0

�

en2/�3��−2n/3dn	
n

� e2k/3−k2/�3��

3��2 dk 

�3�

��3/2e�/3,

�B7�

which again gives an exponentially large error as compared
with the accurate result �40�.

APPENDIX C

Here we calculate the nth derivative of 	b�x�, given by
Eq. �16�, at x=0. The first derivative is

	b��x� = −
E1

�
� e

2�
�2� e2�x

�1 + x�2�

� 

�2� + 1� − 
�2� + 1,2��1 + x��� . �C1�

Let us introduce two auxiliary functions

f�x� =


�2� + 1� − 
�2� + 1,2��1 + x���

�1 + x�2� ,

h�x� = e2�x. �C2�

Using Eqs. �C1� and �C2�, we can write the nth derivative of
	b�x� �that is, the �n−1�th derivative of 	b��x�� at x=0 as

�dn	b�x�
dxn �

x=0
= −

E1

�
� e

2�
�2�

�
k=0

n−1
�n − 1�!

k ! �n − k − 1�!

� � f �k��x��x=0�h�n−1−k��x��x=0, �C3�

where f �k��x� is the kth derivative of f�x� and the same nota-
tion is used for h�x�.

After some algebra, we find that the kth derivative
�k�1� of f�x� at x=0 is �35,36�

�dkf�x�
dxk �

x=0
= �− 1�k2��
�2� + k� − 
�2� + k,2��� .

�C4�

Now, the kth derivative of h�x� at x=0 is

�dkh�x�
dxk �

x=0
= �2��k. �C5�

Using Eqs. �28� and �C3�–�C5�, we obtain for n�1

Pn�t� = e−�E1t2E1

n
� e

2�
�2�

�
k=0

n−1
�− 1�k�2��n−k−1

k ! �n − k − 1�!

� �
�2� + k� − 
�2� + k,2��� . �C6�

Actually, for n=1 one has

P1�t� 
 ��/��1/2E1�1 + O��−1/2�� ,

and the subleading term O��−1/2� has been neglected in Eq.
�C6�. Finally, using Eq. �17� and changing the order of sum-
mation in Eq. �C6�, we obtain the following result for n�1:

Pn�t� =
2E1

n

�2��n−1e2�
�2��

�2� + n� 1F1�2�,n + 2�,− 2��e−�E1t,

�C7�

where 1F1�a ,b ,x� is the Kummer confluent hypergeometric
function �35�. To avoid excess of accuracy, we need to work
with the large-� asymptotics of this result; see Sec. IV.
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