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Considering a broad class of steady-state nonequilibrium systems for which some additive quantities are
conserved by the dynamics, we introduce from a statistical approach intensive thermodynamic parameters
�ITPs� conjugated to the conserved quantities. This definition does not require any detailed balance relation to
be fulfilled. Rather, the system must satisfy a general additivity property, which holds in most of the models
usually considered in the literature, including those described by a matrix product ansatz with finite matrices.
The main property of these ITPs is to take equal values in two subsystems, making them a powerful tool to
describe nonequilibrium phase coexistence, as illustrated on different models. We finally discuss the issue of
the equalization of ITPs when two different systems are put into contact. This issue is closely related to the
possibility of measuring the ITPs using a small auxiliary system, in the same way as temperature is measured
with a thermometer, and points at one of the major difficulties of nonequilibrium statistical mechanics. In
addition, an efficient alternative determination, based on the measure of fluctuations, is also proposed and
illustrated.
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I. INTRODUCTION

The general concept of intensive thermodynamic param-
eters plays a crucial role in equilibrium statistical mechanics.
For systems in contact, intensive thermodynamic parameters
�ITPs� like temperature, pressure or chemical potential equal-
ize their values once the equilibrium state is reached, pro-
vided that their associated quantities, energy, volume or
number of particles, can be exchanged. Since this property
holds even in the case of systems that exhibit different mi-
croscopic dynamics, this equalization became the key crite-
rion in equilibrium statistical mechanics to study the influ-
ence of the environment on a given system, for example,
when a reservoir is connected to it. Moreover the theory of
phase coexistence as well as the measurement of, for in-
stance, temperature with a thermometer draw on this power-
ful concept.

Indeed this potency of the ITP formalism motivates the
endeavor to generalize the notion of ITPs to nonequilibrium
systems. There exist several different approaches mostly fo-
cusing on the generalization of temperature out of equilib-
rium. For stationary nonequilibrium systems that fulfill a lo-
cal equilibrium condition, equilibrium properties are locally
recovered, so that ITPs can be naturally defined on macro-
scopic scales that remain small in comparison with the sys-
tem size �1�. Beyond local equilibrium, more phenomeno-
logical endeavors based on thermodynamical grounds �2�
have been proposed, as well as statistical approaches illus-
trated on some specific models �3–7�. Finally, in the case of
nonstationary slow dynamics, a notion of temperature may
be derived from a generalized fluctuation-dissipation relation
�FDR� �8–11� in analogy to equilibrium statistical mechan-
ics. Still, in spite of these numerous propositions, the rel-
evance of this concept of effective temperature and its pos-
sible generality have been barely discussed.

Besides, other notions of ITPs have appeared in the recent
literature on nonequilibrium systems. For instance, in the

context of stochastic models with a conserved mass M �or
number of particles�, like the zero range process or different
kinds of mass transport models �12�, a formal grand-
canonical ensemble has been defined, in which systems with
a total mass M appear with a probability weight proportional
to exp�−�M�, � being called a chemical potential. We call
this ensemble a “formal” one, since no definition of the
chemical potential is given prior to the grand-canonical con-
struction, and no physical mechanism allowing for fluctua-
tions of the total mass �like, e.g., a contact with a reservoir�
is described. Hence, the grand-canonical distributions intro-
duced so-far appear more as mathematical tools with inter-
esting properties, as it may be considered as a Laplace trans-
form with respect to M of the canonical distribution for
which M is fixed �12,13�. Even more importantly, if this
formal grand-canonical ensemble was to be considered as
defining the chemical potential, nothing could be said from it
on the possible equalization of this parameter between two
subsystems of a globally isolated system, since in the grand-
canonical ensemble, the chemical potential is externally im-
posed.

The aim of the present work is to introduce a precise and
general theoretical background allowing for the definition of
ITPs conjugated to conserved quantities in nonequilibrium
systems. Note that the systems considered here are out of
equilibrium not due to the presence of gradients imposed, for
instance, by boundary reservoirs, but because of the breaking
of microreversibility �that is, time-reversal invariance� at the
level of the microscopic dynamics in the bulk. Accordingly,
the ITPs are not space dependent, as would be the case for
systems that fulfill the local equilibrium assumption. We
state the hypotheses underlying the present construction, and
clarify the physical interpretation of the grand-canonical en-
semble. We then discuss the relevance and usefulness of the
concept of ITP, with particular emphasis on the description
of phase coexistence. Although the proposed generalization
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of ITPs appears to be rather natural, it turns out that non-
trivial problems arise as soon as systems with different dy-
namics are put into contact. This issue is essential if one
wants to measure an ITP using a small auxiliary system—
just like temperature is measured with a thermometer—and
points at one of the main difficulties of nonequilibrium sta-
tistical mechanics. Note that part of the results reported here
have appeared in a short version �14�.

The paper is organized as follows. Section II introduces
the concept of intensive thermodynamic parameters in the
framework of nonequilibrium systems. The main condition
of validity for this concept is given and some features in
analogy to equilibrium statistical physics are discussed. Fur-
ther the applicability of the definition for systems described
with matrices �either matrix product ansatz or transfer matrix
method� is studied, and an illustration of this approach on
two simple models is given. Section III is dedicated to the
issue of phase separation, specifically the problem of con-
densation, in different models. We show how the concept of
ITPs could improve the understanding of phase separation in
these kind of models. Finally, the contact of two systems
with different dynamics is investigated in Sec. IV, with em-
phasis on the issue of equalization of ITPs. We also explore
possible ways of determining the ITPs in experiments or
numerical simulations.

II. NONEQUILIBRIUM INTENSIVE THERMODYNAMIC
PARAMETERS

A. Framework and definitions

Let us start by considering a general macroscopic system
that exhibits a steady state, and such that the dynamics con-
serves some additive quantities, referred to as Qk, k
=1, . . . ,�, in the following. Such systems have been exten-
sively studied for instance in the context of Markovian sto-
chastic models, and simple examples include the zero-range
process �ZRP� �12�, more general mass transport models
�15–17�, or the asymmetric exclusion process �ASEP� in a
closed geometry �13�. On the microscopic level, the nonequi-
librium character of the dynamics manifests itself �apart from
the lack of detailed balance� in the presence of a nontrivial
dynamical weight f� associated with each microscopic con-
figuration �, in the steady-state probability P�. More pre-
cisely, the latter reads

P� =
f�

Z�Q1, . . . ,Q���k=1

�

��Qk
� − Qk� , �1�

where the product of delta distributions ensures the conser-
vation of the quantities Qk. The function

Z�Q1, . . . ,Q�� = �
�

f��
k=1

�

��Qk
� − Qk� �2�

serves as normalization factor, which will be referred to as
“partition function” in analogy to equilibrium statistical me-
chanics. Let us emphasize that in equilibrium systems, the
probability weight f� is either a constant independent of �,
or an exponential factor accounting for the exchange of a

conserved quantity with a reservoir. For instance, in the equi-
librium canonical ensemble, the conserved quantity would be
the number of particles, whereas f� would be the Gibbs fac-
tor exp�−�E��, where E� is the energy of configuration �,
and � is the inverse temperature. On the contrary, in a non-
equilibrium system, the weights f� also account for purely
dynamical effects related to the absence of microreversibility
�the latter being deeply rooted in the Hamiltonian properties
of equilibrium systems�, so that these weights generically
depart from a constant, even if no conserved quantity is ex-
changed with a reservoir.

To introduce a definition for ITPs in nonequilibrium situ-
ations, we first recall that their equilibrium definition is re-
lated to the exchanges of conserved quantities between sub-
systems, and ensures the equality of ITPs in different parts of
the system. Following the same line of thought in a nonequi-
librium context, let us divide our system, in an arbitrary way,
into two subsystems Sa and Sb. The sum Qka+Qkb=Qk is
kept constant due to the conservation law, whereas ex-
changes of these quantities between the two subsystems are
allowed. The microstate � is now defined as the combination
of the two microstates ��a ,�b� of the subsystems, so that the
probability of a microstate is denoted as P�a,�b

. An important
quantity in the following approach is the conditional prob-
ability ��Q1a , . . . ,Q�a 	Q1 , . . . ,Q�� that the conserved quan-
tities have values Qka in subsystem Sa, given their total val-
ues Qk,

���Qka�	�Qk�� = �
�a,�b

P�a,�b�
k=1

�

��Qka
�a − Qka� . �3�

The key assumption in the following derivation is that the
logarithm of ���Qka� 	 �Qk�� satisfies an asymptotic additivity
property, namely

ln ���Qka�	�Qk�� = ln Za��Qka�� + ln Zb��Qk − Qka��

− ln Z��Qk�� + �N��Qka�,�Qk�� �4�

with

	�N��Qka�,�Qk��	 � 	ln ���Qka�	�Qk��	 , �5�

in the thermodynamic limit N→	. In Eq. �4�, Z
��Qk
�� re-
fers to the isolated subsystem S
, 
� �a ,b�, and N is the
number of degrees of freedom. That this additivity condition
is fulfilled for some rather large classes of nonequilibrium
systems will be illustrated in the following examples.

Some of the simplest systems that fulfill Eqs. �4� and �5�,
are lattice models with a factorized steady-state distribution
�where sites are labeled by i=1, . . . ,N, and �= ��i��

P� =
1

Z�Q1, . . . ,Q���i=1

N

fi,�i�
k=1

l

�
�
i=1

N

Qki
�i − Qk� , �6�

in which case the term �N vanishes. Well-known examples of
models with factorized steady-states are for instance the ZRP
�12� and other general mass transport models �15,16�. Ac-
cordingly, the physical interpretation of the additivity condi-
tion given in Eqs. �4� and �5� is that, on large scale, the
system behaves essentially as if the probability weight was
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factorized, although the genuine probability weight may not
be factorized.

As mentioned above, our aim is to define a parameter that
takes equal values within the two �arbitrary� subsystems Sa
and Sb. Guided by the equilibrium procedure, we consider
the most probable value of Qka, denoted by Qka

* , which maxi-
mizes the probability ���Qka� 	 �Qk��. This most probable
value satisfies

� � ln ���Qka�	�Qk��
�Qka

�
Qka

*
= 0. �7�

Using the additivity condition �4� and �5�, we obtain the
following relation:

� � ln Za

�Qka
�

Qka
*

=� � ln Zb

�Qkb
�

Qk−Qka
*

. �8�

Hence, it is natural to define the ITP �k conjugated to the
conserved quantity Qk in a nonequilibrium system as

�k 

� ln Z

�Qk
, k = 1, . . . ,� . �9�

Once the steady state is reached, this quantity equalizes in
the two subsystems Sa and Sb due to Eq. �8�, and thus satis-
fies the basic requirement for the definition of an ITP.

Actually, for the approach to be fully consistent, one must
check that the value of �k does not depend on the choice of
the partition, as long as both subsystems remain macro-
scopic. We show in Appendix A that this is indeed the case,
at least under the assumption �which is consistent with the
additivity condition� that ln Z is extensive. To achieve this
result one shows that the ITP �k obtained from the sub-
systems is equal to the global ITP defined on the whole sys-
tem from Eq. �9�, independently of the partition chosen �see
Appendix A�. Thus from now on, we compute the ITP �k
using Eq. �9� for the whole system.

B. Nonequilibrium “grand-canonical” ensemble

Now that we have defined the notion of ITP, it is natural
to try to introduce a grand-canonical ensemble describing a
system in contact with a reservoir of conserved quantities,
that imposes its values of ��k� to the system. Let us consider
a partition of a large isolated system into two subsystems Sa
and Sb, such that one of the macroscopic systems is much
smaller than the other. The larger subsystem, say Sb, serves
as a reservoir for the �Qk�, leading to a natural definition of a
“grand-canonical” distribution. This distribution is obtained
by integrating the “canonical” distribution �1� over the de-
grees of freedom of the reservoir

P̃�a
=

f�a

Z�Q1, . . . ,Q����b

f�b�
k=1

�

��Qka
�a + Qkb

�b − Qk�

=
f�a

Z�Q1, . . . ,Q��
Zb��Qk − Qka

�a�� . �10�

Note that in the above equation, we assume the factorization

property f�a,�b
= f�a

f�b
, that is we neglect possible boundary

contributions, similarly to the assumptions often made in the
equilibrium context. Expanding the logarithm of the partition
function Zb for Qka

�a �Qk, one finds to leading order in Qka
�a,

ln Zb��Qk − Qka
�a�� � ln Zb��Qk�� − �

k=1

� �� ln Zb

�Qkb
�

Qk

Qka
�a

� ln Zb��Qk�� − �
k=1

�

�kQka
�a, �11�

where we approximated

� � ln Zb

�Qkb
�

Qk

��� ln Zb

�Qkb
�

Qkb
*

= �k. �12�

This is justified in the limit Na /N→0. Therefore we obtain
for the “grand-canonical” distribution the following expres-
sion:

P̃�a
=

f�a

Z̃��1, . . . ,���
exp
− �

k=1

l

�kQka
�a� , �13�

which defines the grand-canonical partition function

Z̃��1, . . . ,��� = �
�a

f�a
exp
− �

k=1

l

�kQka
�a� . �14�

Interestingly, the cumulants �Qk1
Qk2

¯Qkn
�c may be ex-

pressed as a derivative of the logarithm of the grand-

canonical partition function Z̃���k��, which thus appears as
the associated generating function, as follows:

�Qk1
Qk2

¯ Qkn
�c = �− 1�n �

��k1

�

��k2

¯

�

��kn

ln Z̃���k�� .

�15�

Note that some of the indices among k1 , . . . ,kn may be the
same. This result generalizes the corresponding well-known
equilibrium result �18�. Accordingly, checking the validity of
such relations in a given system does not show that mi-
crostates compatible with the constraints are equally prob-
able, contrary to what is sometimes implicitly assumed �e.g.,
in the context of granular matter �19��.

C. Applicability for nonfactorized steady states

As stated above every nonequilibrium system that exhib-
its a product measure automatically fulfills the additivity
property given in Eqs. �4� and �5�, since �N vanishes in this
case. The aim of this section is to discuss some typical cases
for which the steady-state distribution does not factorize, but
still satisfies the additivity condition. As a result, the ITP
framework is relevant for such systems. There are two im-
portant classes of models with nonfactorized steady states:
systems where the stationary state can be expressed by a
matrix product ansatz, and models described by a transfer
matrix.
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1. Matrix product ansatz

Practically speaking, considering a matrix product ansatz
means that, in a one-dimensional system with periodic
boundary conditions, one expresses the probability weight f�

in the form

f� = Tr�
i=1

N

M�i
, �16�

where M�i
is a �possibly infinite� matrix, �i is the state of site

i, and Tr is the trace operation over the matrices. For nonpe-
riodic boundary conditions, a slightly different ansatz is
used, namely

f� = �W	�
i=1

N

M�i
	V� , �17�

where the vectors �W	 and 	V� are determined by the bound-
ary conditions �reflecting boundaries or injection of particles
from a reservoir for instance�. Matrix product ansatz have
proved particularly useful in the context of the ASEP, where
particles obeying an exclusion principle �that is, at most one
particle per site is allowed� perform a biased stochastic mo-
tion on a one-dimensional lattice �13,20,21�.

To test the additivity conditions �4� and �5� for such mod-
els, let us consider a generic lattice model with periodic
boundary conditions. A variable qi is defined on each site i
=1, . . . ,N, and we assume that the quantity Q=�i=1

N qi is con-
served by the dynamics. The steady-state distribution is as-
sumed to be described by a matrix product ansatz,

P��qi�� =
1

Z�Q�
Tr�

i=1

N

M�qi��
�
i=1

N

qi − Q� , �18�

where M�q� is a square matrix. Let us also introduce the
matrix R�Q� through

R�Q� =� �
i=1

N

�dqiM�qi���
�
i=1

N

qi − Q� , �19�

so that the normalizing factor Z�Q�=Tr R�Q�. This leads for
the conditional probability distribution ��Qa 	Q� to

��Qa	Q� =
1

Z�Q�
Tr�Ra�Qa�Rb�Q − Qa�� . �20�

Loosely speaking, the additivity condition holds if the last
factor Tr�Ra�Qa�Rb�Q−Qa�� behaves essentially as
Za�Qa�Zb�Q−Qa�. It is shown in Appendix B that the addi-
tivity properties �4� and �5� are generically fulfilled for a
system described by a matrix product ansatz with finite ma-
trices. Whether it also holds for some classes of infinite ma-
trices M�q� remains an open issue.

2. Models with transfer matrices

Another matrix method that has become very popular, in
equilibrium as well as in nonequilibrium statistical physics,
is the transfer matrix one. The main idea of this method is to
formulate the partition function in terms of a product of a
matrix, the so-called transfer matrix.

To give an example of the application of this method for
nonfactorized steady states let us consider, as previously, a
one-dimensional transport model on a ring, with a local vari-
able qi on each site i, and such that the sum Q=�i=1

N qi is
conserved. The variables qi may either be discrete or con-
tinuous. Let us now assume a steady-state distribution of the
form

P��qi�� =
1

Z�Q��i=1

N

g�qi,qi+1��
�
i=1

N

qi − Q� �21�

with qN+1
q1, and g�qi ,qi+1� is a symmetric function. The
partition function Z�Q� is given by

Z�Q� =� �
i=1

N

�dqig�qi,qi+1���
�
i=1

N

qi − Q� . �22�

Note that a model of this type has been studied in �17�,
showing interesting nonequilibrium condensation properties.
Let us introduce the quantity SN�Q ,q1 ,qN+1� defined as

SN�Q,q1,qN+1� 
 � dq2 ¯ dqN�
i=1

N

g�qi,qi+1�

��
�
i=1

N

qi − Q� , �23�

where q1 is no longer identified with qN+1, contrary to Eq.
�21�. Then one has

Z�Q� = �
0

	

dq1SN�Q,q1,q1� , �24�

and the distribution 
�Qa 	Q� can be written as

��Qa	Q� =
1

Z�Q��0

	

dq1�
0

	

dqNa+1SNa
�Qa,q1,qNa+1�

�SNb
�Q − Qa,qNa+1,q1� . �25�

From this expression, a calculation similar in spirit to the
one presented in Appendix B for the case of matrix product
ansatz, allows one to show that the additivity conditions �4�
and �5� hold. The derivation makes use of the Laplace trans-

form ŜN�s ,q1 ,qN+1� of SN�Q ,q1 ,qN+1� with respect to Q,
which can be written as a matrix product �hence the name
transfer matrix method�:

ŜN�s,q1,qN+1� = e−s�q1−qN+1�/2Ts
N�q1,qN+1� , �26�

where the transfer matrix Ts is defined by

Ts�q,q�� = g�q,q��e−s�q+q��/2. �27�

Let us mention, here again, that the derivation of the addi-
tivity condition relies on some properties of the transfer ma-
trix that are well established for finite matrices, but that
might not be fulfilled in some cases for infinite matrices.
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D. Intensive thermodynamic parameters at work
on simple models

1. Mass transport model with factorized steady state

As a first example we consider a simple one-dimensional
mass transport model on a ring with only one globally con-
served quantity, referred to as mass M =�i=1

N mi, as introduced
in �15�. The masses mi are a priori positive and real vari-
ables. The continuous time stochastic dynamics is defined as
follows. A mass � is transferred from a randomly chosen site
i, containing the mass mi, to site i+1 according to the fol-
lowing rate:

�i��	mi� = v���
f i�mi − ��

f i�mi�
. �28�

Thus transport is totally biased, which generates a flux of
mass along the ring. With the above rate, the steady-state
distribution is of the form �15� �see also Appendix C for a
more general case�

P��mi�� =
1

Z�M��i=1

N

fi�mi��
�
i=1

N

mi − M� , �29�

where the single-site weight f i�mi� may be site dependent.
Let us here consider for f i�mi� the simple form f i�mi�
=mi

�i−1 with �i�0 for all i.
To calculate the ITP corresponding to the conserved mass

in the system we need to find the dependence of the partition
function Z on M,

Z�M� =� �
i=1

N

�dmimi
�i−1��
�

i=1

N

mi − M� , �30�

where the integrals are over the positive real axis. A simple
rescaling mi=xiM reveals the searched dependence,

Z�M� = MN�̄−1� �
i=1

N

�dxixi
�i−1��
�

i=1

N

xi − 1� = KNMN�̄−1

�31�

with �̄=N−1�i=1
N �i, and where KN is a constant independent

of M. The ITP is obtained from the derivative of ln Z,

� =
d ln Z

dM
=

N�̄ − 1

M
�32�

leading in the thermodynamic limit N→	 to

� =
�̄

�
, �33�

where �=M /N denotes the average density.

2. Model with pair-factorized steady state

Let us now consider a second example to illustrate that
our approach works as well on systems that do not exhibit a
factorized steady state. We therefore consider a model simi-
lar to that used in the preceding section, but with a transport
rate that depends, besides the mass on the concerned site,

also on the masses on the two neighboring sites,

���	mi−1,mi,mi+1� = v���
g�mi−1,mi − ��

g�mi−1,mi�
g�mi − �,mi+1�

g�mi,mi+1�
.

�34�

Note that this is a generalization of the dynamics introduced
in �17�, defined for discrete masses. It can be shown �see
Appendix C� that these dynamics lead to a pair factorized
steady state of the form

P��mi�� =
1

Z�M��i=1

N

g�mi,mi+1��
�
i=1

N

mi − M� . �35�

Choosing, as a simple example, the function g�m ,n� as

g�m,n� = �m�n� + m�n��� �36�

with � ,� ,��0, we obtain the behavior of the partition func-
tion on M, using again a simple scaling argument,

Z�M� =� �
i=1

N

�dmig�mi,mi+1���
�
i=1

N

mi − M�
= MN����+��+1�−1� �

i=1

N

�dxig�xi,xi+1���
�
i=1

N

xi − 1�
= K̃NMN����+��+1�−1 �37�

with a prefactor K̃N independent of M. Thus the ITP conju-
gated to the conserved mass reads

� =
d ln Z

dM
=

N���� + �� + 1� − 1

M
�38�

yielding in the thermodynamic limit

� =
��� + �� + 1

�
. �39�

Note that here, we did not check the additivity conditions �4�
and �5�, while the distribution �35� would lead to an infinite
transfer matrix. Yet, we check in Sec. IV D 2, on a specific
example, that the above results are indeed consistent.

E. Discussion on the physical interpretation of intensive
thermodynamic parameters

Now that the formalism is introduced, let us insist on the
physical interpretation of ITPs. First, it is important to note
that, in the present framework, the grand-canonical ensemble
is explicitly derived from the canonical one, and thereby
gains a clear physical status, whereas the “formal” grand-
canonical ensemble often considered in the literature, is in a
sense more like a Laplace transform, without physical
ground �13�. A nice illustration of this difference appears
when considering the topology of the physical system which
may indeed differ in the canonical and grand-canonical en-
semble. For instance, when dealing with a canonical system
on a one-dimensional ring, the corresponding grand-
canonical system would be on a segment, the complementary
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segment playing the role of the reservoir. Such a subtility
does not emerge when dealing with the Laplace transform of
the canonical distribution. Second, in the present context the
ITP has the status of a well-defined thermodynamical vari-
able, which equalizes between subsystems. We shall illus-
trate in the next section how it applies to the description of
phase coexistence and how it allows to extend our “thermo-
dynamical way of thinking” to some out-of-equilibrium situ-
ations.

One might also argue that, at least when the conserved
quantity is a number of particles, the present definition of the
associated ITP may be recovered by mapping the nonequi-
librium stationary distribution on an effective equilibrium ca-
nonical distribution �thus introducing an effective Hamil-
tonian� and computing the corresponding equilibrium
chemical potential. Although it leads to the same result as
ours, such a procedure is less general and rather confusing,
since the nonequilibrium aspects of the system are somehow
hidden. Indeed, one may conclude from such a mapping that
two nonequilibrium systems in contact should equilibrate
their chemical potentials, which is not necessarily true, as
will appear more clearly in Sec. IV.

Besides, it is sometimes thought that ITPs somehow iden-
tify with fluxes within a given system, for instance the flux
of mass between two neighboring sites in a mass transport
model. One reason for this is that in one-dimensional mod-
els, the stationary flux necessarily takes the same value
throughout the system. Yet, this identification is actually not
valid in general, but only for special cases such as for in-
stance the one-dimensional ZRP, where the flux � of par-
ticles within the systems is equal to the fugacity e−�. To
illustrate this point, let us take, for example, a simple mass
transport model on a ring with N sites and transport rates
��� 	m� defined in Eq. �28�, assuming for simplicity that
f i�m�= f�m� for all i. The average flux � crossing a given
link reads

� = �
0

	

dmP�m��
0

m

d�����	m� . �40�

Using the single site probability P�m�=Cf�m�e−�m, C being a
normalization constant, one finds

� = C�
0

	

d��v���e−���
0

	

dxf�x�e−�x �41�

with the change of variables x=m−�. Using the definition of
C, the above equation reduces to

� = �
0

	

d��v���e−��. �42�

Considering this equation we can conclude that the relation
between the flux and the ITP can be highly nontrivial, and
that the two notions should not be identified. Moreover, there
is no obvious reason why, in a generic system of dimension
d�1, the local flux should take equal values throughout the
system. Note also that in models with closed boundary con-
ditions, the global flux of a conserved quantity is forced to be
zero, whereas ITPs a priori take nonzero values, making

them a more useful characterization of nonequilibrium
steady states.

III. RELEVANCE OF INTENSIVE THERMODYNAMIC
PARAMETERS TO DESCRIBE PHASE

COEXISTENCE

A. Principle of the approach

One of the main interests of the notion of ITP, which
made its success in equilibrium, is that such parameters take
equal values in different subsystems of a given system, re-
gardless of their macroscopic state. Indeed, subsystems may
for instance have different densities of a given conserved
quantity, but they should have the same value of the associ-
ated ITP. A case of great interest where this situation arises is
that of phase coexistence. At equilibrium, phase coexistence
is described by the equality of the different ITPs �tempera-
ture, pressure, chemical potential�. We shall now argue that
the present ITP formalism allows for a similar description of
nonequilibrium phase coexistence, at least when this phe-
nomenon is related to a conservation law, and when the ad-
ditivity conditions �4� and �5� hold.

As a simple illustration, we shall consider in this section a
well-studied example of nonequilibrium phase coexistence,
namely condensation transitions. Such transitions have been
reported in ZRP �12,22–24�, and in more general mass trans-
port models �16,17�. These models have in common a critical
density �crit above which a condensation transition occurs,
that is, a finite fraction of the total mass condenses onto a
given site �or on a small domain �17��.

The standard way to compute the critical density in ZRP
for instance, is to use the grand-canonical partition function

Z̃, considered as a function of the fugacity z=e−� �12�,

Z̃�z� = �
N=0

	

zNZN�M� , �43�

where z is fixed by the density

� =
M

N
=

z

N

� ln Z̃

�z
, �44�

and to look for the convergence radius of Z̃�z� in the complex
plane of z. To study the condensed phase in more details, it is
necessary to use a canonical ensemble approach where the
total mass is fixed �16�. Accordingly, the present ITP formal-
ism turns out to be well-suited for such a study.

In Secs. III B and III C, we illustrate in a pedagogical
manner how ITPs may give a natural quantitative description
of the condensation phenomenon, on the example of simple
mass transport models. Qualitatively, the general procedure
proposed is the following. Interpreting the condensation as
the coexistence of a fluid phase and a condensed phase, one
concludes that from the definition of ITPs, the value of the
ITPs should equalize in the two phases. The ITP for the
single-site condensate is often easily obtained, in which case
the value of the ITP in the fluid phase is also known. Then
the equation of state of the fluid phase, computed in the
grand-canonical ensemble, can be used to determine the den-
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sity of this phase �which turns out to be the critical density�.
Hence, the total mass of the fluid phase is known. From the
knowledge of the total mass, one finally deduces the mass of
the condensate.

Such a description of phase coexistence is a good illustra-
tion of the application of ITPs to a rather simple out-of-
equilibrium situation. It is also a first step toward the descrip-
tion of the more complex situation of the contact between
two different systems. As we shall see in Sec. IV, this case
may reveal some difficulties, unexpected within a formal
analogy with equilibrium �for instance by defining a formal
grand-canonical distribution, or through the introduction of
an effective Hamiltonian�, but well enlightened in the present
framework.

B. Mass transport model with one species

1. Homogeneous model

As a first example of the application of the ITP concept in
phase coexistence let us return to the model described in Sec.
II D 1, defined by the transport rates given in Eq. �28�. As-
suming that f i�m�= f�m� for all i, and that f�m��m−� for m
→	, one finds for ��2 a condensation if the average den-
sity exceeds a critical value �12,16�. In the following we
revisit this condensation transition, and show how our ap-
proach of equalized ITPs can reveal the physics behind this
phenomenon. If we assume that the condensate, which oc-
curs on a randomly chosen site j, carries the macroscopic
mass Mc=O�N�, its canonical partition function yields

Zc�Mc� = �
0

	

dmjf�mj���mj − Mc� = f�Mc� � Mc
−�.

�45�

The ITP conjugated to Mc is the chemical potential �c of the
condensate, which is given by

�c =
d ln Zc

dMc
� −

�

Mc
. �46�

In the thermodynamic limit Mc→	, one thus obtains �c=0.
The equality of ITPs for the condensed and the fluid phase
therefore leads to � f =�c=0. The density � f of the fluid
phase, associated to � f, can be determined from the equation
of state computed in the grand-canonical ensemble

� f =

�
0

	

dmmf�m�e−�fm

�
0

	

dmf�m�e−�fm

=

�
0

	

dmmf�m�

�
0

	

dmf�m�
�47�

and exactly gives the critical density �crit �16�. Note that for
a value of ��2 the critical density becomes infinite, which
means that no condensation occurs. Accordingly, the mass of
the condensate is given by

Mc = M − N�crit, �48�

if the overall density �=M /N is larger than �crit. This there-
fore leads to a thorough description of the condensation in
this system.

2. Model with an impurity

Another well-known situation where condensation occurs
is when a single impurity site exhibits a dynamics which
differs from those of the other sites �12�. In this case the
condensation no longer occurs on a randomly chosen site,
but on the impurity itself. One of the simplest choice for the
weights in such a model corresponds to

f1�m� = f imp�m� = e�m with � � 0 �49�

for the impurity site and

f i�m� = fhom�m� = m�−1 with � � 0 �50�

for the remaining sites i�1 �hom stands for homogeneous�.
In this case the canonical partition function for the conden-
sate reads

Zc�Mc� = e�Mc, �51�

which amounts to an ITP for the condensate

�c =
d ln Zc

dMc
= � . �52�

This yields for the fluid phase � f =�, again by equalizing the
ITPs of the two phases. The equation of state � f�� f� for the
fluid phase, computed in the grand-canonical ensemble,
reads

� f�� f� =

�
0

	

dmm�e−�fm

�
0

	

dmm�−1e−�fm

=
��� + 1�
� f����

=
�

� f
. �53�

Thus the equality of the chemical potentials forces the fluid
to have a fixed density �0=� /�, as long as the condensate is
present, that is for �=M /N��0. Interestingly, �0 is not in
itself the maximum density of the homogeneous fluid phase,
but is simply a density imposed by the impurity.

Finally, let us also briefly mention the interesting case
where the impurity is defined by

f imp�m� = e�m2
�54�

while the homogeneous phase is still defined by Eq. �50�.
Assuming again that there is a condensate on the impurity,
one finds �c=2�Mc→	. Thus one expects � f →	, yielding
� f =0 using Eq. �53�. This case is of particular interest, since
on the one hand there is a full localization of mass on the
impurity in the thermodynamic limit, and on the other hand it
cannot be studied within the framework of the grand-
canonical ensemble, due to the faster-than-exponential diver-
gence of f1�m�.

Accordingly, the above calculations provide a simple de-
scription of the condensation in terms of the �out-of-
equilibrium� “equilibration” of two coexisting phases. In par-
ticular, that the condensate may absorb all the excess mass is
understood due to the fact that �c is independent of Mc.

C. Mass transport model with two species

The approach explained above for a model with one con-
served quantity can easily be extended to more complicated
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dynamics where more than one species are involved. In the
case of two species, the general strategy is the following. Let
us consider a lattice model with two conserved masses M1
=�i=1

N m1i and M2=�i=1
N m2i. We assume that a condensate

takes place on a given site i0. The key point of the approach
is that the ITPs conjugated to M1 and M2 take equal values in
both phases. We shall denote these common values as �k, k
=1,2, regardless of the phase we are dealing with. Assuming
a factorized steady state, one can easily compute the values
of �k in the condensate as a function of the condensed
masses M1c and M2c, leading to two equations of the form

�k = �kc�M1c,M2c�, k = 1,2. �55�

By analogy with the single-species case, it is expected that at
least one of the ITPs vanishes in the condensate in the ther-
modynamic limit, as long as we consider a system without
impurities; we thus assume that �1=0. Then, one needs to
compute the densities in the fluid phase using the grand-
canonical equation of state �kf��1=0 ,�2�. Finally, the conser-
vation of the total mass generically yields two coupled non-
linear equations for the unknown variables M1c and M2c,

Mkc + N�kf„0,�2c�M1c,M2c�… = Mk, k = 1,2. �56�

These equations may be hard to solve analytically in general,
but they could be solved numerically. In addition, simplifi-
cations may appear in some cases, as we now illustrate on a
specific model.

Let us consider a model with two conserved masses as
above, which are being transported on a lattice of arbitrary
dimension d, with periodic boundary conditions. The transfer
rates for an amount of mass �1 or �2 from a random site to
a neighboring one are given by �1��1 	m1i ,m2i� or
�2��2 	m1i ,m2i�, respectively, in accordance with

�1��1	m1i,m2i� = v1��1�
h�m1i − �1,m2i�

h�m1i,m2i�
, �57�

�2��2	m1i,m2i� = v2��2�
h�m1i,m2i − �2�

h�m1i,m2i�
. �58�

For lattices of dimensions d�1, one allows a symmetric
mass transfer in any direction transverse to the flux with the
same rates �1��1 	m1i ,m2i� and �2��2 	m1i ,m2i� as in the di-
rection of the flux. The steady-state distribution in arbitrary
dimension d is then given by

P��mki�� =

�
i=1

N

g�m1i,m2i�

Z�M1,M2� �
k=1

2

�
�
i=1

N

mki − Mk� . �59�

Guided by the studies of the two-species ZRP �24�, we
choose an exponential form for the weights

h�m1,m2� = exp�− �m1m2
−�� �60�

with � ,��0. To obtain the conditions under which a con-
densation occurs, we calculate the canonical partition
function of the single-site condensate Zc�M1c ,M2c�
=h�M1c ,M2c�. Hence one obtains for the chemical potentials
of the two species, computed in the condensate

�1 =
� ln Zc

�M1c
= −

�

M2c
� , �61�

�2 =
� ln Zc

�M2c
= ��

M1c

M2c
�+1 . �62�

Therefore in the thermodynamic limit, one finds for the
chemical potential of the first species �1=0. The densities in
the fluid phase are then computed in the grand-canonical
ensemble approach, which yields for �1f,

�1f�0,�2� =

�
0

	

dm2e−�2m2�
0

	

dm1m1e−�m1m2
−�

�
0

	

dm2e−�2m2�
0

	

dm1e−�m1m2
−�

=
1

��2
�

��1 + 2��
��1 + ��

. �63�

For �2f, one obtains in the same way

�2f�0,�2� =

�
0

	

dm2m2e−�2m2�
0

	

dm1e−�m1m2
−�

�
0

	

dm2e−�2m2�
0

	

dm1e−�m1m2
−�

. �64�

The integration over m1 is straightforward and leads to

�2f =
1

�2

��2 + ��
��1 + ��

=
� + 1

�2
. �65�

Hence if a condensate exists, one has �2�0 to ensure a finite
positive density �2f in Eq. �65�. Then, from Eq. �62� one
finds that M2c�M1c

1/��+1�, which means that the condensed
mass M2c behaves subextensively, and the density of the
fluid phase for the second species is thus equal to the overall
density, �2f =�2. Due to Eq. �65� it follows that �2 is deter-
mined only by the value of �2. Therefore, the value of �1f is
also fixed by the overall density �2 of the second species,
since it is only dependent on �2, as seen in Eq. �63�. As a
result, a condensate forms only under the condition that �1
��1

crit��2� given by

�1
crit��2� = �1f„0,�2��2�… =

��1 + 2��
���1 + ��


� + 1

�2
��

. �66�

Using Eqs. �62� and �65�, as well as the relation M1c=N��1

−�1
crit�, one finds the following expression for the condensed

mass of the second species

M2c = ����2

� + 1
N��1 − �1

crit��1/��+1�

. �67�

To sum up, we have shown in this section that in the frame-
work of ITPs, a simple procedure can be developed to de-
scribe the coexistence of different nonequilibrium phases in
mass transport models, based on the idea that ITPs equalize
their values in these phases. We now turn to the more com-
plex situation, where systems with a different microscopic
dynamics are put into contact.

BERTIN et al. PHYSICAL REVIEW E 75, 031120 �2007�

031120-8



IV. CONTACT OF SYSTEMS WITH DIFFERENT
DYNAMICS AND INTENSIVE THERMODYNAMIC

PARAMETERS MEASURE

A. General approach

Within the equilibrium context, the temperature, pressure
and chemical potential of two different systems put into con-
tact equalize, as long as the contact allows the conjugated
conserved quantity �energy, volume or particles� to be ex-
changed. This is actually a strong statement, as it is true even
if the two systems considered have very different micro-
scopic dynamics, provided that both systems can be de-
scribed by a Hamiltonian. Whether such property also holds
in the present more general context of nonequilibrium ITP
formalism is thus an essential issue. Potentially interesting
applications are the description of the effect of the environ-
ment on a system, or the possibility to measure the value of
an ITP using a small auxiliary system, in the same way as
temperature is measured with a thermometer.

As we shall see in this section, the equalization of the
values of the ITPs in two systems in contact is actually not
automatically fulfilled in a nonequilibrium context due to the
necessity to satisfy the additivity conditions �4� and �5�, and
the way the two systems are connected must be considered
carefully. To highlight this point, let us examine two different
systems �that is, with different microscopic dynamics� S1 and
S2 that separately conserve the same physical quantities Q,
with values Q1 and Q2, respectively. When put into contact,
the dynamics at the interface generates the distribution
��Q1 	Q� for the random partition of Q=�iqi into Q1 �in
system S1� and Q2=Q−Q1 �in system S2�, respectively. As-
suming, in the spirit of equilibrium calculations, that the two
systems are weakly coupled, i.e., the only coupling is the
exchange of Q, the global probability distribution reads

P��qi�� = �
0

Q

dQ1��Q1	Q�P1��qi1
��P2��qi2

��

=

�
 �
i1�S1

qi1
	Q�

Z1
 �
i1�S1

qi1�Z2
Q − �
i1�S1

qi1�
� F1��qi1

��F2��qi2
���
�

i

qi − Q� , �68�

where F1��qi1
�� and F2��qi2

�� are the probability weights of
systems S1 and S2, respectively, taken as isolated. For the
ITP to equalize, the additivity conditions �4� and �5� must be
satisfied, when applied to S1 and S2 considered as the two
subsystems of the global system. Intuitively, this additivity
condition means that the probability weight essentially fac-
torizes, as already mentioned when describing the grand-
canonical ensemble. Due to the appearance of the quantity
�i1�S1

qi1
in Eq. �68�, nonlocal contributions arise in the

probability weights appearing in P��qi��. For these weights to
factorize �and thus for the additivity condition to be ful-
filled�, the prefactor � /Z1Z2 must be equal to a constant
�since it would otherwise depend on the nonlocal quantity
�i1�S1

qi1
� which is nothing but 1 /Z�Q�, up to corrections

vanishing in the thermodynamic limit. Thus ��Q1 	Q� should
necessarily be of the form

��Q1	Q� �
Z1�Q1�Z2�Q − Q1�

Z�Q�
, �69�

again up to possible small corrections. This result may alter-
natively be interpreted in the following way. The distribution
��Q1 	Q� is actually nothing but the conditional distribution
��Q1 	Q� introduced in Eq. �4�, for the specific partition of
the global system into �S1 ,S2�—whereas ��Q1 	Q� is a pri-
ori defined for an arbitrary partition. Equation �69� is then
simply the additivity conditions �4� and �5� applied to the
partition �S1 ,S2�.

When putting into contact two nonequilibrium systems,
��Q1 	Q� does not obey Eq. �69� in general, so that ITPs do
not necessarily equalize. Yet for special cases, this equaliza-
tion may be recovered, as we shall see in Sec. IV B. In any
case, it is an important challenge to be able to understand
which microscopic properties the dynamics of the contact
must satisfy so that equalization of ITPs hold. This is the
topic of Sec. IV C.

To clarify the relation with the equilibrium case, let us
consider for instance the equilibrium canonical ensemble,
where the conserved quantity would be the number of par-
ticles. The system is described by a Boltzmann-Gibbs distri-
bution, and assuming that the Hamiltonian does not include
long-range interactions, the additivity conditions �4� and �5�
are satisfied. From this, one deduces that Eq. �69� is neces-
sarily satisfied, since otherwise the additivity condition
would not hold.

B. Connecting two different mass transport models

To illustrate an implementation of the above idea, we con-
sider two single-species mass transport models in contact, as
represented schematically in Fig. 1. The dynamical rules are

i1

i +11

i2

i −11

i +12

2i −1

S1 S2

FIG. 1. Illustration of two mass transport models with periodic
boundary conditions, connected through a contact made of a single
additional link. A zoom over the contact is also shown in the dashed
frame; arrows indicate the oriented links through which mass is
transported.
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site-independent within each system, but are different in S1
and S2. To be more specific, the transport rate within system
S
 reads

�
��	m� = v���
f
�m − ��

f
�m�
, 
 = 1,2. �70�

Let us emphasize that the function v��� is the same for both
systems. The reason for this choice, ensuring the equalization
of the ITPs, will be explained in detail in Sec. IV C. A par-
ticular case where this condition holds is the ZRP one, where
�=1 is the only allowed value, and v�1� is set to 1.

In order to define the dynamics at the contact, we extend
the dynamical rules in such a way that a mass located at site
i1�S1 at the interface �see Fig. 1�, is transferred with rate
�1�� 	m� either to the neighboring site i1+1 or with the same
rate to site i2�S2. A similar rule is applied for a mass lo-
cated on site i2, regarding the transfer to i1. Hence the two
homogeneous systems simply combine to an inhomogeneous
one, for which one can find a factorized steady state, as v���
is site independent, and as the graph on which the system is
defined satisfies the required geometrical constraint �25�. It
follows that in this case the additivity conditions �4� and �5�
holds, and the ITPs of the two systems equalize.

Let us now give some examples illustrating the conse-
quences of the equalization of ITPs for two systems in con-
tact, within the framework of the above model. It should first
be noticed that the equalization of ITPs enforces constraints
on the densities of the two systems, which may thus differ
one from the other if the two systems have different equa-
tions of state. An interesting situation arises in the presence
of a condensate. To be more specific, let us consider two
different mass transport models, without impurities. The two
systems are initially both isolated, and we assume that the
first one contains a condensate, while the second one does
not. This means that, in this initial stage, �1=0 whereas �2
�0. When put into contact, the dynamics will be such as to
equalize the ITPs �1 and �2, through a transfer of mass be-
tween the two systems. As � generically decreases when the
density increases, mass must be transferred from S1 to S2.
Withdrawing mass from S1 actually does not affect the fluid
phase of S1 �at least in a quasistatic limit� as long as the
average density �1 remains above the critical density �1

crit,
and mass is taken from the condensate only, in this first
stage. Assuming that the critical density of S2, �2

crit, is infi-
nite, the condensate in S1 eventually disappears, and both
ITPs converge to a strictly positive value that lies between
the initial values of �1 and �2. Yet, the final densities of the
two systems are different in general.

One may also think of more complex situations. Let us
consider the case where each of the two systems contains an
impurity �as defined in Sec. III B 2�, with respective param-
eters �1 and �2 ��2��1�. In addition, we consider different
functions fhom�m� for the homogeneous part of each system,
namely fhom,
�m�=m�
−1 in system S
, 
=1,2. Before the
contact is switched on, both systems are in steady state and
contain a condensate, so that �1=�1 and �2=�2. When the
contact is established at t=0, the ITPs tend to equalize, and
as �2��1, mass is transferred from S2 to S1 �as � decreases

with ��, independently of the values of �1 and �2. But as S1
already contains a condensate, the density of the fluid phase
is fixed, and all the mass brought to S1 is actually transferred
to the condensate. Hence, the final state corresponds to �1
=�2=�1, with S1 containing a larger condensate than ini-
tially, and S2 being at a density �2��2=�1���2

crit=�2��2

=�2�, so that there is no more condensate in S2. Figure 2
presents the results of numerical simulations of the above
situation, showing in particular that the condensate of S2
disappears once the contact is established. In addition, this
simulation confirms that the ITPs of the two systems are
controlling the direction of the flux of mass. Indeed, mass is
transferred from S2 to S1 even though the density of the fluid
is larger in S1 than in S2, which might seem rather counter-
intuitive given that the two systems are in contact through
their fluid phases only.

Note also that strictly speaking, the determination of �
using the equation of state is valid only in a steady state, so
that one should wait until the density � is stationary before
determining � from �. Still, for the purpose of illustration,
we present here ��t� deduced from the fluid density � f�t�
even in the nonstationary regime. This is meaningful if the
exchanges between the two systems are slow enough so that
each system may be considered in a quasisteady state.

From the above result, one sees that the impurity in sys-
tem S1 �that is, the one with the larger value of �� plays the
role of a reservoir of mass that fixes the value of the ITP of
S2 to �2=�2. Interestingly, S1 only needs to contain a mass of
the same order as that of S2 to act as a reservoir, as the ITP
�1c of the condensate is independent of its mass M1c as long
as M1c is macroscopic. On the contrary, usual reservoirs re-
quire a mass much larger than that of the systems they are in
contact with.

0
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ρ
f

(a)

(b)

(c)

FIG. 2. Time dependence of the masses of the condensates �a�,
the ITPs �b� and the densities of the fluid phases �c� in two mass
transport models in contact, S1 �solid line� and S2 �dashed line�—
see Fig. 1. Both of them contain an impurity site. Parameter values
are �1=1.5 and �2=1 for the impurities, �1=2 and �2=1 for the
homogeneous parts—see text. The systems are separately in steady
state �with overall initial densities �1=�2=2� before the contact is
established at time t=0 �dotted line�. Note that the ITPs eventually
equalize, and that the difference between the fluid densities in-
creases after the contact is established.
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As we have seen on these simple examples, the notion of
ITP allows one to make, essentially without calculations,
nontrivial predictions about the behavior of mass transport
models put into contact �for instance, the final densities of
both systems�; only the knowledge of the equation of state
for each system taken separately is required. However, such
predictions can be made only if the ITPs equalize. In the
present case of mass transport models, this equalization
holds as long as the transition rates obey the relation �70�.
What are the conditions for such an equalization to hold in
more general situations will be the topic of the next section.

C. Characterization of the dynamics at the contact

In this section, we consider the more general case of two
systems in contact as schematically illustrated in Fig. 3. The
dimension d of the two systems is arbitrary, and the contact
consists in a set of links between the two systems. Generi-
cally, the contact relates some parts of the borders of each
system, as shown in Fig. 3, but one may also think of more
complex types of contact.

As mentioned in Sec. IV A, the dynamics at the contact
plays an essential role in the possibility to equalize the ITPs
of two connected systems. This equalization occurs if the
condition �69�, or equivalently, the additivity conditions �4�
and �5� are fulfilled. Yet, testing this condition is a priori
very difficult, and its interpretation in terms of the micro-
scopic dynamics at the contact is not obvious. On the other
hand, if two systems S1 and S2 are connected and globally
isolated, the flux �1→2 transferred from S1 to S2 through the
contact must be equal, in steady state, to the reverse flux
�2→1 going from S2 to S1.

For the sake of simplicity, we now introduce some as-
sumptions that allow one to analyze, at least in a simple case,
this generic problem of the contact between two systems. For
definiteness, let us consider lattice systems S1 and S2 that
may exchange a globally conserved quantity. The set of sites
belonging to the contact in system S
, 
=1,2, is denoted as
C
. As already mentioned, the situations considered corre-
spond to the weak coupling limit. In the present context, this
means that the flux per site crossing the contact is typically
much smaller than the local flux between two sites of a given
system, so that the contact does not perturb the dynamics of
each system, apart from the �slow� exchange of Q. In addi-
tion, the specific assumptions used in the following argu-
ments are that

�i� the flux �1→2 depends only on �1, and not on the
properties of S2 such as �2; respectively, �2→1 depends only
on �2 �yet, the total flux �1→2−�2→1 depends on both �1 and
�2�;

�ii� the probability weights of S1 and S2, each one con-
sidered as isolated, are factorized as products of one-site
weights.

In the spirit of hypothesis �i�, the dynamics at the contact
is defined by the probability rate �i1

c �� 	qi1
� to transfer �

from site i1�C1 in S1 to S2; a similar rate �i2
c �� 	qi2

� defines
the transfer from i2�C2 in S2 to S1. Under these assump-
tions, one can compute the fluxes �1→2��1� and �2→1��2�; in
particular, �1→2��1� reads

�1→2��1� = �
i�C1

�
0

	

dqiP1�qi��
0

qi

d���i
c��	qi� , �71�

where P1�qi� is the single site probability distribution in S1.
Given that P1�q�=c1f1�q�exp�−�1q�, c1 being a normaliza-
tion constant, it follows that

�1→2��1� = c1�
0

	

dq�
0

q

d���1
tot��	q�f1�q�e−�1q, �72�

where we have introduced the “total” rate

�1
tot��	q� = �

i�C1

�i
c��	q� . �73�

By exchanging the indexes of the systems, a similar relation
holds for �2→1��2�.

For the two systems to equalize their ITPs, it is necessary
that the equality �1→2��1�=�2→1��2� leads to �1=�2, for
arbitrary values of �say� �1. In other words, the two functions
�1→2��� and �2→1��� must be identical. Let us then compute
the difference �1→2���−�2→1���. After a straightforward
calculation, this difference can be expressed as

�1→2��� − �2→1��� = c1c2�
0

	

dq1�
0

	

dq2�
0

q1

d�

� �e−��q1+q2���1
tot��	q1�f1�q1�f2�q2�

− �2
tot��	q2 + ��f1�q1 − ��f2�q2 + ��� .

�74�

In order that �1→2���−�2→1��� vanishes for any value of �,
it is necessary and sufficient that the expression between
brackets vanishes, that is

�1
tot��	q1�f1�q1�f2�q2� = �2

tot��	q2 + ��f1�q1 − ��f2�q2 + �� .

�75�

One can check that Eq. �75� is precisely a detailed balance
relation between configurations �q1 ,q2� and �q1�=q1−� ,q2�
=q2+��. Yet, let us emphasize that this detailed balance re-
lation does not concern the true microscopic dynamics at the
contact, but rather an effective, coarse-grained dynamics, de-
fined by �


tot�� 	q� that reduces the contact to a single effec-
tive link. To illustrate this point, one can imagine a contact

FIG. 3. Schematic drawing of two generic systems in contact.
Arrows illustrate the possibility to transfer a conserved quantity
between the two systems. Contrary to Fig. 1, the contact generally
extends over many sites.
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made of two fully biased links between S1 and S2. The first
link can only transfer the conserved quantity Q from S1 to
S2, whereas the second one only allows Q to be transferred
from S2 to S1. Then, the microscopic dynamics at the contact
does not satisfy detailed balance, but the coarse-grained dy-
namics may fulfill this condition.

Note that if the true contact already consists in a single
link as illustrated in Fig. 1, the effective dynamics is the true
one, so that the dynamics at the contact really satisfies de-
tailed balance. This is basically the interpretation of the con-
dition used in Eq. �70�, according to which v��� must be the
same in the two systems: this condition ensures detailed bal-
ance at the contact, even though detailed balance breaks
down in each system due to the presence of fluxes. In con-
trast, if the functions v��� were to be different in the two
systems the ITPs would not equalize due to the lack of de-
tailed balance at the contact.

In summary, we have seen the importance of the dynam-
ics of the contact, which must fulfill condition �69� to ensure
the equalization of the ITPs among the connected systems.
On the other hand, the effective detailed balance Eq. �75� is
a priori a less general statement, due to the simplifying as-
sumptions used to derive it. However it provides us with a
physical interpretation of the conditions required for the dy-
namics at the contact. One may hope that the resulting physi-
cal picture might be relevant beyond the strict validity of Eq.
�75�.

D. Measure of an intensive thermodynamic parameter

1. Measure with an auxiliary system

An essential issue about ITPs would be the ability to mea-
sure them. In analogy to the measurement of temperature in
equilibrium statistical mechanics, one could imagine to real-
ize such a measurement by connecting an auxiliary system to
the system under consideration. This problem has also been
addressed in �5�. In this general framework, we shall call this
�perhaps conceptual� instrument “ITP meter,” in reference to
the nomenclature “thermometer.” There are three essential
requirements which must be fulfilled to perform such an
implementation. First, the values of � in the gauged system
and in the ITP meter need to equalize. Second, the measured
system must not be disturbed by the measurement, so that the
ITP meter should be small with respect to the system upon
which the measure is performed. Third, the equation of state
of the ITP meter must be known, since one needs to deduce
the value of its ITP from the measure of a directly accessible
physical quantity. Accordingly, these different conditions
turn the realization of an ITP meter into a highly nontrivial
problem.

Nevertheless it is possible for certain simple cases to re-
alize a measurement with an ITP meter, using for instance
two connected mass transport models as described in Sec.
IV B. The systems are similar to the ones shown in Fig. 1,
but now S2, used as an ITP meter, is much smaller than S1.
We present in Fig. 4 numerical simulations in which each
system S
 �
=1,2� is homogeneous, and obeys the transport
rate defined in Eq. �70� with f
�m�=m�
−1, where �1��2.
By measuring the density �
 of each system, one can deter-

mine the value of �
 using the equations of state, namely
�
=�
 /�
. In practice, one would of course only measure the
density of the ITP meter, but here we determine both �1 and
�2 to check the validity of the approach.

Numerical simulations are run using systems of size N1
=64 510 and N2=1024, with equal initial densities, �1=�2
=�, and with �1��2. Hence the initial values of the ITPs are
different, namely �1=�1 /� and �2=�2 /�. At time zero the
contact between the two systems is switched on, and mass
flows from S1 to the ITP meter S2, since �1��2. As pre-
dicted theoretically and confirmed by the numerical simula-
tions, the ITPs of the two systems equalize once the steady
state is reached. In addition, the value of �1 does not change
significantly along this process, which is the basic require-
ment for a non-perturbative measurement. Accordingly, the
ITP meter indeed measures the value of �1. Quite impor-
tantly, this measure is done without knowing the value of the
parameter �1 defining the dynamics of S1. This value was
only used to determine �1 from �1 in order to check the
measurement.

The above example illustrates on a simple model that it is
in principle possible to measure an ITP using an ITP-meter
in nonequilibrium systems. Still, in more realistic situations,
finding a suitable definition for the dynamics at the contact
that allows for the equalization of ITPs turns out to be a
major challenge. As seen in the preceding section, Eq. �75�
gives a condition for the equalization of ITPs between the
two systems, and it provides useful information to design the
contact. Yet, it is important to notice that Eq. �75� is a de-
tailed balance relation with respect to the stationary distribu-
tions of S1 and S2. Hence, to satisfy this relation, one re-
quires some important information on the gauged system,
namely its steady state weight f1�q�. Such an information is
usually unavailable in nonequilibrium systems, contrary to
what happens in equilibrium, where the weights are either
uniform �microcanonical ensemble� or given by the
Boltzmann-Gibbs factor �canonical ensemble�.

2. Measure within subsystems

An alternative route, that has been exploited recently in
the context of granular matter �19,26�, consists in trying to

0 5000 10000 15000
t

0.3

0.4

0.5

λ

measured system
ITP-meter

FIG. 4. Measurement process on a system S1 using an ITP meter
S2. The values of the ITPs �1 �dashed line� and �2 �solid line� are
plotted versus time. The systems are characterized by parameters
�1=3, �2=5 �see text�. The contact is switched on at time t=0.
Initially, �1=�2=10, so that �1=0.3 and �2=0.5. Note that �1 al-
most stays constant whereas after a sufficient time �2 converges to
�1.
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determine the ITP through an interpretation of direct mea-
surements on the system, instead of using an auxiliary sys-
tem �the ITP meter� �29�. More precisely, let us consider a
system with a globally conserved quantity Q. Then, from Eq.
�15�, the variance of the quantity QN, measured over a “me-
soscopic” subsystem of size N, obeys the following relation,
derived from the grand-canonical ensemble:

�QN
2 � − �QN�2 = −

d�QN�
d�

. �76�

Let us assume, consistently with the additivity conditions �4�
and �5�, that the variance of QN is linear in the subsystem
size N, at least for 1�N�Ntot, where Ntot is the size of the
global system. Hence the variance may be written as

�QN
2 � − �QN�2 = Ng��� �77�

with �= �QN� /N. Then Eq. �76� leads to

g��� = −
d�

d�
. �78�

Given a reference point ��0 ,�0�, one can then determine the
equation of state of the system, simply by integrating Eq.
�78� numerically,

� = �
�

�0 d�

g���
+ �0. �79�

As a first example, we now apply this procedure to a mass
transport model on a ring with dynamics defined by f�m�
= �1+m�2 and v���=1 �see Eq. �28��, for which the equation
of state ���� cannot be determined easily by scaling argu-
ments as in Sec. II D. By measuring in a numerical simula-
tion the variance of the mass MN over subsystems of differ-
ent size N, we find as expected a linear behavior in N already
for small sizes �see inset of Fig. 5�a��, since the grand-
canonical distribution is fully factorized. The result of the
numerical integration for the equation of state is in very good
agreement with the theoretical curve obtained using the
grand-canonical ensemble �see Fig. 5�a��, for which � can be
determined as a function of �, as done for instance in Eq.
�47�.

The fact that this procedure works as well for cases in
which the steady state does not fully factorize, can be seen in
another numerical experiment exhibiting a pair-factorized
steady state. Let the dynamics be defined as in Eq. �34�, with
v���=1 and g�m ,n�=m+n, that is, we assume �=1, �=0
and �=1 in Eq. �36�. Measuring again the variance of the
mass MN over subsystems of size N, shows that the measure-
ment of the ITP � should be performed for higher values of
N than in the fully factorized case to have access to the linear
regime �see inset of Fig. 5�b��. Note that the results of the
measurement �see Fig. 5�b�� agree equally well with the the-
oretical curve, which can be obtained in this case by the
simple scaling argument presented in Sec. II D 2.

In these examples, we obtained for simplicity a reference
point ��0 ,�0� using the theoretical equation of state. In a
more realistic situation where the equation of state is un-
known, one can estimate as well a reference point only

through the information obtained from the measured vari-
ances. Measuring numerically the function g��� for large val-
ues of �, one can fit its asymptotic �large �� expression with
a power law, g����A��; in the two models above, one has
�=2. Then, assuming that � vanishes when �→	, and that
��1, the reference value �0 corresponding to a given large
density �0 is obtained as

�0 = �
�0

	 d�

g���
� �

�0

	 d�

A�� =
1

A�� − 1��0
�−1 . �80�

Note that alternatively, one may also determine a reference
point from the distribution of QN, as proposed in Ref. �27�.

Accordingly, the present approach provides a rather
simple way to measure experimentally or numerically ITPs
in realistic systems for which no information on the micro-
scopic probability distribution �like the weight factors f�m�
for instance� is available. As mentioned above, this method
has already been used in the context of granular material
�19,26�. However, it was thought to rely on Edwards’ ther-
modynamic construction which explicitly assumes the
equiprobability of states compatible with the constraints
�conserved quantities�, whereas this assumption is not neces-
sary, as illustrated in the above examples—see also Ref. �27�.
Indeed, the validity of the approach is much more general,
making it a convenient way to determine practically ITPs in
nonequilibrium systems.

V. CONCLUSIONS

In this paper, we highlight that the notion of generalized
ITPs for steady-state nonequilibrium systems serves as a new
tool in the study of nonequilibrium phenomena. Within the
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FIG. 5. Equation of state � as a function of � in two mass
transport models, obtained by numerical simulations using the mea-
surement procedure described in the text ���, compared with the
theoretical prediction ���� derived in the grand-canonical ensemble
�solid line�; �a� fully factorized steady state with f�m�= �1+m�2, �b�
pair-factorized case with g�m ,n�=m+n. Insets: dependence of the
variance V�MN� on the subsystem size N ��� for densities �=1.2 �a�
and �=0.5 �b�; solid lines are linear fits.
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range of validity of the additivity conditions �4� and �5�,
there is a vast variety of models for which our approach can
be useful, like models with a factorized steady-state distribu-
tion, or one-dimensional systems described by a matrix prod-
uct ansatz or the transfer matrix method �at least with finite
matrices�. The method should also be of interest for models
which are well approximated by a mean field approach.

Introduced by generalizing the equilibrium concept, for
which physical intuition is well developed, ITPs benefit from
a rather clear physical interpretation. They provide a conve-
nient way to describe the coexistence of two phases, as may
be easily illustrated on the case of the condensation transi-
tion. An essential issue, which made the success of the ITP
concept in equilibrium, is the possibility to equalize ITPs in
different systems put into contact. Contrary to equilibrium
situations, such an equalization is not automatically fulfilled
in the nonequilibrium case, and the dynamics at the contact
turns out to play a major role. We have derived, under sim-
plifying assumptions, a coarse-grained detailed balance rela-
tion that needs to be satisfied by the contact dynamics in
order that ITPs equalize. Deriving a more general criterion
by relaxing some of the assumptions made would be inter-
esting to gain further insights on this important issue.

A related difficulty with the approach is that the additivity
properties �4� and �5� may be hard to test directly. Still, mea-
suring the variance of the globally conserved quantity over
subsystems of a homogeneous system may lead to an indirect
test of this property: indeed, one expects that the variance
introduced in Eq. �76�, becomes linear in N for N�1 if the
additivity property is satisfied.

From the point of view of measurements, it turns out that
realizing an ITP meter remains a major challenge, mostly
due to the difficulties with the choice of the dynamics at the
contact. Indeed, one would need to find a dynamics for the
contact that satisfies the condition for equalization of ITPs
�that is, the coarse-grained detailed balance relation �75� or a
generalization of it�, without having information on the prob-
ability weights of the system on which the measure should
be done. Alternatively, measurements of ITPs using the vari-
ance of the globally conserved quantity in subsystems of
“mesoscopic” size seem to be a promising route.
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APPENDIX A: INDEPENDENCE OF THE CHOICE OF
SUBSYSTEMS

In this appendix, we show that, according to the claim
made in Sec. II A, the value of the ITP �k does not depend on
the partition chosen. To this aim, let us relate the ITP �k
obtained from the subsystems, to a global ITP defined on the
whole system. Knowing that

� �
k=1

�

dQka���Qka�	�Qk�� = 1 �A1�

and neglecting the correction term �N appearing in Eq. �5� in
the large N limit, one can derive an expression for Z��Qk��

depending on the partition functions of the subsystems

Z��Qk�� =� �
k=1

�

dQkaZa��Qka��Zb��Qk − Qka�� . �A2�

Consistently with the additivity properties �4� and �5�, we
assume a general scaling form for the partition functions Z


for a large number of sites N
,

Z
��Qk
�� = A
 exp�N
�

Q1


N


, . . . ,
Q�


N

�� . �A3�

This amounts to assuming that ln Z
��Qk
�� is extensive. This
choice allows us to perform a saddlepoint approximation for
the integrals in Eq. �A2� and thus we obtain

Z��Qk�� = N�Za��Qka
* ��Zb��Qk − Qka

* ��

� �
0

qk

�
k=1

�

dqkae−N�fa�qka�+fb�qka��, �A4�

where qk=Qk /N, qk
=Qk
 /N, and qk

* =Qk


* /N, 
� �a ,b�.
The functions f
 read with n
=N
 /N,

fa��qka�� = −
na

2 �
i,j=1

�
�2�a

�qia�qja
�
�qka

na
���

�qia
* ,qja

* �

��qia − qia
* ��qja − qja

* � ,

fb��qka�� = −
nb

2 �
i,j=1

�
�2�b

�qia�qja
�
�qk − qka

nb
���

�qia
* ,qja

* �

� �qia − qia
* ��qja − qja

* � . �A5�

Taking the logarithm of the above expression, Eq. �A4�,
leads to

ln Z��Qk�� = ln Za��Qka
* �� + ln Zb��Qk − Qka

* �� + ln ��qk� ,

�A6�

where ��qk� is given by the finite integrals of Eq. �A4�. We
thus obtain for the derivative with respect to Qk, using Eq.
�9�,

� ln Z��Qk��
�Qk

= �k

�Qka
*

�Qk
+ �k
1 −

�Qka
*

�Qk
� +

1

N

� ln �

�qk
.

�A7�

Since ��qk� is expected to be bounded when N→	 while the
ratio qk=Qk /N is kept constant, the last term vanishes in the
thermodynamic limit, and we find

� ln Z��Qk��
�Qk

= �k, �A8�

where the value of �k stays finite in the limit defined above
due to the scaling form of Z
 in Eq. �A3�. The fact that we
can compute the value of �k directly from the whole system
shows the independence of the partition chosen. This means
that the ITPs �k �k=1, . . . ,�� are global values that can be
used to characterize the macroscopic state of the whole sys-
tem.
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APPENDIX B: ADDITIVITY CONDITION FOR MATRIX
PRODUCT ANSATZ

The aim of this appendix is to show that, under reasonable
assumptions, a system described by a matrix product ansatz
with finite matrices fulfills the additivity properties �4� and
�5�. For the sake of simplicity, we only deal with the case of
a single conserved quantity, but generalizations to several
conserved quantities are rather straightforward. We also use
periodic boundary conditions, though calculations with open
boundaries would essentially be similar. Considering a ge-
neric lattice model as defined in Eq. �18�, the conditional
distribution ��Qa 	Q� reads

��Qa	Q� =
1

Z�Q�
Tr�Ra�Qa�Rb�Q − Qa�� . �B1�

To proceed further, one needs to introduce the Laplace trans-

forms R̂�s� and M̂�s� of R�Q� and M�q�, respectively, which

leads to R̂�s�=M̂�s�N. Making the further hypothesis that

M̂�s� is invertible, one can find a matrix B�s� such that

M̂�s�=exp�B�s��, yielding R̂�s�=exp�NB�s��. The matrix
B�s� can be decomposed into a sum of two complex-valued
matrices �28�,

B�s� = D�s� + L�s� , �B2�

where D�s� is a diagonalizable matrix, and L�s� is a nilpotent
one, meaning that there exists a positive integer p�s� such
that L�s�p�s�=0. In addition, the matrices D�s� and L�s� com-
mute. Using Eq. �B2�, one has

R̂�s� = eND�s�eNL�s� = eND�s�Ps„NL�s�… , �B3�

where Ps is a polynomial of degree p�s�−1, since higher
order terms in the expansion of exp�NL�s�� vanish. Accord-

ingly, in the large N limit, the dominant contribution to R̂�s�
is proportional to Np�s�−1 exp�ND�s��. Then, as D�s� is diag-
onalizable, there exists a matrix V�s� such that D�s�
=V−1�s���s�V�s�, where ��s� is the diagonal matrix. It re-
sults that

eND�s� = V−1�s�eN��s�V�s� �B4�

so that the dominant contribution to exp�ND�s�� is propor-
tional to exp�N�1�s��, �1�s� being the eigenvalue of D�s�
with the largest real part. Altogether, R̂�s� takes the following
form, to leading order in N:

R̂�s� � Np�s�−1 exp„N�1�s�…K�s� , �B5�

where K�s� is a matrix that does not depend on N. Then R�Q�
is obtained through an inverse Laplace transform

R�Q� � �
s0−i	

s0+i	 ds

2�i
Np�s�−1 exp�N„�1�s� + s�…�K�s� �B6�

with �=Q /N, and where s0 is an arbitrary real number,
greater than the real part of all the singularities of the inte-
grand. Assuming that the equation G�s�=d�1 /ds+�=0 has a
solution s*, and that s0 can be chosen as s*, a saddle-point
calculation shows that the dominant contribution to R�Q� is
proportional to exp�N(�1�s*�+s*�)�. The remaining Gaussian
integral around the saddle �on the imaginary axis� converges
since G��s�=�1��s��0. This last property can be shown in the
following way. The logarithm of the grand-canonical parti-

tion function satisfies ln Z̃�s��N�1�s�, with the identification

�=s. Then, from Eq. �15�, the second derivative of ln Z̃ is the
variance of Q, which is positive; hence �1��s��0. Since
Z�Q�=Tr R�Q�, Z�Q� is also proportional to exp�N(�1�s*�
+s*�)�. As a result, one finds

ln Tr�Ra�Qa�Rb�Qb�� � Na„�1
a�sa

*� + sa
*�a… + Nb„�1

b�sb
*� + sb

*�b…

� ln Za�Qa� + ln Zb�Qb� , �B7�

from which the additivity conditions �4� and �5� follow.

APPENDIX C: PAIR FACTORIZED STEADY STATE FOR
A CONTINUOUS MASS MODEL

Let us show that the model introduced in Sec. II D 2,
defined through the transport rate given in Eq. �34�, leads to
a pair factorized steady state �35�. This can be verified with
the master equation for this model, which reads

dP��mi�,t�
dt

= �
i=1

N �
0

mi+1

d����	mi−1,mi + �,mi+1 − ��

�P�. . .mi + �,mi+1 − �, . . . ,t�

− �
i=1

N �
0

	

d����	mi−1,mi,mi+1�P��mi�,t� ,

�C1�

where P��mi� , t� describes the time evolution of the probabil-
ity of a microstate �mi�. In the steady state the time derivative
vanishes. Plugging Eqs. �34� and �35� into the master equa-
tion and dividing by Z−1�i=1

N g�mi ,mi+1� yields

�
i=1

N �
0

mi+1

d�v���
g�mi,mi+1 − ��

g�mi,mi+1�
g�mi+1 − �,mi+2�

g�mi+1,mi+2�

= �
i=1

N �
0

	

d�v���
g�mi−1,mi − ��

g�mi−1,mi�
g�mi − �,mi+1�

g�mi,mi+1�
. �C2�

Substituting i+1 by i on the left-hand side and knowing that
g�m ,n�=0 for values of m or n smaller than zero one finds
the above equality verified.
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