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We analyze the structure of fluctuations near critical points and spinodals in mean-field and near-mean-field
systems. Unlike systems that are non-mean-field, for which a fluctuation can be represented by a single cluster
in a properly chosen percolation model, a fluctuation in mean-field and near-mean-field systems consists of a
large number of clusters, which we term fundamental clusters. The structure of the latter and the way that they
form fluctuations has important physical consequences for phenomena as diverse as nucleation in supercooled
liquids, spinodal decomposition and continuous ordering, and the statistical distribution of earthquakes. The
effects due to the fundamental clusters implies that they are physical objects and not only mathematical
constructs.
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I. INTRODUCTION

Systems that are mean-field or near-mean-field are com-
mon in nature. Examples of such systems include metals
with long-range elastic forces �1,2�, earthquake faults with
long-range stress transfer Green’s functions �3�, and poly-
mers �4�. The connection between the range of the interac-
tion and mean-field behavior was made by Kac and collabo-
rators �5� who noted that a system with a pairwise additive
potential of the form

V�x� = VR�x� + �d���x� , �1�

becomes mean field in the limit �→0. In Eq. �1� x= �x�,
VR�x� is a short-range reference potential, and d is the spatial
dimension. The limit �→0 is taken after the thermodynamic
limit and before a critical point is approached. It is also re-
quired that �5�

� dx�d����x�� � � , �2�

so that the energy per particle or spin remains finite in the
�→0 limit. The interaction range R is defined by the second
moment of the potential,

R2 �� dxx2�d���x� � �−2. �3�

Hence, as �→0, R→�. We will refer to systems with R
�1 but not infinite as near mean field; systems with R→�

are mean field �6�.
The kinetics of phase transitions is different in systems

with R�1 than in systems with R�1. For example, nucle-
ation in the former often occurs near a pseudospinodal �7–9�
where the surface tension is small, which results in a nucle-
ating droplet that has a different structure �10–17� than that
near the coexistence curve in systems with R�1 �18,19�.

In addition, the early stage growth of the peak of the equal
time structure function during continuous ordering and spin-
odal decomposition in systems with R�1 is described by the
Cahn-Hilliard-Cook �CHC� theory �20–22� for a time pro-
portional to ln R after the quench �4�. The morphology of the
early stage evolution differs from that in systems with R
�1 �23–25� for which there is no time interval when the
CHC theory is applicable �19�.

The mean-field limit of several earthquake fault models
can be described by an equilibrium theory �3,26,27�. In near-
mean-field systems the smaller earthquake events are related
to fluctuations about the free-energy minimum near the pseu-
dospinodal �3�.

In these and other examples the structure of the fluctua-
tions near the mean-field critical point and the pseudospin-
odal is important for understanding the behavior of the sys-
tem. In this paper we analyze the structure of the fluctuations
and its relation to the underlying clusters. We use field
theory, scaling arguments, and cluster analysis and relate the
structure of the fluctuations to the nature of nucleation, the
possible existence of a pseudospinodal in supercooled fluids,
and the behavior of the models of earthquake faults. The
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results of simulations done to test the predictions are also
discussed.

In Secs. II and III we discuss the Landau-Ginzburg theory
�28� and the Parisi-Sourlas �29,30� approach based on the
Langevin equation with random Gaussian noise to study
fluctuations near mean-field critical points. We use the same
field-theory techniques in Sec. IV to discuss fluctuations near
the spinodal. In Sec. V we discuss the fluctuation morphol-
ogy for mean-field and near-mean-field systems. In Sec. VI
we use the Landau-Ginzburg and Parisi-Sourlas approaches
to discuss the relation of the fluctuations to the clusters. We
examine the relation between the fluctuation structure and
spinodals in supercooled fluids in Sec. VII and discuss the
relation between the fluctuation structure and nucleation in
Sec. VIII. In Sec. IX we relate the cluster structure to cellular
automata models of earthquakes. We summarize our results
and discuss future work in Sec. X. The mapping of thermal
systems onto percolation models is discussed in the
Appendix.

Our main results include the following: �1� There exist
objects, which we call fundamental clusters, that have a den-
sity and lifetime dependence that is very different from the
scaling of the density and lifetime of the fluctuations. The
fundamental clusters are defined by the mapping of the criti-
cal point �or spinodal� onto a percolation transition. This
difference is in contrast to non-mean-field systems where the
clusters are geometrical realizations of the fluctuations. �2�
The fundamental clusters are physical objects that have mea-
surable consequences, which are explored for earthquake
fault models, nucleation, and the measurement of the �pseu-
do�spinodal in near-mean-field systems.

II. SCALING OF ORDER-PARAMETER FLUCTUATIONS

We first discuss �near-�mean-field systems from the per-
spective of field theory based on the Landau-Ginzburg-
Wilson Hamiltonian �31,32�

H��� =� dx�R2

2
����x��2 + ��2�x� + �4�x� − h��x�	 .

�4�

Without loss of generality we have set the proportionality
constant in Eq. �3� equal to one. The partition function Z is

Z =� 	�e−
H���x��, �5�

and the probability of the order-parameter density ��x� is

PB��� =
e−
H���

Z
, �6�

where 
= �kBT�−1, T is the absolute temperature, and kB is
Boltzmann’s constant.

Because we are interested in �near-�mean-field systems,
we scale all lengths with R. We first discuss the critical point
and defer our discussion of the spinodal to Sec. IV. To study
the critical point we set h=0 and assume that

� =
T − Tc

Tc
� 1, �7�

where Tc is the critical temperature. For ��1 and h=0 we
can use scaling arguments. It is straightforward to see from
Eq. �4� that

H��̃� = Rd���2−d/2� dy�1

2
��̃�̃�y��2 ± �̃2�y� + �̃4�y�	 ,

�8�

where y=x /R�−1/2, �̃�x�=�−1/2��x�, �̃=R�, and the � �
�
sign corresponds to ��0 ���0�. We take ��0 in this sec-
tion except where otherwise noted.

The integral in Eq. �5� can be evaluated using saddle-
point techniques for Rd�2−d/2�1. We can give this require-
ment a physical meaning from the Ginzburg criterion �28�,
which states that a system can be considered to be mean-field
if the mean-square fluctuations of the order parameter are
small compared to the square of the order parameter �32�.
The order parameter � is given by L−d
dx��x�, where L is
the linear dimension of the system and � corresponds to the
magnetization in the Ising model.

The correlation length � is proportional to the linear spa-
tial extent of the order-parameter fluctuations. The mean-
square fluctuations in the order parameter are characterized
by �d�, where � is the isothermal susceptibility �32�. Near a
mean-field critical point we have �33�

� � R�−1/2, �9a�

� � ���1/2 �� � 0� , �9b�

� � �−1. �9c�

�Equation �9b� is derived following Eq. �56�.� The Ginzburg
criterion requires that

�d�

�2d�2 → 0. �10�

If we substitute the scaling forms in Eq. �9� into Eq. �10�, we
obtain �4�

G = Rd�2−d/2 → � . �11�

We will refer to G=Rd�2−d/2 as the Ginzburg parameter. In
the limit G→� the system is mean field. The system is near-
mean-field for G�1 �but finite�. The latter criterion implies
the well-known result that the upper critical dimension at the
critical point above which the system has mean-field critical
exponents for all R, including R�1, is four �32�.

From Eqs. �6� and �8� we have

KLEIN et al. PHYSICAL REVIEW E 75, 031114 �2007�

031114-2



PB��̃� =

exp�− 
Rd�2−d/2� dy�1

2
��̃�̃�y��2 + �̃2�y� + �̃4�y�	�
Z

. �12�

For G=Rd�2−d/2�1 the Hamiltonian in Eq. �4�, can be approximated by a Gaussian �32�,

PG��̃� =

exp�− 
Rd�2−d/2� dy
1

2
��̃�̃�y��2 + �̃2�y��

ZG
, �13�

where ZG is the functional integral over �̃ of the numerator in Eq. �13�. We use PG��̃� to calculate the structure function S�k̃�,

S�k̃� = �
�̃�k̃��̃�− k̃�� =

�� 	�̃�k̃�exp�− 
Rd�2−d/2� dk̃�k̃2 + 1��̃�k̃��̃�− k̃�	�̃�k̃��̃�− k̃�

ZG
, �14�

where k̃=R�−1/2k and �̃�k�= �̃�−k�. For ��0 and h=0,


�̃�x��=0. We have

S�k̃� �
�

Rd�2−d/2

1

k̃2 + 1
. �15�

The Fourier transform of Eq. �15� gives the pair-
distribution function, which we write in terms of unscaled
variables,

��2��x� �
1

�x/��d−2

�

Rd�2−d/2e−x/�. �16�

The �x /��2−d dependence in Eq. �16� is valid for d�3.
For d=2 this dependence is replaced by �x /��−1/2; in d=1
there is no x dependence in the denominator. The integral

dx��2��x� is proportional to �� /Rd�2−d/2��d for all d. For scal-
ing purposes we can treat ��2��x� for x�� as a constant.
Because ��2��x��� is proportional to the square of the den-
sity of a fluctuation, we see that the fluctuations in the order-
parameter density scale as

� f�x � �� �
�1/2

�Rd�2−d/2�1/2 =
�1/2

G1/2 . �17�

Note that the density of a critical phenomena fluctuation does
not scale as �1/2 as might be expected from a simple exten-
sion of how the order parameter scales for ��0 in Eq. �9b�.
We will discuss this point more fully in Sec. IV. The scaling
of � f�x� with G−1/2 in Eq. �17� justifies the neglect of the �4

term in Eq. �12� and the Gaussian approximation in Eq. �13�.
The susceptibility � is related to the pair-distribution

function ��2� by �32,33�

� �� dx���2��x� − �2� . �18�

If we use the scaling form �17� of � f�x� in Eq. �18�, that is,
��� f�x�2�d, we find ���−1, consistent with Eq. �9c�.

To show that � f and � have similar scaling behavior
in a system with R�1 and d�4, we again assume that
��2��x��� is a constant so that we can write Eq. �18� as �
�� f

2�d and � f
2��−��d�. Hyperscaling �32,33� gives �+2


=d� so that � f
2��2
 and hence � f ��
.

We next discuss the Landau-Ginzburg and Cahn-Hilliard-
Cook equations in �near-�mean-field systems. We can obtain
these equations by noting that the time rate of change of an
order parameter such as the density is related to the chemical
potential �. If the order parameter is not conserved and there
are no other conservation laws �model A in the Hohenberg-
Halperin classification scheme �34��, then

���t�
�t

� − � and � �
	F���

	�
, �19�

where F��� is the free energy. We take F��� to be equal to
the Landau-Ginzburg-Wilson Hamiltonian in Eq. �4�, which
is correct for mean-field systems and a good approximation
in near-mean-field systems, and assume that the relations in
Eq. �19� are valid in a spatial and time-dependent context
and that the functional derivatives are with respect to ��x , t�.
In this way we obtain the Landau-Ginzburg equation �19,28�,

���x,t�
�t

= − MA�− R2�2��x,t� + 2���x,t�

+ 4�3�x,t� − h� + ��x,t� , �20�

where we have added a noise term ��x , t�. In the remainder
of this section � can be either positive or negative. For a
conserved order parameter �model B �34�� we have

���x,t�
�t

� � · J and J � ���x,t� . �21�
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If we again interpret the right-hand side of Eq. �4� as a free
energy and include a noise term, we obtain the Cahn-
Hilliard-Cook equation �19�,

���x,t�
�t

= MB�2�− R2�2��x,t� + 2���x,t� + 4�3�x,t� − h�

+ �c�x,t� . �22�

The quantities MA and MB in Eqs. �20� and �22� are mobili-
ties and will be discussed in Sec. III.

To obtain Eqs. �19� and �21� we assumed local equilib-
rium; that is, within the coarse-grained volume used to ob-
tain the Landau-Ginzburg free energy �19�, the system comes
into equilibrium on a time scale short compared to the time
scales of interest.

For the remainder of this paper we will take ��x , t� and
�c�x , t� to be generated by a Gaussian distribution with zero
mean. That is, 
��x , t��= 
�c�x , t��=0, and


��x,t���x�,t��� = kBT	�x − x��	�t − t�� , �23a�


�c�x,t��c�x�,t��� = kBT�2	�x − x��	�t − t�� . �23b�

We can use Eqs. �20� and �22� to determine the time de-
pendence of the decay of fluctuations in �near-�mean-field
systems. The scaling of � f�x� in Eq. �17� implies that the
cubic term in Eqs. �20� and �21� can be neglected. A straight-
forward calculation shows that the fluctuations decay expo-
nentially with characteristic times that diverge as �−1 in
model A �32� and R2�−2 in model B �32�. For the remainder
of this paper we will consider only model A.

III. PARISI-SOURLAS AND LIFETIME OF
FLUCTUATIONS

The Parisi-Sourlas approach �29,30� begins with the
Landau-Ginzburg equation. Because the noise ��x , t� in Eq.
�20� is Gaussian, the measure of the noise is �29,30�

P��� =

exp�− 
� dxdt�2�x,t�	
� 	� exp�− 
� dxdt�2�x,t�	 . �24�

We use Eq. �20� to replace ��x , t�, let h=0 for simplicity, and
express Eq. �24� as

P��� � J��,��exp�− 
� dxdt� ���x,t�
�t

+ MA

��− R2�2��x,t� + 2���x,t� + 4�3�x,t��	2� ,

�25�

where the Jacobian J�� ,�� of the transformation from � to �
is the determinant of the operator 	��x , t� /	��x , t�. Follow-
ing Parisi and Sourlas �29,30� we introduce the Grassman

variables �F�x , t� and �̄F�x , t�, which satisfy the algebra

�F
2�x,t� = �̄F

2�x,t� =� d�F�x,t� =� d�̄F�x,t� = 0, �26�

��̄F�x,t��F�x,t� + �F�x,t��̄F�x,t�� = 0, �27�

� �F�x,t�d�F�x,t� =� �̄F�x,t�d�̄F�x,t� = 1. �28�

Because the variables �F and �̄F anticommute, they are re-
ferred to as as fermions; ��x , t� is a boson. With this algebra
we can evaluate the Jacobian in Eq. �25� and write P��� as

P��,�F,�̄F�

=

exp�− 
�� dxdt�SB��,�F,�̄F� + SF��,�F,�̄F����
Z̄

,

�29�

where Z̄ is a normalization factor. The quantities SB and SF
are given by

SB��,�F,�̄F� =� dxdt� ���x,t�
�t

+ MA�− R2�2��x,t�

+ 2���x,t� + 4�3�x,t��	2

, �30�

SF��,�F,�̄F� =� dxdt�̄F�x,t�� �

�t
+ MA�− R2�2

+ 2� + 12�2�x,t��	�F�x,t� . �31�

We first consider SB�� ,�F , �̄F� in Eq. �30�. Among the
terms found by evaluating the square of the term in brackets
is the contribution

C��� = 2MA� dxdt
���x,t�

�t
�− R2�2��x,t�

+ 2���x,t� + 4�3�x,t�� , �32a�

=2MA� dx�
tI

tF

dt
�

�t
H„��x,t�… , �32b�

where H is given by Eq. �4� with h=0 and � is replaced by
��x , t�. The integral with respect to t gives

C��� = 2MA� dx�H„��x,tF�… − H„��x,tI�…� . �33�

Parisi and Sourlas assume that tF and tI can be found such
that C���=0 and show that with this assumption there is a
transformation that maps fermions and bosons into each
other and keeps P��� in Eq. �29� invariant. They refer to
such systems as supersymmetric. If a system is in equilib-
rium, such values of tI and tF can always be found �29,30�.

The supersymmetric form of P�� ,�F ,�F� is the proper
representation for investigating the morphology of the fluc-
tuations in the neighborhood of �near-�mean-field critical
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points. Near the latter the Hamiltonian in Eq. �4� can be
assumed to be Gaussian. This assumption implies that the
Landau-Ginzburg and Cahn-Hilliard-Cook equations can be
linearized for G�1. Because the � dependence in the fermi-

onic contribution to the action SF�� ,�F , �̄F� comes from the

nonlinear term in Eq. �20�, linearization makes the two con-

tributions to the action, SB�� ,�F , �̄F� and SF�� ,�F , �̄F�, in-
dependent. The integration over the fermionic variables
�F�x , t� and �̄F�x , t� can be done immediately resulting in the
measure

P��� =

exp�− 
� dxdt� ���x,t�
�t

�2

+ MA
2�− R2�2��x,t� + ���x,t��2�

ZS
, �34�

where ZS is the functional integral over � of the numerator in
Eq. �34�.

In equilibrium P�� f� should give the same probability of
a fluctuation as PB�� f� in Eq. �6�. To understand the relation
between these two probabilities we note that if PB�� f� is of
order e−1, then P�� f� should also be of order e−1. �This re-
quirement follows from the fact that we expect the probabil-
ity of variations from equilibrium to decay exponentially.� If
we take � f in Eq. �34� to describe an equilibrium fluctuation,
we expect that

� dxdt� �� f�x,t�
�t

�2

� A , �35�

where A is a constant independent of � f. Without loss of
generality we can set A=1. Because the spatial extent of � f
scales as the correlation length �, we have from simple scal-
ing arguments that dx in Eq. �35� scales as �d. If we use the
scaling of � f�x� in Eq. �17� and the scaling of � in Eq. �9a�,
Eq. �35� implies

� f
2�d

� f ,c
�

�Rd�−d/2

Rd�2−d/2� f ,c
� 1, �36�

or

� f ,c � �−1 �lifetime of fluctuations� . �37�

Equation �37� is the well-known scaling relation for critical
slowing down near mean-field critical points for model A
�34�.

If we require that 
dxdtMA
2�−R2�2� f�x , t�+�� f�x , t��2

�1 �see Eq. �34��, and use the scaling relations for �, � f, and
� f ,c and the same arguments used to obtain Eq. �36�, we find

MA
2�3Rd�−d/2�−1

Rd�2−d/2 � 1, �38�

which implies that MA is a constant of order 1.
These results are all expected. Note that there is a signifi-

cant conceptual difference between PB��� and P���. The
quantity PB��� is the fraction of independent members of an
ensemble in which ��x� is realized when a measurement is
made. Because the system is in equilibrium, we can divide a
time sequence of measurements into independent segments

that can be thought of as members of an ensemble. These
segments have a duration of the order of the decorrelation
time �or longer�, which is of order � f ,c near the critical point.
The quantity P��� gives the probability of a “path” in �
space. The paths of interest here are those whose probability
is the order of e−1. The path that results in an object with a
density difference from the background of magnitude � f
=�1/2 /G1/2, spatial extent of order �=R�−1/2, and a lifetime of
order �−1 is one such path.

Suppose that in equilibrium there is an object with spatial
extent �=R�−1/2 but a different density. In particular, suppose
there is an object of density of � fc��1/2 /G. For reasons that
we will discuss in Sec. V we will call this object a funda-
mental cluster. Because we have assumed equilibrium, we
have supersymmetry, and the action is the sum of two con-
tributions as in Eq. �34�. One term has the form as in Eq.
�35�,

SB,1 =� dxdt� ���x,t�
�t

�2

. �39�

We use reasoning similar to that following Eq. �35� and de-
fine the lifetime of the fundamental cluster to be given by
SB,1�1. If we substitute � fc��1/2 /G in Eq. �39�, we obtain

�fc
2 �d

�fc,c
�

�Rd�−d/2

�Rd�2−d/2�2�fc,c
� 1, �40�

or

�fc,c �
�−1

Rd�2−d/2 =
�−1

G
�lifetime of fundamental cluster� .

�41�

Equation �41� gives the lifetime of an object �the fundamen-
tal cluster� with density difference from the background
� fc��1/2 /G near a mean-field critical point.

The Boltzmann probability PB��� of finding such an ob-
ject is
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PB��fc� � exp�− 
� dx�R2

2
���fc�x��2 + ��fc

2 �x�	� .

�42�

If we use the scaling relations and set 
=1 for convenience,
we obtain

PB��fc� � e−1/Rd�2−d/2
. �43�

We see that PB�� fc�� P�� fc� despite the fact that the system
is in equilibrium. If we want the probability P�� fc� that there
is a path that consists of an object �the fundamental cluster�
with density � fc��1/2 /G, spatial extent ��R�−1/2, and life-
time �−1 rather than �−1 /G, then using Eq. �34� we have

P��fc� � e−1/Rd�2−d/2
, �44�

and PB�� fc�= P�� fc�. The implication of these results is that
the Boltzmann probability PB�� fc� requires a given time, that
is, the decorrelation time, which near a mean-field critical
point scales as �−1. The probability P�� fc�= PB�� fc� only if t
is chosen to be the decorrelation time � f ,c. In general, the
decorrelation time is not equal to the lifetime of the object of
interest. Note that the same arguments apply to the normal-
ization factors Z in Eq. �12� and ZS in Eq. �34�. In particular,
Z=ZS only if the time scale is chosen to be ���−1.

The mobility MA need not be a constant independent of �
�19�. For an object with density � fc��1/2 /G, the second
term in the action in Eq. �25� has the form

S2 = −� dxdtMA
2�R2���fc�x,t��2 + 2��fc�x,t��2. �45�

If we use the scaling relations and the lifetime given by
Eq. �41�, we obtain

MA
2�3Rd�−d/2�−1

�Rd�2−d/2�3 � 1, �46�

or

MA � Rd�2−d/2 � 1. �47�

MA in Eq. �47� depends on � in contrast to the mobility in
Eq. �38�. If we had considered a lifetime of �−1 rather than
�−1 /G in Eq. �41�, MA would be order unity.

In summary, the probabilities PB��� and P��� are equal if
the lifetime of an object is the order of �−1 near the mean-
field critical point. The lifetime of an object is obtained by
requiring that P����e−1. For objects with density �1/2 /G
and a lifetime of �−1 /G, the usual Boltzmann factor will not
give the probability of observing such an object.

IV. SPINODALS AND PSEUDOSPINODALS

In this section we discuss the meaning of spinodals and
pseudospinodals. We begin with the Hamiltonian in Eq. �4�
and the partition function in Eq. �5�. For G�1 the partition
function can be evaluated using saddle-point techniques, and
the free energy has the Landau-Ginzburg form �28�,

F =� dx�R2

2
����x��2 + ��2�x� + �4�x� − h��x�	 .

�48�

We set the gradient term equal to zero to obtain the free-
energy density

f = ��2 + �4 − h� . �49�

For ��0 there is only one real extremum of the free energy.
For ��0 there are three real extrema, one maximum and two
minima. For h=0 there are two states or values of � with the
same free energy. As �h� is increased, one of the minima
becomes higher than the other. The higher minimum corre-
sponds to the metastable state. Increasing �h� further eventu-
ally results in the disappearance of the metastable minimum.
This value of �h� is referred to as the spinodal field hs. It is
easy to see from Eq. �49� that at h=hs, f has an inflection
point at �=�s. If we set �for ��0� �f /��=�2f /��2=0, we
find

�s = ����/6�1/2 and hs = 4���3/2/�3�6� . �50�

We define the new variable �h,

�h = hs − h , �51�

and the new field, ��x�=��x�−�s+a, and write the mean-
field free energy as

F =� dx�R2

2
����x��2 + �h1/2�1�2�x� − �2�3�x�

+ �3�4�x�	 . �52�

The parameter a is chosen so that the term linear in ��x�
does not appear in F. The coefficients �i are functions of �
and independent of �h. �More precisely, the �i are a function
of �h, but as �h→0, the �i approach constants.� The free
energy in Eq. �52� is constructed so that the spinodal is at
�=0 and �h=0.

As for the critical point we assume that the fluctuations
associated with the spinodal can be described by a Gaussian-
Landau-Ginzburg-Wilson Hamiltonian with the partition
function

Z =� 	� exp�− 
� dx
R2

2
����x��2 + �h1/2�1�2�x�	 .

�53�

If we follow the same argument that we used at the critical
point in Sec. II, we obtain

� � R�h−1/4, �54a�

� � �h−1/2. �54b�

The fluctuations of the order-parameter density scale as

� f�x � �� �
�h1/2

�Rd�h3/2−d/4�1/2 =
�h1/2

Gs
1/2 , �54c�

where the Ginzburg parameter near the spinodal is
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Gs = Rd�h3/2−d/4. �55�

The system is mean field when Gs→� and near mean field
for Gs�1. A spinodal is only a true critical point in the
mean-field limit �7–9�. The distinction between a spinodal
�Gs→�� and a pseudospinodal �Gs�1� will be clear from
the context.

As discussed in Sec. II the scaling of the order- parameter
density and the density of the order-parameter fluctuations is
not the same in �near-�mean-field systems. For example, near
the critical point for ��0 we have from Eq. �49�,

− 2���� + 4�3 = 0. �56�

Equation �56� gives the order-parameter density at the
minima for ��0. As �� � →0 we have

� � ���1/2. �57�

Near the spinodal we use Eq. �52� and assume that ��x� is
independent of x. We have

f��� = �h1/2�1�2 − �2�3 + �3�4. �58�

As �h→0, � scales as

� � �h1/2 �order-parameter density near the spinodal� ,

�59�

where we have dropped the �4 term in Eq. �58�. Equation
�59� gives the scaling of the order-parameter density. As near
the critical point, the scaling of the order-parameter density
and the density of the fluctuations is not the same in mean-
field systems near the spinodal.

In the above discussion we kept the temperature fixed and
approached the spinodal by varying the magnetic field h.
Alternatively, we can keep the magnetic field fixed and ap-
proach the spinodal by varying the temperature. To obtain
the critical exponents in the temperature variable we return
to Eq. �49� and write � as

� =
T − Tc

Tc
=

T − Ts

Tc
+

Ts − Tc

Tc
= � + �s, �60�

where Ts is the spinodal temperature for a fixed field h=hs.
We write

� �2f

��2�
�=�s

= − 2� − 2��s� + 12�s
2 + 24�s� = 0. �61�

Because �s and �s are on the spinodal curve, we have

− 2��s� + 12�s
2 = 0, �62�

− 2��� + 24�s� = 0. �63�

From Eqs. �59� and �63� we have

�h1/2 � � , �64�

which implies from Eq. �54c� that as the spinodal is ap-
proached, the density of the order- parameter fluctuations
scales as

� f�x � �� �
�

�Rd�3−d/2�1/2 . �65a�

Similarly, the correlation length scales as

� � R�−1/2, �65b�

and the susceptiability diverges as

� � �−1. �65c�

Equations �54� and �65� give the critical exponents near the
spinodal in terms of �h and �.

We next discuss the application of the Parisi-Sourlas
method near the spinodal. If we construct a Landau-
Ginzburg equation from the free energy in Eq. �52�, we have

���x,t�
�t

= − MA,s�− R2�2��x,t� + 2�h1/2�1��x,t�

− 3�2�2�x,t� + 4�3�3�x,t�� + ��x,t� . �66�

Because the noise ��x , t� is Gaussian, we obtain an expres-
sion for the probability of a path ��x , t� of the form

Psp��� =

exp�− 
� dxdt� ���x,t�
�t

�2

+ MA
2�− R2�2��x,t� + 2�1�h1/2��x,t��2	
Zsp

, �67�

where we have used the linear form of the Landau-Ginzburg
equation and have assumed that the system is in metastable
equilibrium, which implies supersymmetry. Arguments simi-
lar to those used at the critical point show that the relaxation
or decorrelation time scales as

� � �h−1/2 �decorrelation time near the spinodal� .

�68�

All considerations of the difference between equilibrium
Boltzmann probabilities and probabilities of paths are the
same near spinodals and critical points.

We now consider the nature of the pseudospinodal. As
mentioned, for Gs�1 but finite, there is no spinodal. How-
ever, the system behaves as if it existed if Gs is sufficiently
large. In Fig. 1 we plot the inverse of the isothermal suscep-
tibility � found by a Monte Carlo simulation for a d=3 Ising
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model as a function of the applied magnetic field h for dif-
ferent values of R �7�. The temperature is taken to be 4Tc /9,
where Tc is the critical point temperature. The solid line is
the mean-field prediction for q→�, where q is the number
of spins that interact with a given spin �35�. Data was taken
only if the metastable state lived longer than 104 Monte
Carlo time steps per spin. For nearest-neighbor interactions
�q=6� the data stops at h�0.5 far from the spinodal value of
the field hs=1.43. As R and hence q is increased, the data
approaches the mean-field result and the spinodal can be
more closely approached. This result indicates that the larger
the value of R, the more the system behaves like there is an
underlying spinodal.

Another way to understand the nature of the pseudospin-
odal is to look at the behavior of the zeros of the partition
function as a function of R. The zeros of the partition func-
tion corresponding to the spinodal lie in the four-dimensional
complex magnetic-field temperature space for finite R �9�. As
R is increased, the zeros move toward the real �h ,T� plane
similar to the behavior of the zeros of the partition function
for Ising models in finite systems as the system size increases
�36,37�. The idea is that the pseudospinodal appears to be a
critical point if h is not too close to hs. What is meant by too
close can be estimated by the magnitude of the Ginzburg
parameter Gs in Eq. �55�. The value of �h where the spin-
odal concept fails can be made smaller by increasing R.
Hence, the theoretical arguments we made about the proper-
ties of fluctuations near the spinodal can be tested in systems
where the interaction range R is large, even though there is
no true spinodal in nature. However, such statements have to
be modified in systems with a phase transition that involves
spatial symmetry breaking such as the liquid-solid transition
�see Sec. VII�.

V. FLUCTUATION STRUCTURE

In this section we will use scaling arguments and the clus-
ter mapping discussed in the Appendix to determine the
structure of the fluctuations in �near-�mean-field systems.

Ising critical points and the spinodal in �near-�mean-field
systems have been mapped onto percolation transitions
�25,38�. For simplicity, we will assume that the interaction
between spins in is a constant up to a distance R and is zero
for distances greater than R. To map the critical point onto a
percolation transition we toss bonds randomly between pairs
of parallel spins that are separated by a distance less than or

equal to R with a probability pb=1−e−2
J̃, where J̃=4J /q
and J is the usual Ising coupling constant for R=1. This
mapping guarantees that the percolation transition occurs at
the critical point. For the spinodal the bond probability is
ps=1−e−4
J�1−��, where � is the density of spins in the stable-
state direction; that is, if the metastable state is in the up
direction, then � is the density of spins in the down direction.
The size of the clusters is determined by the number of spins
in a cluster. The details of this mapping are given in the
Appendix.

Equilibrium critical phenomena fluctuations in the order
parameter are defined as deviations from its mean value with
a linear dimension of the correlation length and a free-energy
cost of order 1. These properties were used in Sec. II to
calculate the density of fluctuations near a critical point. We
will see that the same properties apply near a spinodal.

The geometrical quantity that is isomorphic to the free
energy is −kBT times the mean number of clusters �see the
Appendix�. The free-energy density near the critical point
scales as �2, because the specific heat exponent �=0 for the
mean-field critical point �32,33�. Hence the free energy F���
in a correlation length volume scales as

F��� � �2�d = Rd�2−d/2, �69�

and the mean number of clusters in a correlation length vol-
ume scales as

n̄fc,c � Rd�2−d/2 = G . �70�

How are the clusters related to the fluctuations? In non-
mean-field systems such as the Ising model with R�1 and
d�4, the mean number of clusters in a correlation length
volume near the critical point scales as �2−��d�1. The iso-
morphism between the Ising model and percolation implies
that the pair distribution function ��2� is the same as the pair
connectedness function �c

�2�, which is the probability that two
spins a distance x apart belong to the same cluster. For x
��, �c

�2� is roughly a constant and equal to �cl
2 , where �cl is

the density of spins in the cluster. This density must be equal
to the density of a fluctuation that scales as �
 �see Eq. �9b��.
Hence, �cl scales as �
 in a non-mean-field system, and the
clusters are a statistical realization of the fluctuations
�38,39�.

For G�1 the number of clusters in a correlation length
volume near the critical point scales as G �see Eq. �70��,
which is much larger than unity. Are the clusters a statistical
realization of the fluctuations? To understand that the answer
is no, we note from Eq. �17� that the density of a critical

FIG. 1. The inverse susceptibility as a function of the magnetic
field h �from Ref. �7��. Note that as the number of neighbors q is
increased, the inverse susceptibility more closely follows a power
law. The inset shows the behavior of �kBT��−1 closer to the
pseudospinodal.
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phenomena fluctuation scales as � f�x���1/2 / �Rd�2−d/2�1/2. If
a single cluster were to correspond to a fluctuation, then the
density of spins in a correlation length volume would scale
as

G� f�x� = Rd�2−d/2 �1/2

�Rd�2−d/2�1/2 = �Rd�2−d/2�1/2�1/2. �71�

Because the mean-field limit corresponds to letting R→�
before �→0 �5�, Eq. �71� implies that the spin density is
infinite in the mean-field limit, which is impossible. Hence,
the density of the clusters must be much smaller than the
density of the fluctuations, and a fluctuation does not corre-
spond to a single cluster as it does in short-range systems.
We conclude that the clusters in �near-�mean-field systems
play a different role, and we will refer to the clusters in these
systems as fundamental clusters.

To understand the relation between the fundamental clus-
ters and the fluctuations in a �near-�mean-field system, we
again use the fact that the pair distribution function ��2� is
isomorphic to the pair connectedness function �c

�2�. Because
the latter is the probability that two sites a distance x apart
belong to the same cluster, we have

�c
�2��x � �� � pfc,c

pfc,c

Rd�2−d/2 , �72�

where pfc,c is the probability that the first site belongs to any
one of the Rd�2−d/2 clusters, and pfc,c /Rd�2−d/2 is equal to the
cluster density, which is the probability that another site be-
longs to the same cluster as the first.

Similarly, we have that

��2��x � �� � � f
2�x � �� � � �1/2

�Rd�2−d/2�1/2	2

. �73�

We have �c
�2��x���=��2��x���, and hence we have

pfc,c
2

Rd�2−d/2 = � �1/2

�Rd�2−d/2�1/2	2

, �74�

and pfc,c=�1/2. Hence, the density of spins in a fundamental
cluster is

�fc,c�x � �� �
pfc,c

Rd�2−d/2 =
�1/2

Rd�2−d/2 =
�1/2

G
. �75�

Because the density of the fundamental clusters is much
smaller than the density of the fluctuations for G�1, a fluc-
tuation must correspond to many fundamental clusters.

We can test the prediction for �fc,c�x� in Eq. �75� by de-
termining the dependence of mfc,c, the mean number of spins
in a fundamental cluster, on �. This dependence is given by

mfc,c � �fc,c�
d �

�1/2

Rd�2−d/2Rd�−d/2 = �−3/2. �76�

In Fig. 2 we plot mcl as a function of � for fixed R. The slope
of the log-log plot is consistent with the theoretical predic-
tion in Eq. �76�.

We now discuss the relation between the fundamental
clusters and the fluctuations in more detail. As discussed in
the Appendix the clusters are constructed to be independent.

Therefore a given cluster can “flip” independently of the
other clusters. There are Rd�2−d/2 clusters near the mean-field
critical point, half up and half down on average, by symme-
try. Because the clusters are independent, the mean number
of excess fundamental clusters in a given direction is deter-
mined by a random walk,

�̄fc,c � �Rd�2−d/2�1/2 = G1/2. �77�

More precisely, the distribution of the number of fundamen-

tal clusters in a fluctuation is a Gaussian peaked about �̄fc,c.
From this analysis we see that the density of a fluctuation

is the product of the density of fundamental clusters �Eq.
�75��, and the mean number of excess clusters �Eq. �77��,

� f�x � �� � �fc,c�̄fc,c �
�1/2

Rd�2−d/2 �Rd�2−d/2�1/2

=
�1/2

�Rd�2−d/2�1/2 =
�1/2

G1/2 , �78�

in agreement with Eq. �17�.
A similar analysis can be done near the spinodal, and we

will only summarize the results here. In this case there is an
infinite cluster that is a statistical realization of the meta-
stable state magnetization �23,24�. If we subtract this cluster
�40�, the results are similar to those near the mean-field criti-
cal point. The mean number of fundamental clusters in a
correlation length volume, half up and half down, is given by
�compare to Eq. �70��

n̄fc,s � Rd�h3/2−d/4 = Gs, �79�

and their density is �see Eq. �75��

FIG. 2. �Color online� The mean number of spins in a funda-
mental cluster with spatial extent � found in a Monte Carlo simu-
lation of the d=2 Ising model with R=20 near Tc as a function of �.
The linear dimension of the system is L=240. The slope is �−1.5 if
the data is fitted in the range �0.03 0.2�. Note the deviation of mcl

from the mean-field prediction near the mean-field critical point
where G is too small to apply mean-field arguments and where
finite size effects become important.
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�fc,s �
�h1/2

Rd�h3/2−d/4 =
�h1/2

Gs
. �80�

We see that a system is near-mean-field when the number of
fundamental clusters in a correlation length volume is large
�see Eq. �79��. As � ��h� is decreased for d�4 �critical
point� or d�6 �spinodal� for fixed R, G �Gs� decreases and
the system becomes less mean-field.

If we use the same random-walk argument as for Eq. �77�,
we find that the density of the order-parameter fluctuations
near the spinodal scales as

� f ,s�x � �� �
�h1/2

�Rd�h3/2−d/4�1/2 =
�h1/2

Gs
1/2 . �81�

Hyperscaling for simple critical points �two exponent
scaling� is satisfied for systems that are non-mean-field if
���h� is sufficiently small �32,33�. This connection suggests
that the magnitude of G�Gs� determines the existence of hy-
perscaling. If G�Gs� decreases, the clusters must coalesce
and additional length scales are introduced �41�. We now
show that the existence of one relevant or divergent length
scale is insufficient for the existence of hyperscaling if G
�1 because the number of fundamental clusters changes as
the critical point is approached. The assumption of one di-
vergent length scale leads to the following form for the sin-
gular part of the free-energy density near the critical point
�32,33�:

f��,h� =
1

�d f��yT�,�yhh� . �82�

If we differentiate f twice with respect to h and set h=0, we
find

� �2f��,h�
�h2 �

h=0
= � �2yh

�d

�2

���yh�2 f��yT�,�yhh��
h=0

. �83�

The left-hand side of Eq. �83� is the isothermal susceptibility
�. We now fix �yT� to be equal to one. Because f�1,h=0� is
not singular �32,33� and ���−1/yT, we have �2yh−d

=�−�2yh−d�/yT. Hence the exponent � that characterizes the di-
vergence of � near the critical point is given by

� =
2yh − d

yT
. �84�

By using a similar argument, we obtain


 =
d − yh

yT
. �85�

For mean-field Ising models or simple fluids 
=1/2 and �
=1. Hence yh=3d /4 and yT=d /2. For fixed R, �=R�−1/2, so
that yT=2 for all d �32,33� and not d /2. Hence for fixed R
two exponent scaling does not hold in the neighborhood of a
mean-field critical point. The same argument holds near the
spinodal.

In contrast, consider what happens for fixed G=Rd�2−d/2.
From Eqs. �17� and �18� we have

� � � �1/2

�Rd�2−d/2�1/2	2

Rd�−d/2. �86�

If we keep G=Rd�2−d/2 constant, then Rd�−d/2��−2. Therefore
the susceptibility ���−1 so �=1. Likewise from Eq. �78� the
density scales as �1/2 so 
=1/2. For G fixed, R�−1/2��−2/d so
that �=2/d and yT=d /2. Hyperscaling now holds and �
+2
=d�. Similar arguments hold near the spinodal if the
infinite cluster is removed.

In summary, we have shown that the relation between the
clusters and the fluctuations in �near-�mean-field systems is
more complex than in non-mean-field systems. In particular,
the individual clusters are not realizations of the fluctuations,
which instead are related to fluctuations of the number of
clusters. For this reason we refer to the clusters in �near-
�mean-field systems as fundamental clusters. The mean num-
ber of fundamental clusters in a correlation length volume is
proportional to the Ginzburg parameter G. The dependence
of G on � �Gs on �h� causes the breakdown of hyperscaling.

VI. LIFETIME OF THE FUNDAMENTAL CLUSTERS

In Sec. V we assumed a scaling form for the free energy.
Here we do a more detailed calculation using the Landau-
Ginzburg-Wilson Hamiltonian in the mean-field limit. Our
main result is the scaling dependence of the lifetime of the
fundamental clusters. We also recover the same scaling re-
sults for the free energy.

If we set h=0, scale all lengths with the correlation
length, and assume that ��x� scales as �1/2 near the critical
point, we obtain the Hamiltonian in Eq. �8�. If we assume
that �̃�y� is independent of y and restrict the integral to a
region the size of a correlation length volume, we have

H��� = Rd�2−d/2�±�̃2 + �̃4� , �87�

and the partition function becomes

Z��� = �
−�

�

d�̃e−
Rd�2−d/2�±�̃2+�̃4�. �88�

For G=Rd�2−d/2�1 we can do the integral in Eq. �88� using
saddle-point techniques. For ��0 the saddle points are at
�= ±1/�2, and we obtain

Z��� � e
Rd�2−d/2
, �89�

and hence the free energy is

− kBT ln Z��� = − Rd�2−d/2 �G � 1� . �90�

We have neglected the logarithmic corrections generated by
the steepest descent integral. Note the minus sign on the
right-hand side of Eq. �90�. For ��0 the saddle points are at
±i /�2 and the free energy is also proportional to −Rd�2−d/2.
Hence as argued in Sec. V and the Appendix we can use the
percolation mapping to show that the number of fundamental
clusters scales as Rd�2−d/2 near the critical point. As usual,
similar arguments can be used near the spinodal for Gs→�
and near the pseudospinodal for Gs�1.
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To determine the lifetime of the fundamental clusters, we
return to the Parisi-Sourlas method. At the spinodal we have
from Eq. �67�

� dxdt� ��

�t
�2

� 1. �91�

As in Sec. III the lifetime of a fundamental cluster is found
by requiring that

�fc,s
2 �d

�fc,s
�

��h1/2�2Rd�hd/4

�Rd�h3/2−d/4�2�fc,s
� 1, �92�

or

�fc,s �
�h−1/2

Rd�h3/2−d/4 �fundamental cluster lifetime

near the spinodal� . �93�

We see that near the critical point �G�1� and the pseudos-
pinodal �Gs�1�, the lifetime of the fundamental clusters is
considerably shorter than the lifetime �decorrelation time� of
a fluctuation near the critical point ��−1� and the spinodal
��h−1/2�.

To understand the relation between the lifetime of the
fundamental clusters and the lifetime of a critical phenomena
fluctuation recall that the clusters are independent. We con-
sider the fluctuations to be formed from the “vacuum” �zero
magnetization near the critical point and zero net magnetiza-
tion after the infinite cluster is subtracted near the spinodal�
by a random walk in the number of fundamental clusters. At
the critical point the density of the critical phenomena fluc-
tuations is given by Eq. �17�. Because the fluctuations arise
from a random walk in the number of fundamental clusters,
there must be a “walk” of �Rd�2−d/2�1/2 cluster flips �steps� in
the direction of the fluctuation to obtain a density of

� f�x� �
�1/2

Rd�2−d/2 �Rd�2−d/2�1/2 =
�1/2

�Rd�2−d/2�1/2 . �94�

The time needed for Rd�2−d/2 attempted cluster flips is

� f ,c �
�−1

Rd�2−d/2Rd�2−d/2 = �−1, �95�

in agreement with Eq. �37�. The same considerations near the
spinodal yield � f ,s��h−1/2 for the lifetime of a fluctuation, in
agreement with our earlier result for � f ,s in Eq. �68�.

In summary, we have argued that the fluctuations near a
mean-field critical point and a spinodal are not represented
by a single fundamental cluster. The relation between these
clusters and the fluctuations in �near-�mean-field systems is
qualitatively different than in systems that obey hyperscal-
ing. In the former the fluctuations are formed by a random
walk in the number of fundamental clusters that “flip” on a
time scale much shorter than the scale set by critical slowing
down. A summary of our notation and our main results so far
is given in Table I.

VII. CLUSTER STRUCTURE AND INSTABILITIES
IN SUPERCOOLED LIQUIDS

We begin our discussion of the consequences of the fluc-
tuation structure in �near-�mean-field systems by considering
the liquid-solid spinodal in supercooled fluids. To explain
the role of the structure of the fluctuations we first provide
some background. In 1951 Kirkwood �42� noted that ap-
proximate equations for the distribution functions in the liq-
uid state appeared to show an instability as the supercooled
liquid is quenched deeper. Kirkwood began with the first
equation of the static Born-Bogoliubov-Green-Kirkwood-
Yvon �BBGKY� hierarchy �43�,

TABLE I. Summary of our notation and some of the important scaling relations derived in the text. The spinodal can be approached by
reducing the magnetic-field difference �h for fixed temperature or by decreasing the temperature difference � for fixed magnetic field. The
two approaches are related by �h1/2��. The exponent z characterizes critical slowing down and is of order 2 for systems described by model
A �34�.

Quantity Mean-field critical point Spinodal Hyperscaling

Ginzburg parameter G=Rd�2−d/2 Gs=Rd�h3/2−d/4 G �Gs� fixed

Order parameter ���1/2 ���h1/2 ��


Fluctuations in order parameter
density

� f�x�����1/2 /G1/2 � f�x�����1/2 /Gs
1/2 ��


Lifetime of fluctuation � f ,c��−1 � f ,s��−1 ��−z/�

lifetime of fundamental
cluster

�fc,c��−1 /G �fc,s��−1 /Gs

Mean number of clusters in
correlation length volume

n̄fc,c�G n̄fc,s�Gs �1

Density of fundamental
cluster

�fc,c�x�����1/2 /G �fc,s�x�����1/2 /Gs

Mean number of excess
fundamental clusters

�̄fc,c�G1/2 �̄fc,s�Gs
1/2

STRUCTURE OF FLUCTUATIONS NEAR MEAN-FIELD PHYSICAL REVIEW E 75, 031114 �2007�

031114-11



− kBT�1��1��x1� =� dx2�1V�x12���2��x1,x2� , �96�

where ��1��x1� and ��2��x1 ,x2� are the one- and two-particle
distribution functions respectively, �1 denotes differentiation
with respect to the position of particle 1, and the interaction
potential V�x12� is assumed to be pairwise additive and
spherically symmetric. Suppose that the system is in the
liquid phase where ��1��x1� is a constant equal to �, and
��2��x1 ,x2� is a function of x12= �x1−x2� and is equal to
�2h�x12�=�2�1+g�x12��, where g�x12� is the pair correlation
function �43�. We substitute

��1��x1� = � + ��x1� �97�

into Eq. �96�, treat ��x1� as a small perturbation, and linear-
ize Eq. �96� to find

− kBT
�1��x1�

�
=� dx2�1V�x12�h�x12���x2� , �98�

where the spherical symmetry of V�x12� and h�x12� results in

� dx2�1V�x12�h�x12� = 0. �99�

We have also assumed that a possible instability in h�x12� is
higher order in �. If we define

q�x1 − x2� = �1V�x12�h�x12� , �100�

we see that there is an instability �42� if there is a nonzero
solution to

kBT�1��x1� + 
�� dx2q�x1 − x2���x2� = 0. �101�

Kirkwood analyzed Eq. �101� for the hard-sphere fluid and
found that there was an instability in d=3 �42�. However, he
ignored a possible instability in h�x12�, which is related by
the BBGKY �43� hierarchy to possible instabilities in all of
the distribution functions. Hence, it is not clear that the in-
stability Kirkwood found is real. A more careful analysis
�44� suggests that the instability vanishes when higher-order
terms are considered.

To investigate the existence of an instability and its rela-
tion to a possible spinodal, Grewe and Klein �45,46� inves-
tigated the properties of a simple fluid for which the interac-
tion potential has the Kac form �5� given in Eq. �1� with
VR=0 and

����x�� = �1 if ��x� � 1,

0 if ��x� � 1.
� �102�

In the mean-field limit �→0, it was shown that all distribu-
tion functions of order higher than two are completely speci-
fied by only the single particle and pair distribution functions
and that ��1��x1� in the limit �→0 satisfies the equation
�45,46�

��1��x1� = z exp�− 
� dx2���x12����1��x2�	 , �103�

where z=e−
� and � is the chemical potential. Similarly,
g��x12�� satisfies

g��x12�� = 
����x12�� − 
�� dx3g��x1 − x3�����x2 − x3�� ,

�104�

where all length scales are in units of �−1=R. Note that
g��x12�� is of order �d. The derivations of Eqs. �103� and
�104� are given in Refs. �45,46�.

From Eq. �104� the structure function S�k�, which is ob-
tained by taking the Fourier transform of g��x12��, is propor-
tional to

S�k� �
1

1 + 
��̂�k�
, �105�

where �̂�k� is the Fourier transform of ����x�� and k= �k�.
Note that the structure function is order 1 in the �→0 limit.

We can perform a stability analysis on Eq. �103� similar to
that done by Kirkwood on Eq. �96�. We substitute Eq. �97�
into Eq. �103� and linearize in ��x1� to obtain

��x1� = − 
�� dx2���x1 − x2����x2� , �106�

where � is the solution of �=z exp�−
�̂�0���, and �̂�0�
=
dx���x���0.

There is an instability only if there is a nonzero solution
to Eq. �106�. If we take the Fourier transform of Eq. �106�,
we can express the instability condition as

1 + 
��̂��k�� � 0, �107�

or �̂��k���0 for some value of �k�. This condition is satisfied
for the potential in Eq. �102�. Because ����x�� in Eq. �102�
has a Fourier transform that is bounded from below, there is
a value of 
� below which there is no instability. If k0= �k� is

the location of the global minimum of �̂��k���0, then the

system has no instability for 
��−1/�̂�k0�. We see from
Eq. �105� that the structure function S�k0� first diverges for
fixed � �as T is decreased� at the same value of the tempera-
ture T at which an instability first appears. The divergence of
S�k0� implies that the instability in the mean-field system is a
spinodal and is analogous to the divergence of the suscepti-
bility at the Ising spinodal.

In the mean-field limit no higher-order distribution func-
tions need to be considered and the results of Grewe and
Klein �45,46� are rigorous. The structure function S�k0� di-
verges as �T−Ts�−1 so that the critical exponent is the same
as the Ising spinodal if the temperature rather than the mag-
netic field is used to approach the spinodal in the Ising
model. The only difference is that S�k� diverges at k=0 in
Ising models and gases rather than at k0�0. The other criti-
cal exponents are also the same as for the Ising spinodal
�45,46�.
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We next discuss an important difference between mea-
surements of the spinodal exponents in Ising models and in
supercooled fluids. As we have discussed �see Fig. 1�, there
is no spinodal in an Ising model for R finite, but we see
spinodal-like behavior for R�1 if the system is not
quenched too deeply into the metastable state �7–9�. The
larger R, the more the pseudospinodal behaves like a true
spinodal.

In the supercooled liquid there is no direct evidence of a
spinodal or pseudospinodal from either experiments or simu-
lations. We will see that this lack of direct evidence is due to
the structure of the fluctuations in �near-�mean-field systems
and the crucial role of the fundamental clusters.

For the potential in Eq. �102� the system is a fluid for high
temperatures and/or low densities �45–47�. If the temperature
T is lowered at a fixed density, the liquid-solid instability is
encountered at the spinodal temperature Ts. If T is lowered
below Ts, the uniform density fluid phase becomes unstable
and a “clump” phase is formed �47�. Because we are inter-
ested in the nature of the spinodal, the behavior of the system
for T�Ts is not of interest here.

Unlike Ising or Potts models, there is no precise definition
of a cluster in a continuum system of particles. However, it is
reasonable to assume that the scaling behavior of the fluc-
tuations and fundamental clusters near the liquid-solid spin-
odal is the same as near the Ising spinodal. This assumption
is consistent with the fact that the Ising and spinodal expo-
nents for the system defined by Eq. �102� are the same. For
convenience, we will use temperature scaling near the liquid-
solid transition rather than the analog of magnetic-field scal-
ing. From Eqs. �93� and �64� the lifetime of the fundamental
clusters as �→0 scales as

�fc,s �
�−1

Rd�3−d/2 �lifetime of fundamental

cluster near spinodal� . �108�

Grewe and Klein �45,46� used the mean-field formalism
developed by Kac et al. �5�. In particular, the interaction
range R=�−1 is taken to infinity before the spinodal is ap-
proached, that is, before the limit �� �T−Ts� goes to zero.
Hence, in the mean-field limit there exists fundamental clus-
ters with probability of order one but zero lifetime �see the
discussion in Sec. III�. In experiments and simulations, the
converse is true. For example, consider a measurement of the
structure function S�k� in a simulation. The structure function
is obtained by computing

S�k� =
1

N���j

eik·xj	2� , �109�

where x j is the instantaneous position of particle j and 
¯�
denotes an ensemble average. Because a simulation can be
performed only on systems with finite R, the time of the
measurement, which is instantaneous, is much less than the
nonzero fundamental cluster lifetime in Eq. �108�. Therefore
the result of the simulations need not be consistent with the
mean-field predictions �45,46�. �The time scale of the mea-
surement does not refer to the time over which data is taken,

but to the time during which the probe �say a neutron� is in
contact with a fluctuation.�

Before we consider the behavior of S�k0� in supercooled
liquids, we discuss the measurement of S�k� near the Ising
spinodal. We will find that the measured behavior of
S�k=0� agrees with the mean-field predictions �35�. The ap-
plication of the scaling argument in Sec. V to the suscepti-
bility near the Ising spinodal gives �see Eqs. �18� and �81��

� � � f
2�d � � �h1/2

�Rd�h3/2−d/4�1/2	2

Rd�h−d/4 � �h−1/2.

�110�

Alternatively, we can calculate � directly from the funda-
mental clusters. The density of a fundamental cluster is given
in Eq. �80�. Hence, the isothermal susceptibility associated
with one fundamental cluster is �see Eq. �81��

�1fc � �fc,s
2 �d � � �h1/2

Rd�h3/2−d/4	2

Rd�h−d/4 �
�h−1/2

Rd�h3/2−d/4 .

�111�

Because the clusters are independent, the isothermal suscep-
tibility of the system is the sum of the individual cluster
isothermal susceptibilities. Because there are Rd�h3/2−d/4

clusters in a correlation length volume, �=�h−1/2, consistent
with Eq. �110�. Although there are clusters of both up and
down spins, each cluster has the same isothermal suscepti-
bility because the susceptibility is proportional to the square
of the spin density �32,33�.

Another way of obtaining the same result as in Eq. �110�
is to calculate the structure function S1fc�k� for one funda-
mental cluster from the Fourier transform of the connected-
ness function of the cluster. We can write �see Eq. �80��

S1fc,s�k� � � �h1/2

Rd�h3/2−d/4	2

	�k� . �112�

The delta function comes from integrating over the infinite
size of the spatially uniform cluster. For a cluster with the
spatial extent of the correlation length �, 	�k� in Eq. �112�
would be replaced by a function whose height is �d and
whose width is proportional to �−1.

The difference between the fundamental cluster lifetime
�fc,s in Eq. �93� and the lifetime of a fluctuation ��h−1/2

suggest the following picture. A fluctuation is a collection of
fundamental clusters that appear and disappear on the time
scale �fc,s. The lifetime of a fluctuation is much longer than a
fundamental cluster for Gs�1, which implies that the funda-
mental clusters come and go with different angular orienta-
tions but with their centers in roughly the same place for a
time of order �h−1/2, the lifetime of a fluctuation. If we make
a measurement on a time scale ��h−1/2, the number of up
and down fundamental clusters would be the same on aver-
age, and the measured structure function would show no cor-
relations between the spins.

Consider a measurement on a time scale tmeas such that
tmeas��fc,s and tmeas��h−1/2. Because the measurement time
is comparable to the lifetime of the fluctuation, the measure-
ment will see a spin density equal to the fluctuation density,
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which is generated by fluctuations in the number of funda-
mental clusters. That is, the individual fundamental clusters
cannot be distinguished, and

S�k� � � �h1/2

�Rd�h3/2−d/4�1/2	2

	�k� . �113�

If we replace 	�k� by �d, we obtain the same result as in Eq.
�110�, obtained by considering the fluctuations directly.

Now suppose that a measurement is made such that
tmeas��fc,s. In this case an external probe or a simulation
would see a set of order Rd�h3/2−d/4 frozen fundamental clus-
ters. To determine the structure function that would be mea-
sured, we need to add the cluster structure function in Eq.
�112� for the Rd�h3/2−d/4 frozen clusters. To do so we convert
the sum to an integral by using one of the factors of
1 /Rd�h3/2−d/4 in Eq. �112� to create an infinitesimal element
of solid angle d . �We ignore numerical factors because we
are interested only in the scaling properties.� In so doing we
are assuming that the Rd�h3/2−d/4 fundamental clusters over-
lap each other with random orientations. Hence the sum over
clusters becomes an integral over solid angle,

S��k�� � � d 
�h

Rd�h3/2−d/4	�k� . �114�

For d=3 we have in spherical polar coordinates

S�k� �
�h

R3�h3/2−3/4 � sin !d!d�
	�k�	�!�	���

k2 sin !
.

�115�

Hence

S�k� �
�h

R3�h3/2−3/4

	�k�
k2 . �116�

If we now replace 	�k� by � with k��−1, we obtain

S�k� �
�h

R3�h3/2−3/4�3 =
�h

R3�h3/2−3/4R3�h−3/4 = �h−1/2,

�117�

in agreement with Eq. �110�. The generalization to arbitrary
dimensions is straightforward. We conclude that we obtain
the same scaling dependence for the susceptibility �equal to
S�k=0��, independent of the relative order of magnitude of
the measurement time and consistent with simulations of the
Ising model �7�.

We now discuss the measurement of S�k� near the liquid-
solid spinodal. As stated, we assume that the fundamental
clusters in the supercooled liquid scale the same way as they
do in Ising models. Because the clusters are independent
�38�, the structure function of a single fundamental cluster
has to contain information about the symmetry of the insta-
bility. That is, a collection of independent clusters cannot
generate a symmetry that does not already exist in each clus-
ter. Because we are interested in the limit of stability of the
supercooled liquid and know that the instability occurs at
k0�0, the clusters must reflect this symmetry. Hence, we
will assume that the clusters have a symmetry reflected by

the wave vector k0 with arbitrary orientation. In analogy with
the Ising spinodal, we expect that the structure function
Sfc,s�k� of the fundamental clusters can be approximated near
the spinodal by

Sfc,s�k� � � �

Rd�3−d/2	2

	�k − k0� . �118�

We have used temperature variables rather than the chemical
potential, the analog of the magnetic field. There are other
peaks in Sfc,s�k� at �k��k0, but we will focus on Sfc,s�k0�, the
peak associated with the divergence as the liquid-solid spin-
odal is approached.

We first consider a measurement on a time scale such that
tmeas��fc,s, where �fc,s is given by Eq. �108�. As before we
need to sum over all orientations of the frozen clusters whose
centers are fixed. We convert this sum to an integral by ab-
sorbing one of the factors of 1 /Rd�3−d/4 in Eq. �118� to form
an infinitesimal. In this case we need to integrate over orien-
tations of the vector k0 keeping the magnitude k0 constant.
For d=3 we have

S�k� �
�2

R3�3−3/2

1

k0
2 � � d!d�	�k − k0�	�!�	��� .

�119�

The factor of sin ! in the numerator associated with the solid
angle and the sin ! in the denominator associated with the
delta function in spherical polar coordinates cancel. The in-
tegrals in Eq. �119� give

S�k� �
�2

R3�3−3/2

1

k0
2	�k − k0� . �120�

As for the Ising case we replace the delta function by the
correlation length ��R�−1/2. Hence, the structure function at
k=k0 scales as

S�k0� �
�2R�−1/2

R3�3−3/2 = R−2�0 �d = 3� . �121�

Equation �121� implies that there is either no divergence or
the divergence is logarithmic, which is consistent with the
fact that no direct evidence of a pseudospinodal has been
observed in simulations of simple fluids in d=3, despite the
indirect evidence that nucleation is influenced by a pseudos-
pinodal in deeply quenched Lennard-Jones liquids �16,48,49�
and in nickel �17�.

It is easy to show that S�k0� for arbitrary dimensions
scales as

S�k0� �
�2R�−1/2

Rd�3−d/2 = R−d+1�−3/2+d/2 � �−�̃. �122�

Equation �122� predicts that �̃=1 for d=1, �̃=1/2 for d=2,
and �̃=0 for d=3, in contrast to the mean-field result �=1
for all d �see Eq. �105��. Results consistent with the predic-
tions in Eq. �122� were found in d=1–3 for the potential in
Eq. �102� �50�.

If we could do a measurement on a time scale of the order
of the fluctuation lifetime �−1, we would see a smeared-out
density fluctuation that was radially symmetric and varied
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periodically in the radial direction. We expect that the domi-
nant periodicity would be characterized by the wave vector
k0 and that the divergent contribution to the structure func-
tion near the spinodal could be approximated for k�k0 by

Sf ,s�k� �
�2

Rd�3−d/2 � dxxd−1ei�k−k0�x. �123�

Note that we used the density of a fluctuation rather than the
cluster, which is appropriate for the time-averaged cluster
distribution. At k=k0 the structure function will be given by

Sf ,s�k0� �
�2

Rd�3−d/2Rd�−d/2 = �−1, �124�

consistent with the results of Refs. �45,46�.
In summary, the structure and finite lifetime of the funda-

mental clusters are responsible for the behavior of S�k� near
the liquid-solid spinodal. If the peak of S�k� is at k=0 as in
the Ising model, the fact that measurements are made on a
time scale short compared to the fundamental cluster lifetime
rather than a time scale much longer as required by mean-
field theory makes no difference to the measured value of the
exponent that characterizes the divergence. In contrast, if the
peak of S�k� is at k�0, the measurement time scale affects
the observed value of the exponent.

VIII. CLUSTER STRUCTURE AND NUCLEATION

In classical nucleation theory �19� the nucleating droplet
is assumed to be isolated, compact, and describable as a fluc-
tuation about a quasiequilibrium metastable state. Classical
nucleation occurs near the coexistence curve independent of
the range of interaction �51�. For systems with sufficiently
long-range interactions a quench near the pseudospinodal
can lead to nucleation being influenced by the critical-point
nature of the pseudospinodal, which implies that the surface
tension will vanish as the spinodal is approached. Near the
pseudospinodal the surface tension will be nonzero, nucle-
ation will occur with a very small surface tension �11�, and
the nucleating droplet is no longer compact as in classical
nucleation theory �10,11�. We refer to this form of nucleation
as spinodal nucleation.

An elegant way to treat nucleation theoretically was de-
veloped most fully by Langer �18,19� and adapted to spin-
odal nucleation by Klein and Unger �11,52�. The Hamil-
tonian in Eq. �4� is used to calculate the free energy F�
 ,h�
in the equilibrium state

F�
,h� = − kBT ln � 	�e−
H���, �125�

which can be analytically continued from the stable to the
metastable state �18�. The nucleating droplet is associated
with the solution of the Euler-Lagrange equation obtained
from the functional derivative of the Hamiltonian �18�,

− R2�2��x� − 2�����x� + 4�3�x� − h = 0. �126�

In Eq. �126� ��0; that is, the temperature T is below the
critical temperature. The dominant exponential part of the

nucleation probability is obtained by substituting the solution
to Eq. �126� into the expression for the imaginary part of the
analytically continued free energy. The details of this ap-
proach can be found in Ref. �18� and are outlined in Ref.
�19�.

Klein and Unger expanded the Hamiltonian in Eq. �4�
about the mean-field spinodal as in Eq. �52� and obtained a
Euler-Lagrange equation of the form �52�

− R2�2��x� + �1�h1/2��x� − �2�2�x� = 0, �127�

where �1 and �2 are constants for fixed �. It is straightfor-
ward to show that the solution to Eq. �127� must have the
form �11,52�

��x� = �h1/2f� x

R�h−1/4� , �128�

which implies that the difference in the order-parameter den-
sity between the interior of the droplet and the background is
��h1/2; this difference is vanishingly small for large R and
small �h. This small difference presents two problems: how
can we identify when and where the nucleating droplet oc-
curs and how can we determine its structure? In Ising models
these problems have been solved by mapping the spinodal
onto a percolation transition and using the relation between
the clusters and the nucleating droplet.

Because the density of the nucleating droplet over
the background is of the order of �h1/2, the density
of the fundamental clusters is of the order of
�h1/2 /Rd�h3/2−d/4 �Eq. �80��, and the density of a fluctuation
is �h1/2 / �Rd�h3/2−d/4�1/2. Hence the nucleating droplet is not
a fundamental cluster or a fluctuation described by the
Gaussian approximation. From the discussion in Sec. VI we
know that the fluctuations near a spinodal are generated by a
random walk of the number of fundamental clusters in the up
or down direction. A possible scenario might be that the
nucleating droplet is generated by a random walk in the
number of fundamental clusters that produces a region of
density �h1/2. From the discussion in Secs. V and VI such
a process would require a walk of distance Rd�h3/2−d/4

��Rd�h3/2−d/4�2 steps� and a time of ���h−1/2Rd�h3/2−d/4.
Because the nucleation time is the inverse of the probability
�18�, the nucleation time would be of the order of
exp�
Rd�h3/2−d/4�. Hence a random walk occurs too quickly
to account for the time needed to see nucleation.

A clue to the relation between the fundamental clusters
and the nucleating droplets is provided in Ref. �12� in which
nucleation was observed near the spinodal in a d=2 Ising
model with long-range interactions. The nucleating droplet
was identified using intervention, and it was found that the
number of fundamental clusters in a correlation length vol-
ume just prior to nucleation is of the order of Gs, implying
that Gs fundamental clusters with density �h1/2 /Gs

1/2 coa-
lesced into an object with a density on the order of �h1/2.

The results of Ref. �12� together with the random-walk
argument suggests the following picture of the relation be-
tween the fundamental clusters and the nucleating droplets.
While the system is in the metastable state, there are fluctua-
tions in the number of fundamental clusters. These fluctua-
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tions result in regions with order Gs=Rd�h3/2−d/4 fundamen-
tal clusters in excess of the background on a time scale
�Rd�h3/2−d/4�h−1/2. Because this time scale is much less
than the time scale for nucleation, which is of the order of
exp�
Rd�h3/2−d/4� �11�, the appearance of Gs clusters with a
linear spatial extent of the correlation length will occur ev-
erywhere in the system many times before the nucleation
event. In Fig. 3 we plot the number of fundamental clusters
the size of the correlation length in a region where we know
that nucleation will occur. Notice the number of time inter-
vals where the number of fundamental clusters is of the order
of Gs.

Because the time scale for nucleation is of the order of
exp�
Rd�h3/2−d/4� and Gs fundamental clusters coalesce at
nucleation, there must be a free-energy cost associated with
the coalescence that is of the order of Gs. We can estimate
this free-energy cost by noting that the coalescence of Gs
fundamental clusters change the density only infinitesimally.
This assumption is justified because the random walk is as-
sumed to generate a density in the stable phase direction of
the order of �h1/2 and the nucleating droplet has the same
density. Therefore the energy change due to coalescence is
negligible. The entropy cost can be estimated by noting that
there are Gs fundamental clusters before nucleation and one
nucleating droplet after coalescence. These considerations
imply that the entropy change is given by

�S � ln 2 − ln 2Rd�h3/2−d/4
� − Rd�h3/2−d/4 ln 2, �129�

because each cluster has two states, up and down. Because
the energy change is negligible, the free-energy change due
to coalescence is of the order of Gs�1. Hence the probabil-
ity of nucleation and hence the probability of coalescence is
�exp�−
�F��exp�−
Gs�, in agreement with Refs. �11,52�.

This discussion and the one in Sec. VII suggests that the
fundamental clusters are not only a mathematical construct,
but are real physical objects whose probability is not given
by the usual Boltzmann factor �see Sec. III�. This suggestion
will be given further credence by the discussion in the next
section.

IX. CLUSTERS AND MODELS OF EARTHQUAKE
FAULTS

In this section we discuss the relevance of the cluster
structure to our understanding of models of earthquake
faults. The original Burridge-Knopoff model consists of
blocks connected by linear springs to their nearest neighbors
with spring constant kc �53�. The blocks are also connected
to a loader plate by linear springs with spring constant kL,
and rest on a surface with a nonlinear velocity-weakening
stick-slip friction force.

A simulation is initiated by choosing the displacements of
the blocks at random. While the loader plate is fixed, we
determine the stress on each block �the force due to the
springs� and update its velocity and displacement according
to Newton’s equations of motion. We continue these updates
until all blocks are stuck. A block is “stuck” when its veloc-
ity is below a certain threshold and other criterion are met
�54–56�. We then add stress to all the blocks by moving the
loader plate to bring the block with the largest stress to fail-
ure. That is, when the stress on a block exceeds the static
coefficient of friction, the block “fails” and begins to slip.
This process insures that there is only one block that initiates
the failure sequence. An earthquake is comprised of all the
blocks that fail between plate updates.

The number ns of earthquakes with s blocks exhibits a
power-law dependence on s,

ns � s−x, �130�

with x�2 if the blocks are connected by only nearest-
neighbor springs �54–56�. However, the calculation of real-
istic stress transfer Green’s functions for real faults �57,58�
suggests that we should consider springs that connect further
neighbor blocks. The behavior of the generalized Burridge-
Knopoff model is more complicated and in the limit of long-
range stress transfer and a slow decrease of the velocity-
weakening friction force with increasing velocity, it has been
found in simulations that x�3/2 �56�.

To provide more insight into the behavior of the model
with long-range stress transfer we discuss a cellular automa-
ton �CA� version of the Burridge-Knopoff model introduced
by Rundle, Jackson, and Brown �59–61�, which considers
blocks and springs as in the Burridge-Knopoff model. A fail-
ure threshold "F and a residual stress "R is specified for each
block. For simplicity, we will take the "F and "R to be the
same for all blocks. The stress on a block is given by " j
=kL��−uj�+kc�i�ui−uj�, where � is the displacement of the
loader plate and uj is the displacement of block j from its
initial position. If " j �"F, we do nothing and proceed to the
next block. If " j �"F, we move the block a distance �u
where

�uj =
" j − "R

kL + qkc
, �131�

and q is the number of sites within the interaction range. If
the range of stress transfer is R, then q= �2R+1�2. Once the
system is quiescent, that is, " j �"F for all j, the plate is
updated as in the Burridge-Knopoff model.

FIG. 3. �Color online� The number of fundamental clusters in a
region the size of the correlation length where nucleation will occur
�see arrow�. Note the number of times where the number of funda-
mental clusters is of order Gs. The Monte Carlo simulation was
done for a d=2 Ising model with R=28, h=1.25, Gs=12.3, and
linear dimension L=560.
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The number of earthquakes with s failed blocks has a
power-law dependence as in Eq. �130� with x=3/2 in the
mean-field limit R→�. How does this scaling arise? A clue
is that the long-range stress transfer CA models with noise
added to the stress drop can be described by equilibrium
statistical mechanics �27,62�. It also has been shown that this
model can be described by a Langevin or Landau-Ginzburg
equation in the limit R→� �63�. The latter equation has the
same form as Eq. �52� �see Ref. �3��. These considerations
imply that the scaling behavior ns�s−3/2 in the long-range
CA models is identical for scaling purposes to scaling near
the Ising spinodal �3�.

To obtain the scaling exponent x, we use the fact that the
Ising spinodal can be described by a Fisher droplet model
�64� in which the system near a critical point can be de-
scribed by a collection of noninteracting droplets. Fisher as-
sumed that the distribution of the droplets scale as �64�

ñs �
e−�hs"̃

s� . �132�

From the cluster mapping near the spinodal discussed in the
Appendix, we know that there exists independent objects, the
fundamental clusters, which scale in a similar way. To calcu-
late the exponent � for the earthquake CA model, we need
only calculate the cluster scaling exponent for the Ising spin-
odal.

To obtain the exponent �, which we will relate to the
exponent x in Eq. �130�, we note that the Fisher droplet
model exponents are related to the spinodal exponents
through the first several moments of Eq. �132�. In particular,
the isothermal susceptibility � is given by the second mo-
ment of ñs,

� �� dss2e−�hs"̃

s� � �h−1/2, �133�

and the order-parameter density � �see the Appendix� is re-
lated to the first moment of ñs,

� �� dss
e−�hs"̃

s� � �h1/2. �134�

Here we have kept Gs constant and used the fact that hyper-
scaling holds. This constraint is appropriate for the scaling
events we are considering because these models self-
organize to run at a fixed distance from the spinodal with
Gs�3–5 �3�. We can assume that the exponential in the
integrals is approximately one until s"̃��h−1. Hence,

3 − �

"̃
=

1

2
, �135�

and

d
� − 2

"̃
=

1

2
. �136�

Equations �135� and �136� yield �=5/2, which apparently
differs from the measured value of x=3/2. However, the
exponents obtained by this reasoning assume that the cluster
distribution is obtained by tossing bonds between occupied

sites. In the earthquake case the clusters are grown from a
seed, the site that is brought to failure by a loader plate
update. Because for a cluster of size s there are s places that
could have been the seed, the number of such clusters is sns,
where ns is given in Eq. �130� �39�. Hence, �=x+1 and
hence x=3/2, in agreement with the simulations of models
with long-range stress transfer. The scaling form for ns with
x�2 for the usual Burridge-Knopoff model with short-range
interactions is not understood.

There are other properties of the distribution of earth-
quakes in the Rundle-Jackson-Brown CA model that can be
obtained from consideration of the clusters in Ising models
near spinodals. We refer the interested reader to Ref. �3�. The
relation between the CA and Burridge-Knopoff models for
long-range stress transfer is discussed in Refs. �65,66�.

X. SUMMARY AND CONCLUSIONS

We have shown that the structure of the clusters near
mean-field critical points and �pseudo�spinodals and its rela-
tion to thermal fluctuations is more complicated than the
corresponding relation in systems that are not mean field and
which obey hyperscaling. Moreover, these fundamental clus-
ters and their structure have physical consequences, which
implies that the clusters are not only convenient mathemati-
cal constructs.

For �near-�mean-field systems the thermal fluctuations are
generated by fluctuations in the number of fundamental clus-
ters. Because the clusters in �near-�mean-field systems play a
different role and appear to be real physical objects rather
than just mathematical constructs, we refer to them as fun-
damental clusters. The probability of finding a fundamental
cluster is not given by the Boltzmann factor because the
cluster lifetime is much less than the decorrelation time.
Their physical consequences are seen most clearly near the
pseudospinodal in supercooled liquids where the relation be-
tween the measurement time and the lifetime of the funda-
mental clusters yields predictions for the behavior of the
structure function that are confirmed by simulations on near-
mean-field systems and are contrary to mean-field theory.

In addition to the applications of the cluster structure we
have discussed, there are many other applications that have
shed light on physical processes. These applications include

�1� The elucidation of the early time structure of systems
undergoing spinodal decomposition and continuous ordering,
including the understanding of why the linear theory of
Cahn, Hilliard, and Cook �20–22� fails first at large momen-
tum transfer �23,24�, the fractal structure of the mass distri-
bution of early time spinodal decomposition �25�, and a
physical interpretation of the fermionic �Grassman� variables
associated with a supersymmetric representation of the early
stage continuous ordering �23,24,67�.

�2� The phase separation of polymer and solvent in the
presence of gelation �68�.

�3� Possible precursors to nucleation near the pseudospin-
odal �12�.

Future work includes the application of cluster methods to
the study of precursors to large earthquakes in the CA and
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Burridge-Knopoff models, the study of heterogeneous nucle-
ation near pseudospinodals, the investigation of fracture and
the merging of microcracks, and the study of the crossover
from the linear regime of spinodal decomposition and con-
tinuous ordering to nonlinear evolution.
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APPENDIX: PERCOLATION MAPPING

To obtain a deeper understanding of the structure of the
fluctuations near the mean-field critical point, we map the
Ising critical point �mean-field and non-mean-field� onto a
percolation transition for a properly chosen percolation
model �38�. We first describe the mapping introduced by
Kasteleyn and Fortuin �69� of the s-state Potts model onto
random bond percolation. The latter is defined on a lattice
where all the sites or vertices are occupied with probability
one, and the bonds are occupied with a probability pb. Clus-
ters are defined as a set of sites connected to each other by
bonds and not connected to any other sites in the lattice �39�.

The Hamiltonian for the s-state Potts model is

HP = − JP�
i,j

�	"i"j
− 1� − hP�	"i1

− 1� , �A1�

where "i specifies the state of site i, JP�0 is the coupling
constant, and hP is the Potts field; the Kronecker delta 	"i"j
�0 only when sites i and j within the interaction range are in
the same state. We first set hP=0 and write the Boltzmann
factor e−
HP as

e−
HP = �
ij

�	"i"j
+ e−
JP�1 − 	"i"j

��

= �
ij

��1 − e−
JP�	"i"j
+ e−
JP� . �A2�

We associate a bond with 	"i"j
=1 and the absence of a bond

with 	"i"j
=0. With this association the generating function

for the random bond percolation model is obtained by differ-
entiating the free energy for the s-state Potts model with
respect to s and then setting s equal to 1 �69�. There are
many subtle mathematical points in the Kasteleyn-Fortuin
proof of this relation, and we refer the reader to Ref. �69� and
the references therein for the details. Because it will be
needed to understand the structure of fluctuations, we dem-

onstrate how the connection between the Potts model and
percolation works.

The partition function ZP is given by

ZP = �
"

e−
HP, �A3�

and the free energy in the canonical ensemble is
FP�
 ,s�=−kBT ln ZP. If we differentiate −
FP�
 ,s� with re-
spect to s, we obtain

− 

�FP�
,s�

�s
= �

"

1

ZP

�e−
HP

�s
. �A4�

Setting s=1 results in HP=0 because there is only one Potts
state; hence ZP=sN=1 for s=1, where N is the number of
sites in the lattice. Therefore

− 
� �FP�
,s�
�s

�
s=1

= � �

�s
�
"

e−
HP�
s=1

. �A5�

The percolation generating function is the right-hand side
of Eq. �A5�. To understand this interpretation we consider
several terms in Eq. �A5�. We use Eq. �A2� for e−
HP and first
consider the term e−
JP in each of the factors in the product;
that is, we include no terms with 	"i"j

. For a lattice with c
=qN /2 total possible bonds, we find a contribution to
FP�
 ,s� of the form sNe−
JPcN. By differentiating with re-
spect to s and setting s=1, we obtain the contribution to the
generating function Gf,

Gf ,1 = Ne−
JPcN. �A6�

Because there are N sites and cN bonds, Gf ,1 can be inter-
preted as the mean number of single-site clusters. That is,
e−
JPcN is the probability that there are no bonds present.

We now consider a term from Eq. �A2� that includes only
one delta function, which we take to be 	"1"2

. The contribu-
tion to Gf has the form

Gf ,2�p� = �1 − e−
JP�se−
JP�cN−1�sN−2 = pb�1 − pb�cN−1sN−1,

�A7�

where we have associated the bond probability pb with
1−e−
JP. Differentiating with respect to s and setting s=1
gives N−1 for the number of clusters times the probability of
such a configuration. There are N−2 one-site clusters and
one two-site cluster for a particular bond. The number of
ways we can choose one bond is cN, so that the first two
contributions to �F�
 ,s� /�s are

Gf ,1�p� + Gf ,2�p� = N�1 − pb�cN + �N − 1�cNpb�1 − pb�cN−1.

�A8�

If we continue in this manner, we would find that the terms
we obtain are the number of clusters in a given configuration.
The complete enumeration of the configurations will lead to
an expression for the mean number of clusters as a function
of pb. Hence, the mean number of clusters can be written as

Gf�p� = �
k


nk� , �A9�

where �nk� is the mean number of clusters with k sites.
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To obtain the full generating function for random bond
percolation, we must include the field hP in the calculation of
the free energy. We write

e−
HP = �
ij

��1 − e−
JP�	"i"j
+ e−
JP�

��
l

��1 − e−
hP�	"l1
+ e−
hP� . �A10�

The terms in the expansion of Eq. �A10� represent sets of
connected sites �clusters� generated by 	"i"j

. Terms of the
form 	"k1, where the index 1 labels one of the s possible
states of a site, give no contribution to the derivative of the
partition function with respect to s because the 	"k1 term
fixes all spins in a cluster to the Potts state labeled as 1.
Hence there is no s dependence and no factor of s in the
product, which equals s raised to the power of the number of
clusters. From Eq. �A10� all clusters with a nonzero weight
after differentiation with respect to s will have a field depen-
dence of the form e−nhP, where n is the number of sites in the
cluster. If we resum as in Eq. �A8�, we obtain �69�

Gf�pb,hP� = �
k


nk�e−k
hP. �A11�

The reader might want to work out the generating function
for small lattices to see how the sum in Eq. �A11� arises.

To investigate the mapping of the percolation model onto
the Ising model, we consider the dilute s-state Potts �70�
model with the Hamiltonian


HDP = − 
JP�
ij

�	"i"j
− 1�ninj − 
hP�

i

�	"i1
− 1�ni

− KLG�
ij

ninj + ��
i

ni, �A12�

where ni=1 denotes that a particle �spin� occupies site i and
ni=0 denotes an empty site. Hence there is a Potts interaction
between occupied �ni=1� sites. The quantity


HLG = − KLG�
ij

ninj + ��
i

ni �A13�

is the Hamiltonian for the lattice gas formulation of the Ising
model �71�, with KLG the �dimensionless� coupling constant
and � the chemical potential. In terms of the parameters in
the Ising Hamiltonian HI,


HI = − KI�
ij

sisj + 
hI�
i

si, �A14�

with si= ±1, we have �71�

KLG = 4KI and � = 
hI + 2cKI . �A15�

Differentiating the free energy constructed from HDP with
respect to s and setting s=1 results in the generating function
for correlated site random bond percolation for which occu-
pied sites are distributed according to the lattice gas Hamil-
tonian in Eq. �A13� and bonds are thrown randomly with a
probability pb between pairs of occupied sites. To understand
this connection we note that

ZDP = �
"i"jninj

e−
HDP, �A16�

and

−� �kBT ln ZDP

�s
�

s=1
=

�

�s�� �
�"i��ni�

e�ij
JP�	"i" j
−1�ninj+
hP�i�	"i1

−1�nie−
HDP��
s=1

ZDP
. �A17�

If we write

exp�
JP�	"i"j
− 1�ninj� = ��1 − e−
JP�	"i"j

+ e−
JP�ninj

+ �1 − ninj� , �A18a�

and

exp�
hP�
i

�	"i1
− 1�ni	 = �1 − e−
hP�	"i1

ni + e−
hPni

+ �1 − ni� , �A18b�

we can use the same arguments that we gave for random
percolation to show that the expression in Eq. �A17� leads to
the generating function for correlated site random bond per-
colation where the occupied sites are distributed according to
the lattice gas Boltzmann factor constructed from the Hamil-

tonian in Eq. �A13� �70�. Note that for this model the sum
over the s states of the Potts spin is one for all s if site i is
empty.

We now consider the Hamiltonian HDP in Eq. �A12�. We
set hP=hI=0, and hence �=2qKI=qKLG/2 from Eq. �A15�
and let JP=KLG/2 in Eq. �A12�. Then HDP becomes


HDP = −
KLG

2 �
ij

�	"i"j
− 1�ninj − KLG�

ij

ninj

+
KLG

2 �
ij

�ni + nj� . �A19�

Suppose that for a pair of sites within the interaction range,
either both sites are empty or both sites are filled, but the
spins are in the same Potts state. When both sites are empty,
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there is only one Potts configuration. When both sites are
occupied and in the same Potts state, there are s configura-
tions. Hence there are s+1 configurations with HDP=0. Now
consider the case where either one site is occupied and one
empty or both sites are occupied, but the spins are in differ-
ent Potts states. In this case the contribution of this pair to
HDP is KLG/2, and the number of ways this combination can
be obtained is �s+1�s. These considerations imply that the
dilute s-state Potts model at JP=KLG/2 is equivalent to a
pure �s+1�-state Potts model with the Hamiltonian


HP,�s+1� = −
KLG

2
�	"i"j

− 1� , �A20�

where "i can be in s+1 states. The s=2 Potts model is the
lattice gas model in Eq. �A12� with �=cKLG/2. That is, for

JP=KLG/2=2KI and hI=hP=0, the Hamiltonian of the di-
lute s-state Potts model is the same as the Hamiltonian of the
�s+1�-state pure Potts model. In the limit s→1, the
�s+1�-state pure Potts model is the lattice gas model.

In this formulation we can write the Boltzmann factor as

e−
HP,�s+1� = �
ij

��1 − e−KLG/2�	"i"j
+ e−KLG/2� �A21�

=e−KLGcN/2�
ij
�1 − e−KLG/2

e−KLG/2 	"i"j
+ 1	 .

�A22�

Clearly, the singular behavior of the free energy comes from
the terms in Eq. �A22� contained in the product over lattice
sites. This product has the form of �ij�f ij +1�, where we as-
sociate a graph or cluster with a product of the f ij summed
over Potts states. These clusters are the same as the percola-
tion clusters because the sites are connected by 	"i"j

bonds.
The linked cluster theorem �72,73� states that the singular
part of the free energy FP,sing is the sum over all connected
graphs in the thermodynamic limit. Connected graphs are
those in which all points or vertices of the graph are con-
nected by an f ij bond. Because the graphs are connected, the
sum over Potts states results in a factor of s, independent of
the size or structure of the graph. Therefore the derivative of
FP,sing with respect to s results in the same sum without the
overall factor of s. Thus

2�dFP,sing

ds
�

s=1
= �FP,sing�s=1, �A23�

which implies that the percolation transition and the Ising
critical point occur at the same temperature and have the
same critical exponents. The amplitudes of the singular
quantities differ by a factor of two. If instead of the Hamil-
tonian in Eq. �A12�, which defines clusters as consisting of
only occupied sites, we add a term to the Hamiltonian of the
form


HDP,empty = − 
JP�
ij

�	"i"j
− 1��1 − ni��1 − nj�

− KLG�
ij

�1 − ni��1 − nj� + ���
i

�1 − ni� ,

�A24�

we can define clusters between “empty” sites. In this way the
singular part of the free energy will be identical to the mean
number of clusters for s→1 and hP=0. The same result was
obtained using renormalization group techniques in Ref.
�38�. The mapping of the Ising model onto a properly chosen
percolation model is not restricted to nearest-neighbor inter-
actions. If the Ising interaction has a range R, we need only
to choose the Potts interaction to also have a range R, which
means that the bond between sites is randomly placed be-
tween any two spins within the interaction range.

We now consider the mapping of a thermal problem onto
a percolation model near the spinodal. This mapping will
require a slightly different approach. We again begin with the
dilute s-state Potts model. The Hamiltonian is the sum of
HDP and HLG from Eqs. �A12� and �A13�. This Hamiltonian
can be put into a continuum form using the Gaussian trans-
formation �31,74�. Because we are interested in the mean-
field limit, the Landau-Ginzburg-Wilson Hamiltonian is the
free energy. We have from Refs. �25,74�,

FDP�#,�� =� dx�1

2
s�s − 1�„R � #�x�…2 − r1s�s − 1�#2�x�

− hP�s − 1�#�x� +
w1

4!
s�s − 1��s − 2��s − 3�#3�x�

+
w2

2
s�s − 1�#2�x���x�	 + F��� , �A25�

where F��� is the free energy in Eq. �48�. The constants r1,
w1, w2, and � in Eq. �48� can be written as functions of J,
KLG, and c. The global percolation order parameter # is the
probability that a spin in the stable phase direction belongs to
the infinite cluster of occupied sites. As for a discrete system,
the percolation model is obtained by differentiating FDP with
respect to s and setting s=1 �74�.

To map the thermal problem near the spinodal onto
the percolation problem, we rewrite Eq. �48� as in Eq. �52�
with �h=hs−hI. We equate the functional derivative
of �dFDP�# ,�� /ds�s=1=FP with respect to #�x� to the func-
tional derivative of F��� with respect to �. That is,

	FP

	#
= − R2�2#�x� − 2r1#�x� +

w1

3
#2�x� + w2#�x���x� − hP,

�A26�

and

	F���
	�

= − R2�2��x� + 2�1�h1/2��x� − 3�2�2�x� + 4�3�3�x�

�A27�

must be equal. This condition implies that −2�r1−
w2

2 �s
�#

+
w1

3 #2−hP must be the same as 2�1�h1/2�−3�2�2. We
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dropped the �3 term in the Euler-Lagrange equation because
���h1/2�1 as shown in Secs. VI and VII.

At the spinodal ��h=0� we identify # with −� and require
that hP=0, w1 /3=−3�2, and r1=w2��x� /2. With these
equalities the solutions of Eqs. �A26� and �A27� with
	FP /	#�x�=	F��� /	��x�=0 are identical. If we write the
parameters in Eqs. �A26� and �A27� in terms of the param-
eters JP, KLG, and c of HDP in Eqs. �A12� and �A13�, we
obtain


JP = 2KI�1 − �� , �A28�

where the density �= �1+m� /2 and � is proportional to m,
the magnetization per spin. Because we are interested in the
coincidence of the spinodal with a percolation transition, we
can set ��x�=�s, the value of the order parameter at the
spinodal.

To define the bond probability in terms of a physically
meaningful quantity, we need to obtain the proportionality
factor between �s and ms, the value of the magnetization at
the spinodal. To do so we use the relation between the Ising
model and the �4 theory generated by the Hubbard-
Stratonovich transformation �31�. In particular, the value of
�s is �74�

�s = ±
��cKI − 1�c�1/2

c2KI
. �A29�

When T→0 or equivalently KI→�, ms→1 as can be seen
by noting that the magnetic field is divided by T in the Bolt-
zmann factor. Because �s→1/cKI

1/2 as KI→�, we have

ms = cKI
1/2�s, �A30�

so that ms→1 as KI→�. If we use Eq. �A30�, we obtain the
expression for the bond probability that maps the percolation
model onto the spinodal

pb = 1 − e−
JP, �A31�

where JP is given in Eq. �A28�. The validity of this mapping
was demonstrated numerically in Refs. �10,12,75�.

The interpretation of this mapping is that the spinodal
curve is the locus of a set of percolation transitions. If the
spinodal curve is approached with h�0, there is a transition
to a spanning cluster in the stable phase direction at the spin-
odal. We stress that this result is correct only in the mean-
field limit Gs→�.

The various mappings we have discussed imply that the
free energy of the lattice gas model is isomorphic to the
generating function for correlated site random bond percola-
tion. For hP=hI=0, the generating function is the mean num-
ber of clusters.
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