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We investigate the critical behavior of a model with two coupled critical densities, one of which is diffusive.
The model simulates the propagation of an epidemic process in a population, which uses the underlying lattice
to leave a track of the recent disease history. We determine the critical density of the population above which
the system reaches an active stationary state with a finite density of active particles. We also perform a scaling
analysis to determine the order parameter, the correlation length, and critical relaxation exponents. We show
that the model does not belong to the usual directed percolation universality class and is compatible with the
class of directed percolation with diffusive and conserved fields.
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I. INTRODUCTION

The universal scaling behavior is an interesting character-
istic of certain physical phenomena, most of the models be-
ing classified in terms of their collective behavior. Scaling
phenomena are often observed in nonequilibrium phase tran-
sitions �1�. Nonequilibrium systems may be divided in two
major sets: Those with a Hermitian Hamiltonian, whose sta-
tionary states are related to the Gibbs-Boltzmann distribu-
tion; and those without a Hermitian Hamiltonian defined by
transition rates, which do not preserve time-reversal symme-
try. The former systems are dynamical extensions of static
universality classes, established in equilibrium. Nevertheless,
there are systems not related with equilibrium models, for
example, Markovian processes in a network of interacting
particles �2�, such as the reaction-diffusion models, which
exhibit a second order phase transition between an absorbing
or vacuum state, where the order parameter is null, and an
active stationary state �3�. In high dimensions, where fluc-
tuations can be neglected, a mean field approximation by a
set of ordinary differential equations supplies accurate re-
sults. However, stochastic microscopic models, defined in
one-dimensional lattices, give better results for low-
dimensional diffusion-limited reactions. For a large class of
low-dimensional nonequilibrium kinetic lattice models, the
density fluctuations modify the system strongly, in order to
invalidate the mean field approach �4�. Of special interest in
our work is the directed percolation �DP� universality class,
which was shown to adjust well to a large class of models
presenting dynamic transitions to a single absorbing state �5�.
This class was introduced in 1957 by Broadbent and Ham-
mersley �6�, and is an anisotropic percolation with a pre-
ferred direction. If the direction is the time, we observe a
spreading process of an agent that is not allowed to have a
spontaneous source, leading to the existence of a vacuum
state �or absorbing state� from which there is no escape. The
system presents a phase transition in the one-dimensional
case, nevertheless if the preferred direction is not the time,
the dynamics must be at least bidimensional. Some perturba-
tions are able to drive the absorbing state phase transition out
the universality class of directed percolation as, for example,
the presence of symmetric absorbing states �1,7� or a coupled
diffusive field �1,8�.

Closely related to the concept of directed percolation is
the concept of contact process, which is to absorbing-state
transitions what the Ising model is to equilibrium critical
phenomena �4�. The contact process was introduced as a
model for epidemiologic processes, or, in a general way, for
competitions between two elementary processes in a spa-
tially distributed population. Such processes may involve
self-replication and spontaneous annihilation of their entities,
for example a Markov process in which each site of a lattice
presents two possible states, labeled active and inactive. The
inactive site becomes active with a certain rate if the sites in
the neighborhood are also in the active state. Since the active
state is not allowed to appear spontaneously, the vacuum
�inactive� state is an absorbing one. The active state has a
finite lifetime. If the lifetime is too short the system is driven
to an absorbing state containing only inactive sites. The sta-
tionary active state is reached above a critical lifetime and
critical density.

In previous works, some of the authors studied the propa-
gation of an epidemic process in a population of diffusive
individuals, modeled by a contactlike reaction-diffusion de-
cay process of two species �9� and a process mediated by a
density of diffusive individuals which can infect a static
population �10�. The latter is a suitable model that mimics
the spreading of some tropical diseases, such as malaria. In
both works the total density of individuals is the appropriate
control parameter. As the density increases, the stationary
state presents a transition from the absorbing to the active
state. In �10� it was found that the dynamic transition of the
considered model does not belong to the DP class, in agree-
ment with the fact that particle diffusion is an important
mechanism that can influence the critical behavior of absorb-
ing phase transitions �11,12�. A pair-contact process with dif-
fusion has been shown to describe the roughening transition
of a solid-on-solid model with deposition of dimers and sur-
face diffusion �13�. One-dimensional �1D� simulations of DP
coupled to a conserved and diffusive field are not in agree-
ment with those obtained from numerical studies of the
Langevin equation �14�. This feature indicates that the trun-
cation of the full action needed to arrive at the corresponding
Langevin equation is not legitimate in this case. The difficult
in writing down Langevin equations for multispecies
reaction-diffusion models was recently discussed within the
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coherent state path integral formalism �15�. It has also been
recently shown that in the triplet-creation model the critical
exponents change continuously with the diffusion probability
pointing out to a discontinuous transition for high enough
diffusion �16�.

In this paper we study a model with critical coupled den-
sities one of which is diffusive. In the epidemiological pic-
ture, the model mimics a disease that possesses a specific
�localized� focus, for example, illnesses transmitted by ex-
crements of animals. The model considers a lattice with L
sites, with N individuals randomly distributed among the
sites. The individuals have two possible states, namely the
active or infected state �whose population we denote Pa� and
the inactive, or noninfected state �denoted Pi�. They are free
to diffuse in the sites of the lattice. A site becomes infective
with the presence of an infected individual. Individual-
individual �or site-site� contamination is not allowed. A finite
lifetime is considered for the active state of an individual or
a site. They become inactive with a constant rate. In this way
the infected individuals mark the track followed during its
last steps, spreading the contamination.

The system presents a dynamical phase transition. For
low density of individuals, the system converges to the ab-
sorbing state with the entire population in the inactive state.
For higher densities, the stationary �or rather the quasista-
tionary� state has a finite fraction of infected individuals.
Finite-size and short-time dynamic scaling relations were
used to determine the critical density of individuals and the
critical exponents characterizing the behavior near the criti-
cal point. We found evidences that the model does not belong
to the directed percolation class. The results are compatible
with the universality class of directed percolation coupled to
a conserved diffusive field for the particular case of equal
diffusive constants.

The paper is organized as follows. Section II presents our
model and discusses the mean-field behavior. In Sec. III we
present our results from simulations in a 1D lattice for which
fluctuations are relevant. Finally, in Sec. V we summarize
and discuss our main results.

II. THE CONTACT PROCESS WITH COUPLED
DIFFUSIVE AND NONDIFFUSIVE DENSITIES

We consider a model of interacting species. One of the
species corresponds to the individuals of a population that
can be in either the inactive �noninfected� state Pi or in the
active �infected� state Pa. They are free to diffuse in the
lattice. The sites on the lattice also assume two possible
states: active or inactive. The presence of at least one in-
fected individual in a given site turns it infective. There is no
direct contamination from individual to individual or from
site to site. Although, an inactive individual becomes imme-
diately active whenever it occupies the same site of another
active individual, in most of the cases it is activated when
visiting a site that was contaminated at a previous time. We
consider a finite lifetime for the active state for both the
individuals and the sites. Therefore, they become inactive
with a constant rate.

The reaction-rate equations that capture the essence of the
model are given by

Pa + Vi → Pa + Va at rate k4,

Pi + Va → Pa + Va at rate k2,

Pa → Pi at rate k3,

Va → Vi at rate k1, �1�

where Vi �Va� stands for inactive �active� vector sites. Disre-
garding density fluctuations, the mean-field approach for the
rate equations would be given by

�̇ = − k1� + k2�1 − ��� ,

�̇ = − k3� + k4��� − �� , �2�

where � denotes the density of active sites, � the density of
infected individuals, and � the total density of individuals.
The constants k1 and k3 are the recovering rates, while k2 and
k4 represent the interaction between the populations and pro-
mote the possible survival of the density of active particles.
From Eq. �2� the fixed points obtained are

�* = �* = 0,

�* =
�k2k4 − k1k3

k4�k2� + k1�
, �* =

�k2k4 − k1k3

k2�k3 + k4�
. �3�

From Eq. �3� we calculate the mean-field critical density
to be �c=k1k3 /k2k4. Above this critical density a stationary
state with a nonzero fraction of infected individuals exists. It
is straightforward to show that Eq. �2� presents a transcritical
bifurcation at �=�c �the origin loses its stability� which im-
plies ����1/ t at the critical point �17�. For low dimen-
sional systems this is not the observed behavior once density
fluctuations become relevant. In such case, lattice models
gives a better description of the critical behavior.

III. SIMULATIONS IN 1D

We will concentrate in the critical behavior of the present
model in 1D where fluctuations are predominant. In our
simulations the initial state of all sites is the inactive state.
We randomly distribute a given number of individuals in the
lattice. Their states are also randomly chosen. The dynamics
of the model takes place in the following way: The sites with
at least one infected individual become itself infective. Then
all noninfected individuals in an active site become them-
selves infected. The activity removal step takes place by al-
lowing all infected individuals and infective sites to become
inactive with their given decay rates. Afterwards, all the in-
dividuals diffuse in the lattice with equal probability in both
directions. One lattice sweep is taken as the unit of time.

A. Finite-size scaling

In the following simulations, we will consider a particular
set of reaction rates given by k1=k3=1/2, k2=k4=1. Given
initially Pa infected and Pi noninfected individuals randomly
distributed in the lattice, we measure the average fraction of
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active individuals �= �Pa� / �Pa+ Pi� in the stationary state
�the order parameter density� as a function of the total popu-
lation density �= �Pa+ Pi� /L. We do not impose any restric-
tion to the site occupancy. Therefore, both situations of dilute
���1� and dense ���1� populations can be achieved within
the same simulation scheme. We considered 104L lattice
sweeps as the time needed for the stationary regime to take
place and the results shown are averages over 9.104L states
in the statistically stationary regime. The largest sizes were
averaged over longer runs in order to overcome the increas-
ing fluctuations at the vicinity of the critical point. Further-
more, whenever the system becomes trapped in the vacuum
state we replace a randomly chosen noninfected individual
by an infected one. In such a way the vacuum state is re-
placed by a reflecting boundary �9,18�. This procedure is
convenient to compute stationary state properties and is un-
necessary for the analysis of the short-time dynamics �critical
relaxation dynamics�. Figure 1 presents the results for vari-
ous lattice sizes. The observed growth at the vicinity of �
→0 reflects the fact that the very few particles present in this
limit are constantly changing from the active to the inactive
state and therefore ���→0�→1/2. At finite but low densi-
ties the state of the system frequently visits the reflective
vacuum state. As L→� we clearly note a transition from the
vacuum to the active state as the density � increases. To
determine the critical density, we measured the relative fluc-
tuation on the number of infected individuals, namely

UL��� =
�Pa

2�
�Pa�2 − 1,

which is expected to be independent of the lattice size at the
critical state �19�. Figure 2 shows UL��� for various lattice
sizes. Notice that the crossing points of all curves depict
almost no spread which indicates that corrections to scaling
are small for the chain sizes we simulated. From these cross-
ing points we can estimate �c to lie approximately in the
range �0.81,0.82�. This procedure does not allow for a finer

tuning of the critical density due to its discrete nature in
finite chains and to the inherent difficult in estimating pre-
cisely any correction to scaling. The critical relative fluctua-
tion was found to be Uc=0.15 which is below the reported
value for the one-dimensional contact process but within the
error bar of the recently estimated value for the conserved
directed-percolation universality class �20�.

With the knowledge of the critical density, finite size scal-
ing relations were used to compute the characteristic critical
exponents of the phase transition. In particular, the critical
order parameter scales as

���c� � L−	/
,

and its logarithmic derivative as

d ln ���c�
d�

� L1/
,

which stems from the universal scaling form of the order
parameter density given by

���,L� = L−	/
f��� − �c�L1/
� .

Our data at the border of the critical region were fitted to the
above power laws and presented in Figs. 3 and 4 to estimate
the exponents 	 /
 and 1/
, respectively. From these we ob-
tained

	



= 0.28, 
 = 1.83 for �c = 0.81,

	



= 0.23, 
 = 1.80 for �c = 0.82. �4�

We observe that, although the value for 	 /
 is in agreement
with the directed percolation universality class �	 /

=0.252�, the same is not true for 
 �
=1.097 for directed
percolation�.

The exponents 	 and 
 were used to collapse the data for
different lattice sizes. Figures 5 and 6 presents the results for
both values of �c. From the figures it seems that �c=0.82 is a
better estimative for the critical density as it produces a bet-

FIG. 1. Average fraction of particles in the active state versus
the total particle density � �average number of particles per site�.
The increase at very low densities is a signature of the reflecting
boundary conditions used at the vacuum state. A transition between
an inactive and an active collective state is seen at the vicinity of
�=0.80.

FIG. 2. Relative fluctuation of the order parameter versus the
total population density � �average number of particles per site�.
According to the predicted behavior, it is size independent at the
critical point unless for small corrections to scaling.
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ter data collapse. However, such result shall always be taken
with much care once the improvement on the data collapse
observed for �c=0.82 is found in a region outside the critical
point where corrections to scaling may be relevant. A more
confident estimate for the critical density and exponents
which is less sensitive to such corrections to scaling will be
performed in the following section.

B. Short-time dynamic scaling

Estimates of critical exponents from the statistically sta-
tionary state are usually obtained with a quite limited accu-
racy due to the critical slowing down phenomenon. The slow
convergence towards the stationary state restricts the lattice
sizes that can be confidently used in the simulations once
long runs are required. This feature may contaminate the
estimates of critical exponents with corrections to scaling.
An alternative method to measure the critical exponents ex-
ploits the own critical relaxation. At the critical point, physi-
cal quantities obey power-law dynamic scaling. This can
used to investigate the critical parameters by simulating
much larger lattices as compared with the simulations of the
stationary state. Given the initial state with all individuals in
the active state, one expects to observe

���c,t� � t−	/z
,

for the decay in time of the order parameter density. Here z is
the dynamical critical exponent which governs the temporal
evolution of the typical correlation length at the critical point
�� t1/z.

Figure 7 presents the relaxation of the order parameter in
the vicinity of the critical point. Here we considered chains
with L=10 000 sites �much larger than those used in the
previous section�. The system was left to evolve over 105

lattice sweeps and we averaged our data over 103 distinct
runs. By considering the time interval between 100 and
100 000 lattice sweeps, we found that the best power-law
fitting was achieved at �=0.823�2�. This estimate is just
slightly above the one obtained from the analysis of the sta-
tionary behavior that produced the best universal data col-
lapse. The slope at the critical point gives our best estimate
for the order parameter decay exponent as being 	 /z

=0.118�8�, where the error bar already includes the error in
the estimate of the critical density. The obtained average

FIG. 4. Size dependence of the logarithmic derivative of the
order parameter density at the vicinity of the critical point. The
slope gives our estimate of 1 /
, where 
 is the correlation length
critical exponent.

FIG. 5. Data collapse of the order parameter density computed
from different lattice sizes using �c=0.81 and the exponents esti-
mated considering this critical density.

FIG. 6. Data collapse of the order parameter density computed
from different lattice sizes using �c=0.82 and the exponents esti-
mated considering this critical density. The better data collapse ob-
tained in this figure indicates �c=0.82 as a more confident estimate
of the critical density.

FIG. 3. Size dependence of the order parameter density at the
vicinity of the critical point. From these we estimate the critical
exponent ratio 	 /
 within our numerical uncertainty of the critical
density.
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value for 	 /z
 is close to that for DP coupled to a conserved
and nondiffusing field �14,21�. However, it is worth to men-
tion that such case considers only two interacting species,
while we are considering multispecies �namely Pa, Pi, Va,
and Vi� being two diffusive and two nondiffusive.

The dynamic critical exponent can also be directly mea-
sured by following the time evolution of the relative order
parameter fluctuation once it is expected to obey U��c , t�
� t1/z �22–24�. We used this fact to estimate the dynamic
exponent z=0.50�1�, as shown in Fig. 8. Finally, we used the
data for the relaxation of the order parameter density at the
vicinity of the critical point to estimate the exponent 1 /z

based on the scaling of the logarithmic derivative
�d ln � /d���c

= ��1/��d� /d���c
� t1/z
. As shown in Fig. 9, it

provides 1/z
=0.280�5�. Combining the above exponents,
one has 	 /
=0.236�20� and 
=1.79�6� which are in very
good agreement with those providing the best collapse of
data reported in the previous section.

IV. DISCUSSION

Our present estimate for the dynamical exponent 1 /z
=0.50�1� is well distinct from the expected value for directed
percolation �1/z=0.63�. Further, directed percolation in 1D
would have 1/z
=0.58 which is more than twice the value
found for the present model. Although the exponent ratio
	 /z
=0.118�6� is close to that of DP coupled to a conserved
nondiffusive field �CDP� which has 	 /z
=0.140�5�, the pre-
vious two exponents fully rules out this universality class for
the present model, once CDP exhibits z=1.55�3�, z

=2.07�10� �21�.

As pointed out in �1� particle diffusion is an important
mechanism that can influence the critical behavior in systems
with absorbing states. Here, a mapping of the present model
in a simpler one can be made considering the following ar-
guments: At the vicinity of the absorbing state transition, the
densities decay slowly in time �as power laws�. In the long-
time regime �̇ /��1/ t→0. Therefore, the density of active
sites can be written from the first of Eqs. �2� as ��t�
	�k2 /k1���t�. This expression can be used to eliminate the
auxiliary density of the static population in the rate equation
for the density of active individuals. After that procedure,
one would come out with an effective diffusion limited reac-
tion Pa+ Pi→2Pa and Pa→Pi, with both populations diffus-
ing with the same diffusion constant. This mapping, valid
near the critical point, indicates that the present model shall
be in the same universality class of the model introduced in
Refs. �11,12�.

Recent estimates of the critical exponents for this class of
model have been conflicting. Renormalization group calcu-
lations have predicted that for such model the exponents z

FIG. 7. The logarithm of the order parameter density log���
versus log�t� for distinct values of the total particle density. These
results were obtained by averaging 103 runs of 105 lattice sweeps
over a chain with 104 sites. Logarithms are base 10 and time is
measured in units of lattice sweeps. The critical total particle den-
sity was considered the one giving the best power-law decay over
the three time decades shown ��c=0.823�2��. The slope provides
	 /z
=0.118�8�. The error bar in the exponent already includes the
uncertainty of the critical point.

FIG. 8. The logarithm of relative fluctuation of the order param-
eter versus log�t� at the critical density. Data were obtained as in
Fig. 7. Logarithms are base 10 and time is measured in units of
lattice sweeps. From the slope of the fitting over the three decades
shown, we estimate the dynamical critical exponent 1 /z=0.50�1�.

FIG. 9. The logarithm of the logarithmic derivative of the order
parameter versus log�t� at the critical point. The scaling relation
�d ln � /d���c

� t1/z
 allowed us to estimate 1/z
=0.280�5� from the
slope of the fitting over the three decades shown. Data were ob-
tained as in Fig. 7. Logarithms are base 10 and time is measured in
units of lattice sweeps.
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=2 and 
=2/d �
=2 in 1D� �11,12�. Previous numerical es-
timates based on the finite size scaling in the statistically
stationary state have given some support to the renormaliza-
tion group prediction �9,25�. Small deviations found in the
correlation length exponent have been observed and related
to the possible occurrence of strong corrections to scaling or
to the need of an extension of the functional analysis
�26–28�. Recently, numerical studies of a Langevin equation
derived for this model �14� were found to be at odds with the
above renormalization group and simulation results and to
agree with the usual direct percolation universality class.
However, this result has been considered by the own authors
as an indicative that the truncation of the full action needed
to arrive at the corresponding Langevin equation is not le-
gitimate in this case. Our present estimates of the critical
exponents are in agreement with the previous simulation re-
sults for this class of reaction-diffusion models. here, we also
found a slight deviation from the renormalization prediction
for the correlation length exponent indicating that the strong
fluctuations in such low-dimensional model requires further
terms to be retained in the action functional to correctly cap-
ture the critical behavior. Our numerical estimate for the dy-
namical exponent z is consistent with the renormalization
group prediction.

V. CONCLUSIONS

We analyzed the critical behavior of the vacuum-to-active
transition in a diffusion-limited reaction model consisting of
two interacting species that simulates the spreading of an
epidemiological process in a diffusive population mediated
by a static vector population. We showed that this model
presents a dynamical phase transition from an absorbing
state to a stationary state with a finite fraction of the popu-
lation in the active state. Our best estimates for the critical
exponents for this dynamical transition are

	

z

= 0.118�8�,

1

z

= 0.280�5�,

1

z
= 0.50�1� . �5�

These results strongly deviate from those of the usual di-
rected percolation. Actually, they are quite close to those

expected for the universality class of directed percolation
with diffusive and conserved fields with equal diffusion con-
stants. For this class of models, the dynamic and correlation
length exponents were calculated using �=4−d renormaliza-
tion group techniques to be 1/z=1/2 and 1/z
=1−� /4, up
to all orders in � �11,12,29�. The order parameter exponent 	
has been calculated only in first order in � but numerical
simulations based on the stationary critical properties have
provided 	 /
=0.226�20� �9� which is within the error bar of
the present result. Although our estimate of z is in full agree-
ment with the renormalization group prediction, the predic-
tion for exponent ratio 1 /z
=1/4 is slightly below the pres-
ently estimated value and out of our error bar. Actually, in
order to achieve the above prediction, some vertices with
naive scaling dimensionalities of the coupling constants �v�
=2−d were dropped during the renormalization group analy-
sis, once they become irrelevant near the upper critical di-
mension d=4. However, these terms turn out to be relevant
below d=2. Due to this feature, it has been stressed that the
one-dimensional behavior of this class of reaction-diffusion
systems possible requires separate considerations �12�.
Therefore, the present numerical results bring further evi-
dence that higher order terms in the action functional em-
ployed in the field-theoretical analysis of the contact process
with diffusive and conserved fields are indeed required to
correctly predict the critical behavior for this universality
class in 1D. As these extra terms are expected to become
irrelevant above two dimensions, an extension of the present
simulations to higher dimensions shall provide additional
data to draw a definitive conclusion regarding the critical
exponents of the absorbing transition of the contact process
with conserved and diffusive fields and to confirm the
present indications that the here investigated model belongs
to this universality class.
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