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A nonperturbative theory is developed, aiming at an exact and efficient evaluation of a general quantum
system interacting with arbitrary bath environment at any temperature and in the presence of arbitrary time-
dependent external fields. An exact hierarchical equations of motion formalism is constructed on the basis of a
calculus-on-path-integral algorithm, via the auxiliary influence generating functionals related to the interaction
bath correlation functions in a parametrization expansion form. The corresponding continued-fraction Green’s
functions formalism for quantum dissipation is also presented. Proposed further is the principle of residue
correction, not just for truncating the infinite hierarchy, but also for incorporating the small residue dissipation
that may arise from the practical difference between the true and parametrized bath correlation functions. The
final residue-corrected hierarchical equations of motion can therefore be used practically for the evaluation of
arbitrary dissipative quantum systems.
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I. INTRODUCTION

As a fundamental topic in quantum statistical mechanics,
the development of quantum dissipation theory has involved
scientists from diversified fields of research over decades
�1–30�. The key quantity in quantum dissipation theory is the
reduced density operator ��t�� trB�T�t�; i.e., the partial trace
of the total density operator over the bath space of practically
infinite degrees of freedom. The standard approach to the
exact ��t� is the influence functional path integral formalism
�1�. However, from both operational and numerical points of
view, this formally exact formalism is much limited in com-
parison with its differential or master equation counterpart.

An attempt at the construction of a quantum master equa-
tion, via the derivative on the exact path integral formalism,
was first carried out by Caldeira and Leggett, for quantum
dissipation in the high-temperature Markovian limit �11�.
The calculus-on-path-integral �COPI� method has also been
used in driven bistable systems, together with the so-called
noninteracting blip approximation or its variations to treat
the quantum path correlations in the reduced dynamics
�4,8,12�. The first exact quantum master equation via the
COPI method was constructed for damped harmonic oscilla-
tor systems �31,32�. Ishizaki and Tanimura have recently
constructed a set of hierarchically coupled quantum Fokker-
Planck equations for a general Drude dissipation system
�21�, which no longer exploits the high-temperature approxi-
mation as before �19,20�. The deterministic description of an
exact differential equation of motion �EOM� formalism can
also be constructed via stochastic descriptions of quantum
dissipation �22–29�. However, it has thus far only been car-
ried out with a certain single-mode dissipation model system.
The general theory of quantum dissipation in terms of a de-
terministic EOM remains a great challenge.

The aim of this work is to deal with this fundamental
issue of quantum statistical mechanics. It is to develop an
exact and efficient EOM formalism for a general quantum
system, interacting with arbitrary bath environment at any

temperature and arbitrary time-dependent external fields. The
only assumption involved is the same as in the path integral
formalism: that the interaction bath satisfy Gaussian statistics
�1,4,17�. The theoretical construction will be made mainly
based on the COPI algorithm developed in Ref. �17�. A set of
so-called influence generating functionals will be shown to
be crucial in formulating the exact hierarchical EOM. The
present work focuses on the canonical bath ensemble case,
but can be easily extended to the grand canonical case �33�.

The remainder of this paper is organized as follows. In
Sec. II, after the description of the general form of the
system-bath coupling Hamiltonian, we review the path inte-
gral influence functional formalism �17�, together with its
formal relation to the time-local dissipation superoperator in
the quantum master equation. In Sec. III, we illustrate with
the Drude-Debye model the key technical issue of the con-
struction of a hierarchical EOM. It is to identify a complete
set of auxiliary influence generating functionals �IGF’s� via
the COPI algorithm �17�. Section IV turns to general dissi-
pative quantum systems. It involves a parametrization of
general interaction bath correlation functions that satisfy the
fluctuation-dissipation theorem; see Appendix A for details.
Upon identifying the complete set of auxiliary IGF-COPI
constructions for the parametrized forms of correlation func-
tions, exact hierarchical EOM follow immediately. The
equivalent formalism in terms of the hierarchical and
continued-fraction Green’s functions and memory kernels is
given in Appendix B. In Sec. V, we further establish the
so-called principle of residue correction. The principle itself
is rooted at the formally exact relation established in Sec. II
between the Feynman-Vernon influence functional and the
time-local dissipation superoperator. But it is now exploited
in a certain perturbative or nonperturbative approximate
manner to construct an efficient hierarchy truncation method.
It is also used to incorporate the residue contribution, due to
the difference between the exact and parametrized baths, into
the final theory. Finally, Sec. VI concludes this paper.
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II. QUANTUM DISSIPATION IN TERMS OF INFLUENCE
FUNCTIONALS

A. Multimode system-bath coupling Hamiltonian

Consider a general quantum system embedded in a bath
which is assumed as a canonical ensemble in this work. The
total system-plus-bath composite Hamiltonian can be written
in general as

HT = H�t� − �
a

QaF̂a + hB. �1�

Here, H�t� and hB denote the uncorrelated system and bath
Hamiltonians, respectively. The former may be subject to a
time-dependent coherent field drive. The second term on the
right-hand side �RHS� of Eq. �1� denotes the multimode
system-bath coupling. It can be generally expressed in the
multiple-dissipative-mode decomposition form, in which

�Qa� and �F̂a� are the system and bath operators, respectively,
and assumed to be Hermite in this work.

For later use, we introduce here the Liouvillian L and the
dissipative coupling mode Qa in the reduced system sub-
space via their actions on an arbitrary operator as

LÔ � �H�t�,Ô�, QaÔ � �Qa,Ô� . �2�

Throughout this work, we set ��1 and the inverse tempera-
ture ��1/ �kBT�, and denote also �t�� /�t.

The stochastic canonical bath ensemble average of an op-

erator Ô is denoted as

	Ô
B � trB�Ô�B
eq� = trB�Ôe−�hB�/trBe−�hB. �3�

In the hB-interaction picture,

F̂a�t� � eihBtF̂ae−ihBt, �4�

for each bath interaction operator in Eq. �1�, is assumed to be
a Gaussian stochastic process. This is exactly the case when
the bath consists of a collection of harmonic oscillators and

each F̂a is a linear combination of the coordinates and mo-
menta of the harmonic bath oscillators. The Gaussian sto-
chastic process is also related to the central limit theorem in

statistics. As the quantity Qa	F̂a
B, if it is not zero, can be
included in the system Hamiltonian in Eq. �1�, we can set

	F̂a
B=0 without loss of generality. The effects of Gaussian
stochastic bath operators are then completely described by
their correlation functions,

Cab�t − �� = 	F̂a�t�F̂b���
B. �5�

They satisfy the symmetry and detailed-balance relations of
the canonical bath �4,16�,

Cab
* �t� = Cba�− t� = Cab�t − i�� . �6�

We shall be interested in a differential EOM formalism,
aiming at an efficient and exact evaluation of the reduced
dynamics, with arbitrary multimode non-Markovian dissipa-
tion and time-dependent external fields on the system. The
key quantity of interest is the reduced density operator ��t�,
defined together with its associating propagator U�t , t0� as

��t� � trB�T�t� � U�t,t0���t0� . �7�

The desired EOM will be constructed �cf. Sec. IV� via the
IGF-COPI approach �17�, starting from the exact path inte-
gral expression that involves only the initial factorization
ansatz �T�t0�=��t0��B

eq. Note that when the initial time is set
to t0→−�, this ansatz becomes exact �4,16�.

B. Reduced dynamics versus influence functionals

This subsection summarizes the path integral formalism
of quantum dissipation for the multimode system-bath inter-
action �17�. Exploited explicitly is only the Gaussian statis-
tical property, the essence of the linear harmonic bath cou-
pling with arbitrary system operators �Qa�. Unlike the EOM
formalism, which can be expressed at the operator level, the
path integral expression goes with a representation. Let ���
�
be a basis set in the system subspace. In the � representation,
Eq. �7�, reads �setting ���� ,��� for abbreviation�

���,t� � ���,��,t� =� d�0U��,t;�0,t0����0,t0� . �8�

The reduced Liouville-space propagator reads in terms of the
path integral as �1�

U��,t;�0,t0� = �
�0�t0�

��t�

D�eiS���F���e−iS����. �9�

The effect of system-bath interaction on the reduced system
dynamics is described by the Feynman-Vernon influence
functional F, which will be elaborated on soon. In Eq. �9�,
S��� is the classical action functional of the reduced system,
evaluated along the path ����, with the constraints of the two
ending points ��t0�=�0 and ��t�=� being fixed. In the ab-
sence of bath interaction �F=1�, the dynamics would be
completely coherent; i.e., �tU=−iLU if F=1.

Consider now the key quantity, the bath interaction-
induced influence functional F. Traditionally, its expression
is derived by adopting a single-mode system-bath interaction
model �1,4�, in which the bath hB is assumed to consist of a
set of uncoupled harmonic oscillators �qj� and the system-

bath interaction assumes the form of H�=−QF̂=−Q� jcjqj,
rather than the multimode decomposition as the second term
of Eq. �1�.

In connection with the later development of EOM formal-
ism, we denote a= �aa�� for a pair of dissipation modes here-
after and introduce �cf. the Eqs. �5� and �6� of Ref. �17��

Q̃a�t;���� � Q̃aa��t;���� − Q̃aa�
� �t;����� , �10�

where �noting that Q̃a� Q̃aa� and Ca�Caa��

Q̃a�t;���� � �
t0

t

d�Ca�t − ��Qa������� , �11a�

Q̃a��t;����� � �
t0

t

d�Ca
*�t − ��Qa�������� . �11b�

Denote also
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Qa���t�� � Qa���t�� − Qa����t�� . �12�

It is in fact the Qa commutator �cf. Eq. �2�, the second iden-
tity� in the path integral representation, as it depends only on
the fixed ending points. The final expression of the influence
functional reads �17�

F��� � exp
− �
t0

t

d�R��;����� , �13a�

with

R�t;���� � �
a

Qa���t��Q̃a�t;���� . �13b�

The above relations will be used together with Eqs.
�10�–�12� in the following sections to develop the desired
EOM.

C. Influence functional versus dissipation superoperator

Note that in Eq. �13� the conventional influence phase
functional is now expressed in terms of its time integrand R.
The latter is in fact the time-local dissipation superoperator
R�t� in the path integral representation, as the time deriva-
tive of Eq. �9� with Eq. �13� leads to

�tU = − iLU − R�t�U �14a�

or, equivalently,

�̇ = − iL� − R�t�� . �14b�

We can therefore call R of Eq. �13b� the dissipation func-
tional. As inferred from Eq. �13b� with Eqs. �10� and �12�, it
may be symbolically expressed in the operator level as

RÔ = �
a

�Qa,Q̃aÔ − ÔQ̃a
†� . �15�

Here, Q̃a denotes the operator form of Eq. �11a�. However,

the explicit operator-level expression for R �or Q̃a� is gener-
ally not available. In the presence of a time-dependent exter-
nal field, the only case being of the analytical expression of

R �or Q̃a�, is, to our best knowledge, the driven Brownian
oscillator system �16�.

The formal relations, Eqs. �13�–�15�, also highlight where
the difficulty is in the exact evaluation of quantum dissipa-

tion; all relate to the memory-containing Q̃ or equivalent Q̃
functionals. In a certain sense, the EOM formalism to be
presented in detail soon �cf. Secs. III and IV� is a mathemati-
cal construction that hierarchically resolves the “history”

containing in the Q̃ functionals. This issue will become evi-
dent in the coming sections. Moreover, these formal relations
may also be directly useful for the residue correction of the
final formalism due to either hierarchy truncation or the
small difference between the exact but complicated bath cor-
relation functions and the parametrized ones �cf. Sec. V�.

III. HIERARCHICAL EQUATIONS OF MOTION:
CORRELATED DEBYE DISSIPATION

Before presenting the formalism for arbitrary dissipative
systems, let us consider in this section the simplest multi-

mode dissipation case, the Drude-Debye model, in which

Ca�t � 0� = Caa��t� = 	ae−
at. �16�

The parameters 
a�
aa�=
a�a are real, while 	a�	aa�
=	a�a

* are complex, and they are the same as the Drude pa-
rameters 
D

a and 	D
a in the next section, where the general

case is studied. Despite this fact, this section provides with
clarity the basic ingredient of the IGF-COPI approach to the
desired hierarchical EOM.

The hierarchy construction starts with the time derivative
on the propagator U �Eq. �9�� of primary interest. The time
derivative on the action functional parts contributes to the
coherent dynamics of −iLU and thus can be included in the
final EOM. We shall show in the following that the hierarchy
generation stems from the time derivative on the evolving
influence functionals in each tier of the construction.

Consider first the time derivative on the influence func-
tional of primary interest �Eq. �13��:

�tF��� = − ��
a

Qa���t��Q̃a�t;�����F��� . �17�

We shall hereafter omit the explicit path integral variable
dependence whenever it does not cause confusion. As a re-
sult, we recast Eq. �17� as

�tF = − i��
a

Qa�− iQ̃a��F � − i�
a

QaFa. �18�

The last identity introduces the auxiliary influence function-
als �AIF’s�

Fa � �− iQ̃a�F . �19�

In contrast to F whose leading term is 1, the first-tier AIF’s
�Fa� are of the second order in the system-bath coupling as
their leading terms. The hierarchy to be constructed will go
naturally with increasing the order of the system-bath cou-
pling.

Consider now the time derivative on the first-tier AIF’s
�Eq. �19��:

�tFa = − i��tQ̃a�F − i��
b

Qb�− iQ̃a��− iQ̃b��F . �20�

The second term, which arises from the derivative on the
primary F �cf. Eq. �18��, introduces now a set of new AIF’s,

Fab � �− iQ̃a��− iQ̃b�F . �21�

The leading terms in these second-tier AIF’s are of the
fourth-order system-bath coupling.

The first term of Eq. �20� involves the time derivative on

Q̃a �Eq. �10� with Eqs. �11��. From Eq. �11a�,

�tQ̃a = Ca�0�Qa����t�� + Q5 a�t;���� , �22�

with
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Q5 a�t;���� � �
t0

t

d�Ċa�t − ��Qa������� . �23�

Apparently, Q5 a leads to Eq. �20�, a nonhierarchy term in
general, unless a specific form of Ca�t� such as Eq. �16� is

considered. In the present case of study, Q5 a=−
aQ̃a, leading
to

�tQ̃a = iCa − 
aQ̃a. �24�

Here, �noting that Ca�0�=	a from Eq. �16��

Ca = − i�	aQa����t�� − 	a
*Qa�����t��� , �25�

which depends only on the fixed ending points. Substituting
Eqs. �21� and �24� into Eq. �20� leads to

�tFa = CaF − 
aFa − i�
b

QbFab. �26�

We are now in the position to complete the IGF-COPI
approach to the hierachical EOM for the multimode Drude-
Debye dissipation of Eq. �16�. First of all, we notice that due
to the mathematical group nature implied in Eqs. �18� and

�24�, �−iQ̃a� constitutes the single influence generating func-
tional for each pair of the Drude-Debye modes. The AIF’s
involved can generically be expressed as �cf. Eqs. �19� and
�21��

Fn � 
�
a

�− iQ̃a�na�F . �27�

Here, n= �na ,nb , . . . � consists of a set of non-negative inte-
gers. Denote also the index set na

±��na±1,nb , . . . �, which
deviates from n only by changing the specified na to na±1.
Note that the total number of non-negative integers in the
index set n is the same as that of the nonzero system-bath
coupling mode pairs. The time derivative of Fn can be car-
ried out by using Eq. �24� and the first identity of Eq. �18�,
resulting in

�tFn = − ��
a

na
a�Fn + �
a

�naCaFna
− − iQaFna

+� . �28�

Define now the auxiliary propagators by �cf. Eq. �9��

Un��,t;�0,t0� � �
�0

�

D�eiS���Fn���e−iS����, �29�

which also define the related auxiliary density operators,

�n�t� � Un�t,t0���t0� . �30�

Equations �28� can then be recast into

�̇n = − �iL + �
a

na
a��n + �
a

�naCa�na
− − iQa�na

+� . �31�

The Qa and Ca involved, which in Eqs. �28� were given by
Eqs. �12� and �25�, respectively, at the fixed ending points of
��t�=� in the path integral representation, are now defined
at the operator level by Eq. �2� and

CaÔ = − i�	aQa�Ô − 	a
*ÔQa�� . �32�

Each of the summations on the RHS of Eqs. �31� runs over
all nonzero coupling mode pairs a= �aa��. The initial condi-
tions of Eqs. �31� and the methods of infinite hierarchy trun-
cation will be discussed later together with the general dis-
sipation systems; see comments after Eqs. �50� and in Sec. V.

Equations �31� generalize the previous work on single-
mode Drude-Debye dissipation �17,19–24�. It is noticed that
at the second or higher tier, which is of the fourth or higher
order in the system-bath coupling, contributions from differ-
ent dissipative modes are no longer just additive. Some in-
teresting phenomena such as cotunneling �34� and codissipa-
tion �e.g., cooperative T2-decoherence and T1-relaxation
processes� will therefore be anticipated and investigated else-
where.

IV. HIERARCHICAL EQUATIONS OF MOTION:
GENERAL NON-MARKOVIAN DISSIPATION

A. Non-Markovian bath via parametrization

It is evident now that the construction of hierarchical
EOM for a general dissipative system should involve a
proper parametrization scheme for Caa��t�. It is required by

the IGF-COPI structure that all �tQ̃a terms involved be con-
tained within the hierarchy; cf. Eqs. �22�–�24� and comments
there. On the other hand, relation �6�, or more precisely the
fluctuation-dissipation theorem �FDT�, should also be ob-
served.

In this work, we adopt a FDT-preserved parametrization
scheme, in which the bath correlation functions Ca�t� for a
general system at any temperature are completely character-
ized by a set of real parameters; see details in Appendix A. In
particular, the parameters �
D

a ,
k
a ,�k

a; k=0, . . . ,K�, which
will explicitly enter the final EOM, together with the Mat-
subara frequencies �
̌m�2�m /�; m=1, . . . ,M�, are all posi-
tive, except �0

a�0. For the latter use, we denote also �k�
a

�
k0
0
a+�k

a.
The final FDT-preserved bath correlation functions as-

sume the following form �cf. Eq. �A4� where M→��:

Ca�t � 0� = 	D
a e−
D

a t + �
j=0

2K+1

	 j
a� j

a�t� + �
m=1

M

	̌m
a e−
̌mt. �33�

Here, 
̌m=2�m /� and

�2k
a �t� � cos��k

at�exp�− 
k
at� , �34a�

�2k+1
a �t� � �
k0
0

at + sin��k
at��exp�− 
k

at� . �34b�

The 	 coefficients in Eq. �33� are all complex in general due
to the FDT, except those �	̌m

a � arising from the Matsubara
contribution are real in a canonical bath ensemble; see Eqs.
�A6�–�A9�.

Note that �0
a�t�=e−
0

at and �1
a�t�=
0

ate−
0
at, as �0

a�0. Also
�noting �k�

a�
k0
0
a+�k

a�

�t�2k
a �t� = − 
k

a�2k
a �t� − �k

a�2k+1
a �t� , �35a�
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�t�2k+1
a �t� = �k�

a�2k
a �t� − 
k

a�2k+1
a �t� . �35b�

The above closed relations will be used in the following
IGF-COPI construction of hierarchical EOM.

In principle, the parametrized Ca in Eq. �33� can be exact
for arbitrary dissipation if K and M in Eq. �33� are large
enough. The hierarchical EOM to be developed in the rest of
this section will also be exact, but its size grows as a power
law. The exact evaluation of complex dissipation would rap-
idly become extremely tedious. We will come back to this
issue on how to incorporate the residue correction, due to the
small difference between the exact Ca�t� �including the zero-
temperature case� and the practically used ones, into the final
theory in Sec. V.

B. Hierarchical construction: Influence generating functionals

Note that Q̃a �Eq. �11�� appears additive with respect to
the individual components of Ca. The dissipation functional
R �Eq. �13b� with Eq. �10�� will also be additive. Moreover,
in comparison with the first two terms in Eq. �33�, the Mat-
subara term possesses the special properties of its preexpo-
nential factors 	̌m

a being real and its time constants 
̌m being
dissipation-mode independent. As a result, the Matsubara
contributions to R �Eq. �13b�� can have the summation over
a� performed in the following construction of the hierarchi-
cal EOM formalism.

To proceed, let us denote ��D
a �t��exp�−
D

a t��

Q̃j
a�t;���� � �

t0

t

d�� j
a�t − ��Qa������� �36�

and

Q̌m
a �t;���� � �

a�

	̌m
a�

t0

t

d�e−
̌m�t−��Qa������� . �37�

The corresponding composite Q̃ functionals that specify the
dissipation functional �cf. Eq. �13b�� are denoted as

Xk
a�t;���� � − i�	2k

a Q̃2k
a − 	2k

a*Q̃2k�
a� , �38a�

Yk
a�t;���� � − i�	2k+1

a Q̃2k+1
a − 	2k+1

a* Q̃2k+1�a � , �38b�

ZD
a �t;���� � − i�	D

a Q̃D
a − 	D

a*Q̃D�
a� , �38c�

and �noting that 	̌m
a is real; see Eq. �A9��

Žm
a �t;���� � − i�Q̌m

a − Q̌m�
a� . �38d�

Included in each of the equations is also the factor of �−i� for

the sake of bookkeeping; e.g., ZD
a amounts to the −iQ̃a in

Sec. III.
The dissipative functional R, by which

�tF = − RF , �39a�

reads now �cf. Eq. �13��

R = i�
a

QaZD
a + i�

a,k
Qa�Xk

a + Yk
a� + i�

a,m
QaŽm

a . �39b�

Apparently, all composite Q̃ functionals, Eqs. �38�, are influ-
ence generating functionals; they are, however, not com-
pleted.

The crucial step in the IGF-COPI construction of hierar-

chical EOM is the time derivatives on these composite Q̃
functionals �cf. Sec. III�. Unlike the Z functionals for the
Drude and Matsubara components, the time derivatives of
the X and Y functionals are closed together with two addi-

tional noncomposite Q̃ functionals �cf. Eq. �35��:

X̄k
a�t;���� � − i�	2k

a Q̃2k+1
a − 	2k

a*Q̃2k+1�a � , �40a�

Ȳk
a�t;���� � − i�	2k+1

a Q̃2k
a − 	2k+1

a* Q̃2k�
a� . �40b�

The time derivatives of all Q̃ functionals involved are
obtained as �cf. Eqs. �35� and �24��

�tXk
a = Ak

a − 
k
aXk

a − �k
aX̄k

a, �41a�

�tX̄k
a = �k�

aXk
a − 
k

aX̄k
a, �41b�

�tȲk
a = Bk

a − 
k
aȲk

a − �k
aYk

a, �41c�

�tYk
a = �k�

aȲk
a − 
k

aYk
a, �41d�

and

�tZD
a = CD

a − 
D
a ZD

a , �tŽm
a = Čm

a − 
̌mŽm
a . �41e�

Here

Ak
a � − i�	2k

a Qa� − 	2k
a*Qa�

� � , �42a�

Bk
a � − i�	2k+1

a Qa� − 	2k+1
a* Qa�

� � , �42b�

CD
a � − i�	D

a Qa� − 	D
a*Qa�

� � , �42c�

Čm
a � − i�

a�

	̌m
a �Qa� − Qa�

� � . �42d�

Note that Eq. �42c� is identical to Eq. �25�. In writing Eq.
�42d�, we have used the property that 	̌m

a is real; see Eq.
�A9�.

The above six �XYZ� functionals constitute now a com-
plete set of IGF’s. The general expression for the AIF’s in the
hierarchy are then obtained as �cf. Eq. �27� and its comment
above�

Fn = 
�
a,k

��Xk
a�n2k

a
�Yk

a�n2k+1
a

�X̄k
a�n̄2k

a
�Ȳk

a�n̄2k+1
a

�

� �
a

�ZD
a �nD

a �
a,m

�Žm
a �ňm

a�F . �43�

The index in Fn is specified by the involving non-negative
integers
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n � �nj
a, n̄j

a,nD
a , ňm

a ; j = 0, . . . ,2K + 1;m = 1, . . . ,M� .

�44�

Therefore, the total number of non-negative integers in the
index set n is 4�K+1�p+ p+Mq, where q denotes the number
of dissipative modes and p�q2 the number of nonzero dis-
sipative mode pairs.

C. Hierarchical equations of motion

The IGF-COPI approach to the hierarchical EOM can
now be completed by taking the time derivative on Fn �Eq.
�43� with Eqs. �39� and �41��. The final results read in terms
of the auxiliary density operators as �cf. Eqs. �29� and �30��

�̇n = − �iL + 
n��n + �n
��� + �n

�−� + �n
�+�. �45�

The 
 term in Eqs. �45� arises from the damping terms of
Eqs. �41�. The resulting damping constant is given by


n � �
a,k

�n2k
a + n̄2k

a + n2k+1
a + n̄2k+1

a �
k
a + �

a
nD

a 
D
a + �

a,m
ňm

a 
̌m.

�46�

The second term in Eq. �45� stems from the �off-diagonal�
swap terms of Eqs. �41a�–�41d�. It reads

�n
��� = − �

a,k
�k

a�n2k
a �na,2k

→ + n̄2k+1
a �na,2k+1

← �

+ �
a,k

�k�
a�n̄2k

a �na,2k
← + n2k+1

a �na,2k+1
→ � . �47�

The index-set na,j
→ differs from n of Eq. �44� only by

�nj
a , n̄j

a�→ �nj
a−1, n̄j

a+1�, while na,j
← by �nj

a+1, n̄j
a−1�

← �nj
a , n̄j

a�, at the specified �a , j�.
The third term in Eq. �45� stems from the �A ,B ,C� terms

of Eqs. �41�, while the last term is from Eq. �39�. They are
the hierarchy-down and hierarchy-up contributions, respec-
tively, and given by

�n
�−� = �

a,k
�n2k

a Ak
a�na,2k

− + n̄2k+1
a Bk

a�n̄ a,2k+1
− �

+ �
a

nD
a CD

a �na,D
− + �

a,m
ňm

a Čm
a �ň a,m

− �48�

and �j=D,0 ,1 , ¯ ,2K+1�

�n
�+� � − R�n = − i�

a,j
Qa�na,j

+ − i�
a,m

Qa�ňa,m
+ . �49�

The index set na,j
± �na,j

− or ňa,m
± � differs from n only by chang-

ing the specified nj
a �n̄j

a or ňm
a � to nj

a±1 �n̄j
a−1 or ňm

a ±1�. Note
that the �na,j

+ �th-auxiliary-reduced density operators are not

generated from Eq. �49�, since X̄k and Ȳk do not appear in the
dissipation functional R �Eq. �39��; they are rather generated
from the EOM for the �na,j

+ �th-auxiliary-reduced density op-
erators via the involving swap ���-terms there �cf. Eq. �47��.

In Eq. �48�, Ak
a, Bk

a, CD
a , and Čm

a denote the reduced
Liouville-space operator counterparts of Eqs. �42� �cf. the
comments above Eq. �32��:

Ak
aÔ = − i�	2k

a Qa�Ô − 	2k
a*ÔQa�� , �50a�

Bk
aÔ = − i�	2k+1

a Qa�Ô − 	2k+1
a* ÔQa�� , �50b�

CD
a Ô = − i�	D

a Qa�Ô − 	D
a*ÔQa�� , �50c�

Čm
a Ô = − i�

a�

	̌m
a �Qa�,Ô� . �50d�

The reduced Liouville-space operator Qa involved in Eq.
�49� was given by Eq. �2�.

The initial conditions to Eqs. �45� are �n�t0�=��t0�
n0, as
inferred from their definitions, and �0�t�=��t� is the reduced
density operator of primary interest. Note that when the ini-
tial time t0→−�, the established hierarchical EOM formal-
ism imposes no approximation. The initial conditions are,
however, �̇n�t0�=0, where t0 can be any time before applying
the external time-dependent fields. The pulse-field-induced
dynamics will then be evaluated via Eq. �45�.

The hierarchical EOM, Eqs. �45�–�50�, are exact for a
general dissipation system that involves the parametrized
bath correlation functions of Eqs. �33�. The residue effect
due to the small difference between the exact and param-
etrized Ca�t� on the final formalism will be carried out to-
gether with the hierarchy truncation via the principle of resi-
due correction in the next section.

It is noted that with a proper rearrangement, Eqs. �45� can
be recast into the standard tridiagonal coupling form; see
Appendix B. Included there is also a variation of the above
theory, expressed in terms of the hierarchical Green’s func-
tions and their related memory kernels and continued-
fraction formalism.

V. TRUNCATION AND THE PRINCIPLE OF RESIDUE
CORRECTION

A. Principle of residue correction

To complete the EOM formalism, the infinite hierarchy in
Eqs. �45�–�50� should be truncated at a certain level—say,
the �Ntrun�th tier. The simplest way is to set all ��n� of the
higher tiers to be zero. The resulting �0�t�=��t� of primary
interest will be exact up to the �2Ntrun�th order in the system-
bath coupling. Other truncation schemes, related to different
ways to a partial account of the higher-order effect, have also
been proposed �17,19–22�.

Here, we present the principle of residue correction,
which itself is formally exact. It is applied not just to the
truncation, but also to a recovery of the residue effect, due to
the difference between the exact and parametrized Ca�t� of
Eq. �33�, at all levels of hierarchy. The hierarchy truncation
concerning only that at the anchor level will be treated in the
next subsection.

The principle of residue correction related to the finite
difference between the exact and parametrized ones,


Ca�t� � Ca
exa�t� − Ca�t� , �51�

arises from the observation that the dissipation functional is
additive �cf. Eq. �13b� with Eqs. �10� and �11��:
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Rex�t;���� = R�t;���� + 
R�t;���� . �52�

Here,


R�t;���� = �
a

Qa���
Q̃a�t;���� , �53�

with 
Q̃a the same as Eq. �10�, but associating with 
Ca�t�;
i.e., �cf. Eq. �11a��,


Q̃a�t;���� = �
t0

t

d�
Ca�t − ��Qa������� . �54�

The resulting exact influence functional of primary interest
reads now Fex���=Fresi���F���, with �tFresi=−
RFresi.
The AIF’s defined in Eq. �43� for the construction of the
hierarchical EOM should now be replaced by

Fn
exa � FnFresi. �55�

Its time derivative reads

�tFn
exa = ��tFn�Fresi − 
RFn

exa. �56�

The EOM for the corresponding exact �n is then obtained as
�cf. Eqs. �45�–�50��

�̇n = − �iL + 
R�t� + 
n��n + �n
��� + �n

�−� + �n
�+�. �57�

The residue correction due to 
Ca�t� �Eq. �51�� is thus global;
the resulting 
R�t� �Eq. �53�� modifies the individual hierar-
chical EOM at all levels.

Apparently, 
R of Eq. �53� and R of Eq. �13b� are of the
same mathematical structure. If their common operator-level
expression were known and implementable readily without
approximation, Eq. �14b� would be used directly, without
invoking the hierarchical EOM at all. However, it is only
possible for special cases, such as the pure-dephasing limit
�i.e., the case of �H ,Qa�=0� or the driven Brownian oscilla-
tor system �16�.

The key idea behind Eq. �57� for general non-Markovian
dissipation is as follows. The total Ca

exa is partitioned into
two parts. One is the parametrized Ca, which carries most of
the non-Markovian coupling strength and is expressed in the
form of Eq. �33�. Another is the residue 
Ca, which is as-
sumed in the weak-interaction regime. The strong dissipation
due to parametrized Ca is treated via the hierarchical EOM
approach developed in Sec. IV without approximation. In
principle, the residue 
Ca can be zero if K and M for the
parametrized Ca in Eq. �33� are large enough. However, the
size of hierarchical EOM grows as a power law as K and M
increase; the exact evaluation of complex dissipation would
rapidly become extremely tedious if not impossible. There-
fore, it is a practical trade-off to have a nonzero but weak

Ca, as long as its induced global residue 
R can be accu-
rately described with a certain perturbative or nonperturba-
tive formulation at the operator level.

Let us start with the simplest one, the Markovian-residue
limit, in which Eq. �54� reduces to


Q̃a � 
C̄a�t�Qa����t�� , �58�

with


C̄a�t� = �
t0

t

d�
Ca�t − �� . �59�

Note that the system variable Qa� in Eq. �58� is now repre-
sented at the ending time t of the path integral at which
��t�=� and ���t�=�� are fixed. As a result, Eq. �53� for the
Markovian-residue dissipation can be expressed in the opera-
tor level as


R�t�Ô = �
a

�Qa,
C̄a�t�Qa�Ô − �
C̄a�t��*ÔQa�� . �60�

When t→�, the above equation reduces to the Matsubara-
residue or finite-temperature correction proposed by Ishizaki
and Tanimura �21,22�. Their hierarchical EOM is the single-
mode Drude dissipation version of Eq. �57�.

The principle of residue correction is right rooted at the
fact that 
R �Eq. �53�� is of the same mathematical structure
as time-local dissipation functional R�t� �Eq. �13b��. As re-
sults, various well-established approximation schemes can be
exploited for the superoperator 
R, as it describes weak resi-
due dissipation. The most celebrated scheme may be the
second-order time-local expression �13–16�


R�t�Ô � �
a

�Qa,
Q̃a
�2��t�Ô − Ô�
Q̃a

�2��t��†� , �61a�

where


Q̃a
�2� = �

t0

t

d�
Ca�t − ��e−iL�t−��Qa�. �61b�

The dissipation-free propagator �assuming also a time-
independent system Hamiltonian for simplicity� is used here
to connect Qa������� in Eq. �54� to its value at the fixed
ending path point of ��t�=�. The above operator-level ex-
pressions are thus obtained �17�. In fact, Eqs. �61� constitute
the unified Bloch-Redfield-Fokker-Planck equation �14,16�.

Nonperturbative approximation schemes can also be ap-
plied to the evaluation of the global residue-induced 
R�t�.
These include the noninteracting blip approximation or its
variations �4,8,12�, the self-energy augmented methods �35�,
and the use of the exactly solvable driven Brownian oscilla-
tor model �16� to mimic the anharmonic system of interest.

B. Hierarchy truncation via the principle of residue
correction

Consider now the hierarchy truncation and its related is-
sues. Apparently, the collection of anchors ��N� should be
properly specified. The hierarchy tier-up �N

�+� associated with
an anchor �N contains at least one component that goes be-
yond the desired anchoring confinement and, thus, is subject
to truncation.

The principle of residue correction is applied here by rec-
ognizing that the tier-up components can be recast as �cf.
Eqs. �43��

�Na,2k
+ + �Na,2k+1

+ = �Xk
a + Yk

a��N, �62a�

�Na,D
+ = ZD

a �N, �Na,m
+ = Žm

a �N. �62b�
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The �2k�th and �2k+1�th components for each dissipative
mode pair a are grouped together for the reasons that they
arise from the same term of the parametrized spectral density
function and they carry the same strength; cf. Appendix A.
Therefore, they shall be treated equally as the truncation is
concerned.

The anchoring indices can now be specified for the indi-
vidual constituents of the interaction bath correlation func-
tions Ca�t� of Eq. �33� as

ND
a ,Nk

a,Ňm
a , with k = 0, . . . ,K; m = 1, . . . ,M .

The closed set of hierarchically coupled EOM will then con-
tain those �n whose individual index set consists of the non-
negative integers that are confined within

n2k
a + n2k+1

a + n̄2k
a + n̄2k+1

a � Nk
a, �63a�

nD
a � ND

a , ňm
a � Ňm

a . �63b�

The anchor index set N in �N can now be defined as those
with at least one of the above upper limits being reached.
The constraint of Eq. �63a� is consistent with the way of
grouping in Eq. �62a�. Once the upper limit of Eq. �63a� is
reached, the associated tier-up �Na,2k

+ and �Na,2k+1
+ are both

subject to the truncation.
The truncation can now be made based on the formally

exact relations of Eqs. �62�. The Xk
a, Yk

a, ZD
a , and Žm

a involved
there are the reduced Liouville-space operators, whose path
integral representation counterparts were given by Eqs. �38�.
Taking Eq. �38a� for Xk

a for an example, its operator-level
form reads in contact with Eq. �62a� as

�Na
+,2k � Xk

a�N = − i�	2k
a Q̃2k

a �t��N − 	2k
a*�NQ̃2k

a†�t�� . �64�

If �Na,2k
+ goes beyond the closed hierarchy, an approximated

expression of Q̃2k
a �t�, such as �cf. Eq. �61b� and the com-

ments there�

Q̃2k
a �t� � �

t0

t

d��2k
a �t − ��e−iL�t−��Qa�, �65�

is adopted locally on the RHS of Eq. �64� to make the trun-
cation. The resulting �Na,2k

+ retains the same leading term as
the exact one, being of �2N+2�th order in the specified
system-bath coupling strength. Thus, the truncation with a
sufficiently large N induces practically no error as far as the
dynamics of ��t�=�0�t� of primary interest is concerned. The
construction of closed hierarchical EOM with residue correc-
tion is now completed.

C. Discussions and comments

We reemphasize here that when the values of K and M in
Eq. �33� and the truncation anchor indices in Eq. �63� are set
to be sufficiently large, the residue effects on the primarily
interested � are effectively zero. The global residue correc-
tion and the truncation scheme introduced at both the global
and local truncation levels in the previous two subsections
are made for the purpose of efficient evaluation of the re-

duced dynamics of primary interest. For example, one may
simply terminate the hierarchical EOM by setting the afore-
mentioned beyond-the-hierarchy �Na,2k

+ =0. The resulting � of
primary interest will be exact up to the �2N�th order in the
specified system-bath coupling strength. The improved trun-
cation as Eq. �64� will lead to � exact up to �2N+2�th order,
rather than �2N�th order. The above two truncation schemes,
which represent two different resummations for partially in-
corporating the higher-order effects on the reduced dynamics
of primary interest, shall be of no practical difference when
the convergence is reached.

Note that various commonly used forms of the Bloch-
Redfield theory and Fokker-Planck equations can be consid-
ered as globally weak �residue� dissipation without invoking
the hierarchical EOM at all. They can also be recovered if
the second-order truncation scheme of Eq. �65� is applied to
the primary tier of N=0. On the other hand, if all second-tier
auxiliary reduced density operators are set to be zero, the
present hierarchical EOM formalism reduces to the second-
order memory-kernel quantum dissipation theory.

The global residue dissipation 
R�t� introduced in the
final formalism �Eq. �57�� is also for the purpose of effi-
ciency. Note that the number of the nth-tier auxiliary reduced

density operators ��n� is
�n+P−1�!

n!�P−1�! , where P=4�K+1�p+ p

+Mq is the number of the non-negative integers in the index
n; see comments after Eq. �44� and in Appendix B before Eq.
�B1�. The size of the hierarchical EOM increases as a power
law as the values of K and M for the parametrized Ca of Eq.
�33�. The residue correction is introduced to reduce the re-
quired values of K and M, as long as the induced residue
weak dissipation 
R�t� can be accurately evaluated. In this
sense, the final residue-corrected hierarchical EOM formal-
ism remains practically exact. It is worthy to point out that
the final formalism is even capable of treating zero-
temperature dissipation. At T=0, the Matsubara frequencies
are all vanished and the exact Ca

exa�t� is given by Eq. �A10�.
However, one can set a certain finite low temperature for the
parametrized Ca and evaluate residue 
Ca-corrected hierar-
chical EOM dynamics, followed by the convergence test
with a lower value of the parametrization temperature.

VI. SUMMARY

In summary, we have constructed the residue-corrected
hierarchical EOM formalism �Eq. �57� with Eqs. �46�–�50��.
The construction consists of two main steps. The first is the
IGF-COPI approach to the EOM formalism �Sec. IV�, for the
parametrized interaction bath correlation functions preserv-
ing the fluctuation-dissipation theorem. This step is itself ex-
act, as the FDT-preserved parametrization involved can in
principle represent arbitrary interaction bath correlation func-
tions. The second step is the residue correction, concerned
with the practical applicability of the present theory to a
broad range of systems. The principle of residue correction
�Sec. V� is itself exact, rooted in the formal relation between
the dissipation functional and the time-local dissipation su-
peroperator; see Sec. II C. The application of this principle to
construct the global �
C-induced� or the local �truncation-
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induced� residue correction invokes inevitably a certain ap-
proximation scheme. However, it can be made in a suffi-
ciently accurate manner, as far as the primarily interested
��t� is concerned �cf. Sec. V C�. As a result, the residue-
corrected hierarchical EOM formalism could be practically
used in the study of general quantum dissipation systems
interacting with arbitrary bath, arbitrary time-dependent ex-
ternal fields, and at any temperature, including T=0; see the
last remark stated in Sec. V C.

The hierarchical EOM formalism may be relatively trac-
table, in comparison with the direct evaluation of the path
integral formalism �18�. The memory effect in the quasiadia-
batic propagator path integral method is described in terms
of the nonlocality of the influence functional �18�, while it in
the present differential formalism is resolved via a set of
linearly coupled time-local auxiliary operators. The
exponential-like series expansion of the parametrized Ca�t�
�Eq. �33�� can be considered as the separation of the time
scales, and the resulting �n is associated with the decay con-
stant 
n. The different truncation anchor indices �Eq. �63��
can therefore be identified to reduce the required number of
equations, which otherwise grows exponentially if all Ca
composites are treated equally. The weak residue correction
at the global level provides additional freedom to improve
the numerical efficiency of the present EOM theory.

Numerous existing quantum dissipation theories can be
recovered from the present formalism. These include the
Tanimura’s hierarchical EOM for single-mode Drude dissi-
pation �21,22� and the unified Bloch-Redfield-Fokker-Planck
formulation �14,16�; see comments after Eqs. �60� and the
second paragraph of Sec. V C, respectively. The equivalent
hierarchical and continued-fraction Green’s functions and
memory kernels expressions are also presented; see Appen-
dix B. The application of the continued-fraction Green’s
function formalism to the two-state electron transfer system,
with a single-mode Drude-Debye dissipation in the high-
temperature limit, has been carried out recently, resulting in
an analytical expression for the nonperturbative rate process
�36,37�.

Multimode dissipation is physically important. In the
weak �second-order� dissipation regime, the effects of differ-
ent system-bath coupling modes are additive. This simple
property is no longer true in the strong-dissipation regime,
and it has been shown that the strong dissipation should in-
clude also the cases of long-memory system-bath interac-
tions �17�. Cooperative dissipation, similar to cotunneling in
quantum transport �34�, could be a common phenomenon in
reality. The present work is carried out in the bosonic canoni-
cal bath case. The extension to the grand canonical bath en-
semble cases, including both fermion and boson statistics,
will be treated elsewhere �33�.
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APPENDIX A: PARAMETRIZATION OF BATH
CORRELATION FUNCTIONS

The fluctuation-dissipation theorem relates the correlation
functions Caa��t� and the spectral density functions Jaa����
by

Caa��t� =
1

�
�

−�

�

d�
e−i�tJaa����

1 − e−�� . �A1�

The spectral density functions Jaa���� in a canonical en-
semble satisfy in general the symmetry relations

Jaa���� = − Ja�a�− �� = Ja�a
* ��� . �A2�

The FDT leads also to Jaa��0�=0, the spectrum positivity
Jaa���0��0, and the Schwarz inequality Jaa���Jbb���
� �Jab����2.

We adopt the following form of the extended Meier-
Tannor spectral-density parametrization scheme �16,38�, in
which �setting �0

a�0�

Ja��� =
�D

a �

�2 + �
D
a �2 + �

k=0

K
�k

a
k
a� + i�̄k

a�2

��2 − ��k
a + i
k

a�2�2
. �A3�

All parameters involved are real: �k�0
a , 
k

a and 
D
a positive as

well. The symmetry relations in Eq. �A2� require also �noting

that �̄k
aa=0�

�
D
ba,�D

ba,�k
ba,
k

ba,�k
ba, �̄k

ba� = �
D
ab,�D

ab,�k
ab,
k

ab,�k
ab,− �̄k

ab� .

The FDT �Eq. �A1�� leads to the interaction bath correlation
functions of �cf. Eq. �B4� of Ref. �16��

Ca�t � 0� = 	D
a e−
D

a t + �
j=0

2K+1

	 j
a� j

a�t� + �
m=1

�

	̌m
a e−
̌mt,

�A4�

with �noting �0
a�0�

�2k
a �t� � cos��k

at�exp�− 
k
at� , �A5a�

�2k+1
a �t� � �
k0
0

at + sin��k
at��exp�− 
k

at� . �A5b�

The first term on the RHS of Eq. �A4� arises from the pole
of the Drude term in Eq. �A3�. The coefficient involved is
given by

	D
a =

�D
a

2
�cot��
D

a /2� − i� . �A6�

The second term on the RHS of Eq. �A4� arises from the
poles of the second term in Eq. �A3�. The functions � j�t�
involved, given by Eqs. �34�, are chosen to be real in this
work, rather than complex exponential functions used in Ref.

�16�. Note that �0
a�t�=e−
0

at and �1
a�t�=
0

at�0
a�t�, as inferred

from �0
a�0. The coefficients �	 j

a� involved are complex.
Those with even indices are �including k=0 at which �0

a=0�
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	2k
a =

��k
a + �̄k

a�
k
a sinh���k

a� − �̄k
a�k

a sin��
k
a�

4�k
a
k

a�cosh���k
a� − cos��
k

a��
+ i

�̄k
a

4
k
a ,

�A7a�

and those with odd indices are

	1
a =

��0
a + �̄0

a�
4
0

a �cot��
0
a/2� − i� �A7b�

and �2k+1=3,5 , . . . �

	2k+1
a =

�̄k
a�k

a sinh���k
a� + ��k

a + �̄k
a�
k

a sin��
k
a�

4�k
a
k

a�cosh���k
a� − cos��
k

a��
− i

�k
a + �̄k

a

4�k
a .

�A7c�

The last term on the RHS of Eq. �A4� arises from the
Matsubara frequencies,


̌m = 2�m/�, m = 1,2, . . . , �A8�

which constitute poles of the �1−e−�z�−1 factor in Eq. �A1�.
The coefficients involved are

	̌m
a � − i�2/��Ja�− i
̌m� = �	̌m

a �*, m = 1,2, . . . . �A9�

Note that in general, while Ja�Jaa���� can be complex when
a�a�, its analytical continuation to Ja�i�� is purely imagi-
nary in a canonical ensemble system, as inferred from Eq.
�A2�. As a result, 	̌m

a of Eq. �A9� are all real.
In principle, Eqs. �A4�–�A9� can be exact at an arbitrary

finite temperature if K→�. In the hierarchical construction
presented in Sec. IV, K is finite and the Matsubara terms m
=1, . . . ,M are also finite. The residue correction due to the
small difference between the exact Ca�t� and the param-
etrized ones with finite terms is considered in Sec. V. By
doing that, we can even treat the dissipation at T=0, where
the FDT of Eq. �A1� assumes

Ca�t� =
1

�
�

0

�

d�e−i�tJa���, for T = 0, �A10�

while the parametrized ones used in Sec. IV are at a certain
finite low temperature.

APPENDIX B: RECURSIVE GREEN’S FUNCTIONS,
MEMORY KERNELS, AND CONTINUED FRACTION

FORMALISM

1. EOM in tridiagonal coupling matrix form

For the case of a single-mode Drude-Debye dissipation at
high temperature, the EOM assumes the standard tridiagonal
coupling matrix form—i.e., Eqs. �31� in the special case of a
single mode. This property has been used to construct the
continued-fraction formalism �19–22�. The Green’s functions
involved are also identified, together with an interesting ap-
plication to the establishment of an analytical expression for
electron transfer rate processes �36�.

Here, we would like to extend our previous continued-
fraction Green’s-function formalism to the present complex
dissipation systems. To that end, we shall first recast Eqs.

�45� in the standard tridiagonal coupling matrix form. This is
done by considering the order of �n depending on the hier-
archy generating functionals:

nn � �
a,k

�n2k
a + n2k+1

a + n̄2k
a + n̄2k+1

a � + �
a

nD
a + �

a,m
ňm

a .

Collect now all those nth-tier auxiliary density operators—
i.e., �n, which have nn=n—and arrange them into a vector

�n���n ;nn=n�. The size of this vector is
�n+P−1�!

n!�P−1�! if there are

no truncations involved; see Sec. V B. Here, P is the number
of non-negative integers in the index set n; see the comments
after Eq. �44�.

The hierarchical EOM �Eqs. �45�� can then be rearranged
into the standard tridiagonal matrix form as

�t�n = − �n�n − iAn�n−1 − iBn�n+1. �B1�

Note that the swap ones �n
��� are now a part of �n and the �n

matrix elements are all numbers, except the Liouvillian L,
which can also be time dependent in the presence of external
pulsed fields, for example. All �n

�−� are arranged into �n−1
with the Liouville-space operators defined in Eqs. �50� in-
volved in the elements of An. Those �n

�+� are now in �n+1 and
the elements in Bn are according to Eq. �49�.

Note that �0�t�=��t� is the reduced density operator of
primary interest and �0= iL. The collection of the nth-tier
auxiliary density operators has the leading contributions of
the �2n�th-order in the overall system-bath couplings to the
��t� of primary interest. The initial conditions of Eqs. �B1�
are �n�t0�=
n0��t0�, as inferred from the definition.

2. Green’s functions versus memory kernels

In terms of the propagators, by which

�n�t� � Un�t,t0���t0� , �B2�

Eqs. �B1� read �noting that Un�t0 , t0��
n0�

�tUn = − �nUn − iAnUn−1 − iBnUn+1. �B3�

Introduce now the hierarchical set of Green’s functions in
the reduced system Liouville space as follows:

U0�t,t0� � G0�t,t0� , �B4a�

Un�t,t0� � − i�
t0

t

d�Gn�t,��AnUn−1��,t0�, n � 1.

�B4b�

The initial conditions are Gn�t0 , t0�=1. Substituting Eqs.
�B4� into Eq. �B3� then leads to

�tGn�t,t0� = − �nGn�t,t0� − �
t0

t

d��n�t,��Gn��,t0� ,

�B5a�

with the involving memory kernel of

�n�t,�� = BnGn+1�t,��An+1. �B5b�
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In particular, �0�t ,�����t ,�� is the primary memory
kernel, by which �noting that �0= iL�

�̇�t� = − iL�t���t� − �
t0

t

d���t,������ . �B6�

For the time-independent system Hamiltonian, Gn�t ,��
=Gn�t−�� and �n�t ,��=�n�t−��. The above Green’s func-
tions �or memory kernels� can be resolved in the Laplace
frequency domain via the continued-fraction expression of
�36,37�

Ĝn�s� =
1

s + �n + BnĜn+1�s�An+1

. �B7�

Unlike the auxiliary propagators Un, which couple with both
Un+1 and Un−1, the Green’s functions Gn couple only with
Gn+1. Thus, the evaluation of the reduced dynamics of pri-
mary interest could be more efficiently carried out in terms
of the auxiliary Green’s functions, especially when there is
no time-dependent external fields. The continued-fraction
formalism, combined with the Dyson-equation technique,
has been recently applied to the simple electron transfer, a
spin-boson system, in Drude-Debye solvents �36,37�.
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