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To characterize the pairing specificity of RNA secondary structures as a function of temperature, we analyze
the statistics of the pairing weights as follows: for each base �i� of the sequence of length N, we consider the
�N−1� pairing weights wi�j� with the other bases �j� i� of the sequence. We numerically compute the prob-
ability distributions P1�w� of the maximal weight wi

max=maxj�wi�j��, the probability distribution ��Y2� of the
parameter Y2�i�=� jwi

2�j�, as well as the average values of the moments Yk�i�=� jwi
k�j�. We find that there are

two important temperatures Tc�Tgap. For T�Tgap, the distribution P1�w� vanishes at some value w0�T��1,
and accordingly the moments Yk�i� decay exponentially as �w0�T��k in k. For T�Tgap, the distributions P1�w�
and ��Y2� present the characteristic Derrida-Flyvbjerg singularities at w=1/n and Y2=1/n for n=1,2 , . . . . In
particular, there exists a temperature-dependent exponent ��T� that governs the singularities P1�w���1
−w���T�−1 and ��Y2���1−Y2���T�−1 as well as the power-law decay of the moments Yk�i��1/k��T�. The
exponent ��T� grows from the value ��T=0�=0 up to ��Tgap��2. The study of spatial properties indicates
that the critical temperature Tc where the large-scale roughness exponent changes from the low temperature
value ��0.67 to the high temperature value ��0.5 corresponds to the exponent ��Tc�=1. For T�Tc, there
exists frozen pairs of all sizes, whereas for Tc�T�Tgap, there exists frozen pairs, but only up to some
characteristic length diverging as ��T��1/ �Tc−T�� with ��2. The similarities and differences with the weight
statistics in Lévy sums and in Derrida’s random energy model are discussed.
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I. INTRODUCTION

Models of RNA secondary structures �1,2� have been re-
cently studied by physicists �3–11�, because of the similarity
of the low-temperature disorder-dominated phase with the
spin glass phase. This phase has been analyzed either in
terms of replica theory of spin glasses �12�, with nontrivial
overlap distribution function P�q� �3,7,9�, or in terms of the
droplet theory of spin glasses �13�: in this case, a finite drop-
let exponent 	�0 has been obtained via the 
-coupling
method, with finite values 	�0.23 �5,9�, 	=1/3 �8� whereas
a vanishing droplet exponent 	=0 and logarithmic droplets
have been found via the statistics of pinch free energies
�6,11�. Many authors have also studied the phase transition
towards the high-temperature molten phase, with different
values for the correlation length exponent � and the specific
heat exponent �=2−�. Numerical results have given, for
instance, ��3.9 �7� or ��1.1 �9�, and the field theory of
�10� predicts ��8/5�1.6, whereas the general theorem of
Ref. �14� on phase transitions in disordered systems states
that the finite-size correlation exponent � has to satisfy the
bound ��2/d=2.

In this paper, we try to clarify the nature of the low tem-
perature phase and of the freezing transition by studying sta-
tistical properties of the pairing weights. The paper is orga-
nized as follows. The model and usual observables are
recalled in Sec. II. We then present a detailed study of the
pairing weights seen by a given monomer. For clarity, the
statistical properties of the weights alone, independently of
the distances involved are described in Sec. III, whereas the
study of spatial properties is given in Sec. IV. We summarize
our results in Sec. V. For comparison, we recall in the Ap-
pendix the properties of the weights statistics in Lévy sums
and in Derrida’s random energy model �REM�, as well as the
corresponding Derrida-Flyvberg singularities.

II. MODEL AND OBSERVABLES

A. Partition function

An RNA secondary structure of a sequence of N bases
�1,2 , . . . ,N� is a set of base pairs all compatible with each
other. To be compatible, two pairs �i , j� and �k , l� have to be
nonoverlapping �for instance, i� j�k� l� or nested �for in-
stance, i�k� l� j� �1�. The energy of an allowed configu-
ration C is then the sum of the energies 
i,j of all the pairs
�i , j� that are present in the configuration

E�C� = �
�i,j��C


i,j . �1�

This noncrossing property of pairs allows us to write the
following recursion for the partition functions Zi,j of inter-
vals �i , i+1, . . . j−1, j� �1�:

Zi,j = Zi,j−1 + �
k=i

j−pmin

Zi,k−1e−
k,jZk+1,j−1. �2�

The first terms represent the configurations where j is un-
paired, whereas the second term represents the configurations
where j is paired with the base k� �i , i+1, . . . , j− pmin	, and
pmin represents the minimal distance along the sequence to
form a pair. So the full partition function Z1,N can be com-
puted in a CPU time of order O�N3�. In the literature �3–11�,
various choices for the parameter pmin and for the distribu-
tion of the energies 
i,j have been made. To mimic real RNA
sequences, some authors have chosen to work with pmin=4
and random sequences of the four bases A ,C ,G ,U, where
only A-U and G-C pairs are possible �3,4�. However other
authors have chosen other values of pmin=1,2, and a two-
letter code �7�, or to add some continuous disorder to avoid
exact degeneracies �5,8�. Instead of sequence disorder, the
case of bond disorder, where the 
i,j are independent random
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variables has been used in Refs. �6,10,11�. Finally in Ref.
�9�, more complicated models including also stacking ener-
gies have been studied.

All the numerical results we will present below corre-
sponds to the case pmin=1 �the convergence towards the
asymptotic regime N→� is then much more rapid than for
the “biological value” pmin=4�, and to the bond-disorder
case, where the 
i,j are independent random variable drawn
with the flat distribution

��
� = 1 for − 2.5 � 
 � − 1.5. �3�

The sequence length N and the corresponding number ns�N�
of independent sequences that we have studied are typically
as follows:

N = 50,100,200,400,600,800,

ns�N� = 18 � 106,2 � 106,3 � 105,25 � 103,6 � 103,2

� 103. �4�

B. Pair probabilities

The pairing probability of bases �i , j� in the sequence
�1,N� reads

Pi,j =
e−
i,jZi+1,j−1Zi,j

ext

Z1,N
, �5�

where Zi+1,j−1 represents the partition function of the internal
sequence �i+1, . . . , j−1� computed in Eq. �2�, and where Zi,j

ext

represents the partition function of the external sequence
�1,2 , . . . , i−1, j+1, . . . ,N�, which can be computed by ex-
tending the recursion of Eq. �2� to the duplicated sequence
�1,2 , . . . ,N ,1 ,2 , . . . ,N�: Zi,j

ext is then given by Zj+1,N+i−1 �6�.
So the pair probabilities Pi,j can also be computed in a CPU
time of order O�N3�.

C. Height profile

An RNA secondary structure C can be represented as a
noncrossing arch diagram or equivalently as a “mountain
profile” �see Fig. 3 of Ref. �6��, where the height hk repre-
sents the number of pairs �i , j� such that i�k� j: this height
starts at h�k=1�=0, ends at h�k=N�=0, remains non-
negative in between, and the difference �hk+1−hk� can only
take the three values �+1,0 ,−1�. Its thermal average reads in
terms of the pair probabilities of Eqs. �5�


hk� = �
i�k�j

Pi,j . �6�

D. Overlap

In disorder-dominated phases, such as spin-glasses or di-
rected polymers for instance, the overlap is usually a conve-
nient order parameter. Here, the overlap between two con-
figurations C1 and C2 can be defined as

q�C1,C2� =
2

N
�
i�j

1�i,j��C1
1�i,j��C2

, �7�

where the normalization factor N /2 represents the number of
pairs existing in the ground state. The thermal average reads

q2�T� = 
q�C1,C2�� =
2

N
�
i�j

Pi,j
2 �8�

in terms of the pair probabilities of Eq. �5�. However, this
overlap is not an appropriate order parameter for RNA sec-
ondary structure, because it does never vanish, even at T
=� as we now explain.

E. Limit of infinite temperature

In the limit T=�, disorder disappears, and the partition
function can be exactly computed �6�

Z1,N�T = �� �
N→�

3N

N3/2 . �9�

This number of possible configurations corresponds to the
number of one-dimensional �1D� random walks for the
height hk, with three choices per step for the height incre-
ment hk+1−hk=0, ±1, and where the factor 1 /N3/2 is a first-
return probability. From this interpretation of the height as a
positive random walk, it is clear that the middle height hN/2
scales as N1/2


hN/2��T = �� � N1/2. �10�

For 1� l�N, the pair probability of Eq. �5� behaves as

Pi,i+l�T = �� �
N3/2

l3/2�N − l�3/2 . �11�

However, the overlap �Eq. �8�� is finite

q2�T = �� � 0 �12�

because small pairs have a finite weight, in particular for l
=1, Eq. �5� yields

Pi,i+1
�T=�� �

Z1,N−2�T = ��
Z1,N�T = ��

�
1

32 . �13�

F. Limit of zero temperature

At T=0, there is a numerical consensus �5,6,11� that the
disorder-averaged height has a different scaling from the ran-
dom walk value of Eq. �10�


hN/2��T = 0� � N�, �14�

where the roughness exponent

� � 0.67 �15�

is extremely close to the simple value 2/3, although we are
not aware of any rigorous or heuristic argument in favor of
this fraction. The exponent � governing the scaling of large
pairs 1� l�N
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Pi,i+l�T = 0� �
1

N��� l

N
 �16�

is actually directly related to the roughness exponent via the
relation �5,6,10,11�

� = 2 − � �17�

as can be seen from the definition of the height �Eq. �6��.
This relation valid at any temperature corresponds to ��T
=��=3/2 in agreement with Eq. �11�, and to

��T = 0� � 1.33 �18�

as directly measured in Refs. �5,11�.

G. Characterization of the transition in previous works

Previous work has shown that there exists a finite tem-
perature transition between a high temperature or molten
phase, where entropy dominates, and a low-temperature
phase where disorder dominates. But very different observ-
ables have been used numerically to characterize the transi-
tion, such as the overlap probability distribution P�q� �3,7,9�,
the 
-coupling method �5�, and the so-called “pinch-free en-
ergy” �6,11�. In the field theory of Ref. �10�, the critical
exponents exactly at criticality were found to be the same as
the ones in the low temperature phase, both for the height

��T � Tc� =
1

2
,

��T � Tc� = ��T = 0� �19�

and for the overlap Pi,i+l
2 of large pairs l�1

Pi,i+l
2 � �Pi,i+l�2 �

1

l3 for T � Tc,

Pi,i+l
2 � Pi,i+l �

1

l��T=0� for T � Tc. �20�

In the following, we propose to study the freezing transi-
tion via the statistical properties of the pair weights seen by
a given monomer. In Ref. �4�, the integrated probability dis-
tribution of the maximal weight pmax seen by a given mono-
mer has been measured to characterize the barrier statistics
between degenerate ground states for discrete disorder, but
the phase transition region was not studied in details from
this point of view. In another context concerning disordered
polymers �15�, the distribution of the maximal weight pmax
was used to analyze a phase transition, the important region
being there the neighborhood of pmax→0, whereas in the
present study, the important region is the region pmax→1.

III. STATISTICAL PROPERTIES
OF THE PAIR WEIGHTS

A. Pair landscape seen by a given monomer

For each base �i� of the sequence of length N, we consider
the �N−1� pairing weights with the other bases �j� i� of the
sequence �Eq. �5��

wi�j� � Pi,j =
e−
i,jZi+1,j−1Zi,j

ext

Z1,N
. �21�

Making the convention that wi�i� denotes the weight of the
configurations where �i� is unpaired

wi�i� �
Zi,i

ext

Z1,N
�22�

these weights are normalized to

�
j�i

wi�j� = 1 − wi�i� . �23�

The pairing weight landscape seen by a given monomer is
shown for two temperatures in Fig. 1: in the low-temperature
frozen phase, only a few weights dominate in continuity with

FIG. 1. Pairing weight landscape u� N
2

�= �−ln wN/2�j�� seen by the
middle monomer �see Eq. �21��, for N=200 at low and high tem-
peratures �a� at low temperature �T=0.02�, only a few weights
dominate �note the scale of ln wi�j��, at some random positions �b�
at high temperature �T=0.5�, the disorder is a small perturbation
with respect to the entropy of the pure case that favors the
neighbors.
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the limit of zero temperature where only one weight is non-
zero, whereas in the high temperature phase, many weights
contribute, and disorder represents a small random correction
around the entropic term of the T=� limit �Eq. �11��.

In the rest of this section, we describe the statistical prop-
erties of the weights alone, independently of the distances
involved. The study of spatial properties is postponed to Sec.
IV for clarity.

B. Characterization of the weights statistics

In analogy with the weight statistics in Lévy sums and in
the random energy model �16,17� �we refer the reader to the
Appendix for a summary of the most important results for
our present study�, we have numerically computed the prob-
ability distributions P1�w� of the maximal weight

wi
max = maxj�i�wi�j�	 �24�

as well as P2�w� of the second maximal weight.
Another useful way to characterize the statistical proper-

ties of the weights �16,17� �see the Appendix� is to consider
the moments of arbitrary order k

Yk�i� = �
j�i

wi
k�j� �25�

that represents the probability that the monomer �i� is paired
to the same monomer in k different thermal configurations of
the same disordered sample. We have measured the probabil-
ity ��Y2� of the parameter

Y2�i� = �
j�i

wi
2�j� �26�

as well as the moments Yk�i� for 2�k�100. Finally, we
have also computed the density of weights

f�w� = �
j�i

��w − wi�j�� �27�

giving rise to the moments

Yk�i� = �
0

1

dwwkf�w� . �28�

The normalization condition for the density f�w� is

Y1�i� = �
0

1

dwwf�w� = 1. �29�

The properties of all these quantities in the case of Lévy
sums of independent variables are recalled in the Appendix.
In the following, we describe their properties for the RNA
case and discuss the similarities and differences with Lévy
sums. The numerical results for the histograms P1�w�, P2�w�,
f�w�, ��Y2� have been obtained by collecting the weights
seen by each monomer i=1,2 . . .N in the ns�N� disordered
sequences generated �see Eq. �4� for the numerical values
used for N and ns�N��.

C. Probability distribution P1„w… of the largest weight
seen by a given monomer

The probability distribution P1�w� of the largest weight
seen by a given monomer is shown in Fig. 2 for low and high
temperatures. At low temperature �Fig. 2�a��, this distribution
presents a divergent singularity near w→1

P1�w� �
w→1

�1 − w���T�−1 �30�

with a temperature dependent exponent ��T�, called � in
analogy with the case of Lévy sum of index �, and with the
random energy model where ��T�=T /Tg �see the Appendix�.
However here in RNA, the pairings free-energies are not

FIG. 2. �Color online� Probability distribution P1�w� of the larg-
est weight seen by a given monomer �see Eq. �24�� �a� at T=0.05
�low-temperature phase� for N=50,100,200,400: the characteristic
Derrida-Flyvbjerg singularities at w=1 and w=1/2 are clearly vis-
ible. �b� at T=0.4 �high-temperature phase� for N=50,100,200: the
distribution P1�w� does not reach w=1 anymore, but vanishes at
some maximal value w0�T��1.
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independent variables and are not drawn with the same dis-
tribution �as a consequence of the distances involved�, so the
full distribution P1�w� cannot coincide with the Lévy sums
result. Nevertheless, we find that P1�w� presents the charac-
teristic Derrida-Flyvbjerg singularities at w=1/n �see the
Appendix�. The stronger singularity occurs at w=1 and de-
fines the exponent ��T� �30�, but the second singularity at
w=1/2 is also clearly visible on Fig. 2. This shows that for
each base in the frozen phase, all the weight is concentrated
on a few pairing partners j.

At sufficiently high temperature �Fig. 2�b��, the distribu-
tion P1�w� does not reach w=1 anymore, but vanish at some
maximal value w0�T��1

P1�w� �
w→w0�T�

�w0�T� − w�� �31�

with some exponent �, that within our numerical precision,
does not depend on temperature �see below�. So the present
results for P1�w� reveal the importance of two temperatures
T1�Tgap defined as follows. The temperature T1 is defined
by

��T1� = 1 �32�

in Eq. �30�: for T�T1, the probability distribution P1�w� is
divergent as w→1 �as in Fig. 2�a��, whereas for T�T1, the
probability distribution P1�w� vanishes at w=1 �see Fig.
3�b��. Exactly at T1, P1�w=1� remains finite �see Fig. 3�a��.
The second temperature Tgap is defined as the last tempera-
ture where P1�w� reaches w=1 with some exponent ��Tgap�.
For T�Tgap, a gap appears in Eq. �31�

w0�Tgap� = 1, �33�

w0�Tgap + 
� � 1. �34�

We find that Tgap is clearly above T1�0.095 since at T2
�0.15, P1�w� still reaches w=1 with a finite slope corre-
sponding to ��T2��2 as shown in Fig. 3�b�.

D. Probability distribution P2„w… of the second largest weight
seen by a given monomer

We show in Fig. 4 the probability distribution P2�w� of
the second largest weight. The main singularities of P2�w�
are the divergence near w→0 and the singularity near w
→ �1/2�−, which is complementary to the singularity of
P1�w� at the same point w→ �1/2�− �17� �see Eq. �A19� and
explanations in the Appendix�. For T=0.02 �Fig. 4�a��, there
exists an infinite slope for P2�w� and P1�w� as w→ �1/2�−.
For T=T1�0.095 �Fig. 4�b��, there exists a cusp for P2�w�
and P1�w� as w→ �1/2�−.

E. Probability distribution �„Y2… of the parameter Y2

The parameter Y2 defined in Eq. �26� can reach the value
Y2→1 only if the maximal weight wmax also reaches wmax

→1. As a consequence, the probability distribution ��Y2�
has the same singularity near Y2→1 as in Eq. �30�

��Y2� �
Y2→1

�1 − Y2���T�−1 �35�

for 0�T�Tgap �see Fig. 5�a��, whereas a gap appear for T
�Tgap, as shown in Fig. 5�b�.

For T�Tgap, the distribution ��Y2� presents the charac-
teristic Derrida-Flyvbjerg singularities at Y2=1/n �see Ap-
pendix�: in Fig. 5�a�, beyond the main singularity at Y2=1,
the secondary singularities at Y2=1/2 and at Y2=1/3 are
clearly visible. The distribution ��Y2� is shown in Fig. 6 for
the two temperatures T1 and T2 corresponding to ��T1�=1
and ��T2��2, and can be compared with the distribution
P1�w� in Fig. 3.

FIG. 3. �Color online� Probability distribution P1�w� of the larg-
est weight seen by a given monomer �see Eq. �24�� �a� at T1

�0.095 where ��T1�=1 for N=50,100,200,400: P1�w� does not
diverge anymore as w→1 but remains finite. �b� At T2=0.15, where
��T2��2 for N=50,100,200,400: the distribution P1�w� vanishes
linearly as w→1.
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F. Density f„w…

The density f�w� introduced in Eq. �27� is shown on Fig.
7 at low and high temperature, respectively. By construction,
this density coincides with the maximal weight distribution
P1�w� for w�1/2, with the sum �P1�w�+ P2�w�� of the two
largest weight distributions for 1 /3�w�1/2, and so on �17�
�see Eq. �A19��. As a consequence, f�w� has the same singu-
larity near w→1 as P1�w� �Eq. �30��, and the same gap �Eq.
�31�� as long as w0�T��1/2. The only other singularity is
near w→0 where f�w� diverges in a nonintegrable manner,
because in the N→�, there is an infinite number of vanish-
ing weights (only the product �wf�w�� has to be integrable at

w=0 as a consequence of the normalization condition of Eq.
�29�).

In Fig. 8, we compare the density f�w� measured in RNA
with the density fLevy�w� �Eq. �A7�� describing the weight
statistics in Lévy sums of independent variables. For small
��1, the two density are rather close �Fig. 8�a��. For larger
�, they are very different, because the density fLevy�w� dis-
appears at the critical value �c=1 �see the denominator of
Eq. �A7��, whereas for RNA the density f�w� exists beyond
�=1.

G. Moments Yk„i…

The moments Yk�i� �Eq. �25�� for various temperature are
shown on Fig. 9 as functions of k�100. The decay for large

FIG. 4. �Color online� Probability distributions P1�w� and P2�w�
of the two largest weights seen by a given monomer �see Eq. �24��
�a� for T=0.02 �here N=200� there exists an infinite slope for P2�w�
and P1�w� as w→ �1/2�− �b� for T1�0.095 �here N=400�, there
exists a cusp for P2�w� and P1�w� as w→ �1/2�−.

FIG. 5. �Color online� Probability distribution ��Y2� of the pa-
rameter Y2 �see Eq. �26�� �a� at T=0.05 �low-temperature phase� for
N=50,100,200,400: the characteristic Derrida-Flyvbjerg singulari-
ties at Y2=1, Y2=1/2, and at Y2=1/3 are clearly visible. �b� At T
=0.4 �high-temperature phase� for N=50,100,200: the distribution
��Y2� does not reach Y2=1 anymore, but presents a gap.
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k directly reflects the behavior of the distribution of the den-
sity f�w� near its maximal value, as can be seen in Eq. �28�.
For 0�T�Tgap, where P1�w� and f�w� behaves near w→1
as in Eq. �30�, the decay in k follow a power-law of exponent
��T�

Yk�i� �
k→�

1

k��T� for T � Tgap. �36�

For T�Tgap, where there exists a gap w0�T� for P1�w�, Eq.
�31� also applies to f�w� as long as w0�T��1/2 �since
f�w�= P1�w� for w�1/2 as mentioned above�. This implies
an exponential decay

Yk�i� �
k→�

�w0�T��k

k1+� for T � Tgap. �37�

Numerically, the measure of the decay of Yk�i� is the most
convenient way to localize the temperature Tgap where the
gap appears, and to measure the exponents. The temperature
Tgap, where the gap appears is found to be

Tgap � T2 � 0.15. �38�

The exponent � seems to be independent of T

� � 0.5. �39�

The exponent ��T� grows with the temperature for 0�T
�Tgap, as shown in Fig. 9�b�: the temperature T1 where
��T1�=1 is

FIG. 6. �Color online� Probability distribution ��Y2� of the pa-
rameter Y2 �see Eq. �26�� �a� at T1�0.095 where ��T1�=1 for N
=50,100,200,400: ��Y2� does not diverge anymore as Y2→1 but
remains finite and �b� at T2=0.15, where ��T2��2 for N
=50,100,200,400: the distribution ��Y2� vanishes linearly as Y2

→1.

FIG. 7. �Color online� Density f�w� of weights seen by a given
monomer �see Eq. �27�� �a� at T=0.05 �low-temperature phase� for
N=50,100,200,400. Near w→1, f�w� presents the same singular-
ity as P1�w�. �b� At T=0.4 �high-temperature phase� for N
=50,100,200: f�w� vanishes at some value w0�T��1.
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T1 � 0.095. �40�

In contrast with the REM �see the Appendix� where
��T�=T /Tg is linear in the whole low temperature phase,
Fig. 9�b� presents some curvature, which probably reflects
the presence of some entropy. However, in the limit of very
low temperature, the exponent ��T� is linear in T and the
coefficient depends on the droplet density as we now ex-
plain.

H. Droplet analysis at order T in temperature

At T=0, there exists a unique ground-state where each
monomer �i� is paired with its ground-state partner jg.s.�i�. In
the droplet analysis of disordered systems �13,18,19�, vari-

ous observables can be computed as first order in T in terms
of the density ��E=0,��dE of two-level excitations of en-
ergy E→0 and size �. For instance the specific heat and the
overlap are given in 1D disordered spin chains by �19,20�

C�T� �
T→0

T
�2

6
� d���E = 0,�� + O�T2� , �41�

1 − qEA�T� �
T→0

2T� d����E = 0,�� + O�T2� , �42�

i.e., the specific heat is related to the number of excitations
whereas the overlap involves the number of spins belonging
to excitations. We may apply this droplet analysis to Yk�i�:
the contribution at order T comes from the monomers i be-
longing to a droplet of energy E→0: the pair with the

FIG. 8. �Color online� Density f�w� of weights seen by a given
monomer �see Eq. �27�� as compared to fLevy�w� �Eq. �A7�� for the
corresponding value of � �thick curve� �a� at T=0.02, where
��0.02��0.13 �for N=100,200,400�: f�w� is rather close to the
density fLevy�w�. �b� At T=0.08 where ��0.08��0.77 �for N
=50,100,200�: there is now a big difference between the density
f�w� measured for RNA and the density fLevy�w�.

FIG. 9. �Color online� �a� Decay of the moments Yk�i� of Eq.
�36� as a function of k�100 for N=800 and T
=0.01,0.02,0.05,0.095. �b� Exponent ��T� as measured from the
slope of the log-log decay in the asymptotic region.
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ground-state partner has for weight 1 / �1+e−E�, whereas the
pair with the droplet partner has the complementary weight
e−E / �1+e−E�. Within this two-level description, one gets

1 − Yk�i� �
T→0

� dE� d����E,���1 − � 1

1 + e−Ek

− � e−E

1 + e−Ek�
�

T→0
T�� d����E = 0,��Ik + O�T2� , �43�

where the integral Ik

Ik = �
1/2

1 dp

p�1 − p�
�1 − pk − �1 − p�k� = �

m=1

k−1
1

m
�44�

behaves logarithmically at large k

Ik �
k→�

ln k . �45�

The comparison of this droplet analysis with Eq. �36� indi-
cates that the exponent ��T� should increase from ��T=0�
=0 linearly in T with a coefficient related to the droplet den-
sity

��T� � T�� d����E = 0,�� + O�T2� . �46�

IV. STUDY OF SPATIAL PROPERTIES

In the last section, we have studied in details the statistics
of the weights independently of the distance and identified
two important temperatures T1 and Tgap. We now turn to the
analysis various spatial properties to clarify the meaning of
T1 and Tgap for the pair length statistics.

A. Weight statistics for long-range pairs

The density f�w� defined in Eq. �27� can be decomposed
into l-dependent components as

f�w� = �
l

f l�w� , �47�

where f l�w� represents the density of weight of pairs of
length l. At T=�, these densities are concentrated on a single
l-dependent value �see Eq. �11� for N→��

�f l�w��T=� � ��w −
a

l3/2 , �48�

whereas at zero temperature �see Eq. �16� for N→��, a
weight is either 0 �if the pair is not in the ground state� or 1
�if the pair belongs to the ground state�

�f l�w��T=0 � bl��w� + cl��w − 1� , �49�

where the amplitude cl of the existing weights �see Eq. �16�
for N→�� decay with l as

cl �
1

l��T=0� =
1

l1.33 . �50�

The densities f l�w� are plotted for various lengths l at low
and high temperature, respectively, in Fig. 10. At T=0.05
�Fig. 10�a��, all curves present divergences at w→0 and at
w→1, in continuity with the two delta peaks present at T
=0 �Eq. �49��. At T=0.4 �Fig. 10�b�� all curves display an
l-dependent gap, in similarity with the l-dependent delta
peak of the T=� limit �Eq. �48��.

We show in Fig. 11 the case of the two important tem-
peratures T1 and Tgap. At T1�0.095 �Fig. 11�a��, all densities
f l�w� still reach the value w=1. At Tgap�0.15, the densities
f l�w� of small sizes l still reach the value w=1, whereas the
densities f l�w� of large sizes l do not.

These curves suggest the following picture: �i� for T
�T1, all densities f l�w� diverge near w→1, so there exist

FIG. 10. �Color online� Density f l�w� of weights for pair lengths
l=3,7 ,15,31,63 for size N=200 �a� at T=0.05, all curves diverge
as w→1. �b� at T=0.4, all curves display an l-dependent gap.
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frozen pairs of all sizes, �ii� for T1�T�Tgap, there exist
frozen pairs, but only of finite size, �iii� for T�Tgap, even
short pairs are not frozen anymore. We now present various
quantitative studies that confirm this scenario.

B. Statistics of the distance lpref to the preferred partner

We now consider the probability distribution PN
pref�lpref� of

the distance lpref= �jpref�i�− i� between a base i and its pre-
ferred partner jpref�i�, i.e., the monomer jpref� i having the
maximal weight �Eq. �24��. At T=0, this distribution coin-
cides with the pair distribution of the ground state �Eq. �16��

�PN
pref�l��T=0 = Pi,i+l�T = 0� �

1

N��T=0��� l

N
 , �51�

whereas at T=�, the maximal weight corresponds to the
nearest neighbors with l=1 for entropic reasons �Eqs. �11�
and �13��

�PN
pref�l��T=� = �l,1. �52�

So the first moment of this distribution

lpref �� dllPN
pref�l� �53�

represents a correlation length that remains finite in the high
temperature phase as N→�. Since the second moment is
also expected to be finite in the high temperature phase, it is
convenient to define the ratio

BN�T� =
�lpref�2

Nlpref �54�

which converge to 0 in the high temperature phase, and to a
nonzero value at criticality and in the low temperature phase.
The results are shown on Fig. 12�a�: the critical temperature
Tc coincide with T1

Tc = T1 � 0.095. �55�

The finite-size scaling of these data according to

BN�T� � B��T − Tc�N1/�� �56�

is consistent with the value

� � 2 �57�

as shown on Fig. 12�b�.
We now discuss the behavior of lpref as a function of N for

various temperatures. For T�Tc, it grows as

lpref � N0.67 �58�

and the probability distribution PN
pref�l� follows the same

scaling form as in the T=0 limit �Eq. �51��:

�PN
pref�l��T�Tc

�
1

N1.33�� l

N
 �59�

as shown in Fig. 13�a�. At Tc=T1�0.095, the first moment
grows as

lpref � N0.5 �60�

and the probability distribution PN
pref�l� follows the scaling

form

�PN
pref�l��Tc

�
1

N1.5�� l

N
 �61�

as shown in Fig. 13�b�. In Fig. 14�a�, the rescaled variable
lpref /N0.5 is shown as a function of T for various sizes: there
is a crossing at Tc, and the data follow the finite-size scaling
behavior

FIG. 11. �Color online� Densities f l�w� of weights for pair
lengths l=3,7 ,15,31,63 for size N=200 �a� at T1�0.095, all den-
sities f l�w� still reach the value w=1 �b� at Tgap=0.15, the densities
f l�w� of small sizes l still reach the value w=1, whereas the densi-
ties f l�w� of large sizes l do not.
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lpref

N0.5 � L��T − Tc�N1/�� �62�

with ��2 in agreement with the previous estimate of Eq.
�57�.

C. Pair distribution Pi,i+l and height scaling

We have measured the median height for each sample

hmed =
1

N
�

k


hk� . �63�

Its average over samples is directly related to the first mo-
ment of the pair distribution Pi,i+l �see Eq. �6��

hmed = �
l

lPi,i+l. �64�

We find that in the whole low-temperature phase and at Tc,
the roughness exponent is the same as at T=0 �Eq. �14��

hmed � N0.67 for 0 � T � Tc. �65�

This is in agreement with Eq. �19� quoted from Ref. �10�.
Above Tc, the crossover towards the high-temperature rough-
ness exponent �=1/2 �Eq. �10�� is well described by the
following finite-size scaling form �see Fig. 15�:

hmed

N0.67 � H��T − Tc�N1/�� for T � Tc �66�

with ��2 in agreement with the previous estimates of Eqs.
�57� and �62�.

FIG. 12. �Color online� Ratio BN�T� defined in Eq. �54�: �a� as a
function of temperature T for sizes N=100 ���, N=200 ���, N
=400 ���, N=600 ���, N=800 ���. �b� Finite size scaling of the
same data in terms of the variable x= �T−Tc�N1/� �see Eq. �56�� with
Tc=0.095 and �=2.

FIG. 13. �Color online� Scaling form of the probability distribu-
tion PN

pref�l�: log-log plot of N�PN
pref�l� in terms of x= l /N �a� for

T=0.05 �low-T phase� the rescaling is done with �=1.33 �see Eq.
�59�� and �b� for Tc�0.095 the rescaling is done with �c=1.5 �see
Eq. �61��.
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Accordingly, we find that the pair distribution Pi,i+l fol-
lows the T=0 finite-size scaling of Eq. �16� in the whole
low-temperature phase and also at Tc

Pi,i+l�Tc� �
1

N1.33�� l

N
 . �67�

D. Overlap Pi,i+l
2 of large pairs l

We have also measured the overlap Pi,i+l
2 of large pairs.

We find that the first moment scales as

� dllPi,i+l
2 � N0.67 for 0 � T � Tc, �68�

� dllPi,i+l
2 � N0.5 for T = Tc, �69�

� dllPi,i+l
2 � cte for T � Tc. �70�

The scaling exactly at Tc is distinct from the low-temperature
phase in disagreement with Eq. �20� quoted from Ref. �10�,
but coincides with the scaling found above for lpref �Eq.
�60��. It is thus convenient to define the ratio

RN�T� =
� dllPi,i+l

2

� dllPi,i+l

�71�

which converge to 0 in the high temperature phase, and to a
nonzero value in the low temperature phase. Exactly at Tc, it

FIG. 14. �Color online� �a� Plot of vN�T�= lpref�N� /N0.5 as a
function of T for the sizes N=100 ���, N=200 ���, N=400 ���,
N=600 ���, N=800 ���. �b� Finite size scaling of the same data in
terms of the variable x= �T−Tc�N1/� �see Eq. �62�� with Tc=0.095
and �=2.

FIG. 15. �Color online� Height scaling: �a� the curves zN�T�
=hmed/N0.67 of various sizes N=50 �*�, N=100 ���, N=200 ���,
N=400 ���, N=600 ��� present crossings shifting towards Tc. �b�
Finite size scaling of the same data in terms of the variable x= �T
−Tc�N1/� �see Eq. �66�� with Tc=0.095 and �=2.
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is expected to decay as N0.5 /N0.67=N−0.17. In Fig. 16�a�, the
curves KN�T�=N0.17RN�T� present crossings that shift regu-
larly towards Tc. The finite-size scaling of these data accord-
ing to

KN�T� = N0.17RN�T� � R��T − Tc�N1/�� �72�

with Tc=0.095 and �=2 is shown on Fig. 16�b�.

V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the freezing transition of
random RNA secondary structures via the statistics of the
pairing weights seen by a given monomer. In analogy with
Lévy sums and Derrida’s random energy model �16,17�, we
have numerically computed the probability distributions
P1�w� of the maximal weight, the probability distribution

��Y2� of the parameter Y2�i�=� jwi
2�j�, as well as the average

values of the moments Yk�i�=� jwi
k�j�. We have found two

important temperatures Tc�Tgap. For T�Tgap, the distribu-
tion P1�w� and ��Y2� have a gap and, accordingly, the mo-
ments Yk�i� decay exponentially in k. For T�Tgap, these mo-
ments decay with a power-law Yk�i��1/k��T�, and the
distributions P1�w� and ��Y2� present the characteristic
Derrida-Flyvbjerg singularities at w=1/n and Y2=1/n for
n=1,2 , . . .. The most important singularities occur at w=1
with P1�w���1−w���T�−1 and ��Y2���1−Y2���T�−1. The ex-
ponent ��T� increases with the temperature from the value
��T=0�=0 up to ��Tgap��2. The study of spatial properties
indicates that the critical temperature Tc where the large-
scale roughness exponent changes from the low temperature
value ��0.67 to the high temperature value ��0.5 corre-
sponds to the exponent ��Tc�=1. The final picture is thus as
follows: �i� for T�Tc, there exist frozen pairs of all sizes, �ii�
for Tc�T�Tgap, there exist frozen pairs, but they are of
finite-size, �iii� for T�Tgap, even short pairs are not frozen
anymore. Finally, the finite-size scaling of various data are
consistent with a correlation length exponent ��2 that satu-
rates the general bound ��2/d=2 of �14� for phase transi-
tions in disordered systems.

In conclusion, the numerical study of the weight statistics
appears as an interesting tool to clarify the nature of low
temperature phases existing in disordered systems. In par-
ticular, we have shown that the frozen phase is characterized
by a temperature-dependent exponent ��T� that governs the
broadening of the delta peak existing at w=1 at T=0. We
intend to study in a similar way other disordered models
�21�.

APPENDIX: REMINDER ON LÉVY SUMS, THE RANDOM
ENERGY MODEL, AND DERRIDA-FLYVBJERG

SINGULARITIES

1. Lévy sums when the first moment is infinite

In this section, we recall some results on the weight sta-
tistics �16� for the case of Lévy sums

SN = �
i=1

N

xi �A1�

of N positive independent variables �x1 , . . . ,xN� distributed
with a probability distribution that decays algebraically

��x� �
x→+�

A

x1+� �A2�

with 0���1, i.e., when the first moment diverges 
x�=
+�. The sum SN then grows as N1/�, and the rescaled vari-
able is distributed with a stable Lévy distribution �22�. An-
other important property is that the maximal variable xmax�N�
among the N variables �x1 , . . . ,xN� is also of order N1/�, i.e.,
the sum SN is actually dominated by the few biggest terms
�16,22�. To quantify this effect, it is convenient to introduce
the weights

FIG. 16. �Color online� Critical behavior of the ratio RN�T� de-
fined in Eq. �71�: �a� curves KN�T�=N0.17RN�T� for the sizes N
=50 �*� N=100 ���, N=200 ���, N=400 ���, N=600 ���, N
=800 ���. �b� Finite size scaling of the same data in terms of the
variable x= �T−Tc�N1/� �see Eq. �72�� with Tc=0.095 and �=2.
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wi =
xi

SN
�A3�

and their moments

Yk = �
i=1

N

wi
k. �A4�

In particular, their averaged values in the limit N→� are
finite for 0���1 and reads �16�

Yk
Levy =

��k − ��
��k���1 − ��

. �A5�

The density f�w� giving rise to these moments

Yk
Levy = �

0

1

dwwkf�w� �A6�

reads

fLevy�w� =
w−1−��1 − w��−1

������1 − ��
�A7�

and represents the averaged number of terms of weight w.
This density is nonintegrable as w→0, because in the limit
N→�, the number of terms of vanishing weights diverges.
The normalization corresponds to

Yk=1
Levy = �

0

1

dwwf�w� = 1. �A8�

More generally, correlations functions between Yk can also
be computed �16�, and the joint density of K weights reads
�17�

f�w1, . . . ,wK� =
�K−1��K�

�K�1 − ����K����
i=1

K

wi
−1−�

��1 − �
i=1

K

wiK�−1

. �A9�

2. Reminder on the random energy model

The random energy model �REM� introduced in the con-
text of spin glasses �23� is defined by the partition function
of N spins

ZN = �
�=1

2N

e−E�, �A10�

where the �2N� energy levels are independent random vari-
ables drawn from the Gaussian distribution

PN�E� =
1

��N
e−E2/N. �A11�

It turns out that the low temperature phase 0�T�Tg of the
REM �16,24� is in direct correspondence with Lévy sums of
index 0��= T

Tg
�1: the weights

w� =
e−E�

ZN
�A12�

have exactly the same moments Yk �Eq. �A5�� and the same
density f�w� �Eq. �A7��. The explanation is that the lowest
energy in the REM are distributed exponentially

Pextremal�E� �
E→−�

e�E. �A13�

This exponential form that corresponds to the tail of the
Gumbel distribution for extreme-value statistics �25,26�, im-
mediately yields that the Boltzmann weight x=e−E has a
distribution that decays algebraically �Eq. �A2�� with expo-
nent

� = T� . �A14�

In the REM, the coefficient � in the exponential �Eq. �A13��
is �=1/Tg.

The link with the thermodynamics is that the entropy SN
remains finite as N grows and is given in terms of the
weights by �27�

SN�T � Tg� = − �
i=1

N

wi ln�wi�

= − ��k�
i=1

N

wi
k�

k→1

= − ��kYk�k→1

= ���1� −
���1 − ��T��
��1 − ��T��

�A15�

and the corresponding specific heat CN�T�Tg�=T�TSN�T�
then coincides with the finite-size result computed in Ref.
�23�. So the entropy per spin SN /N and the specific heat
CN /N vanish as N→� in the whole low-T phase. In the
critical region T→Tg

−, the finite-size scaling behavior is

CN�T�
N

�
1

N�Tg − T�2 . �A16�

As a final remark, let us mention that in the mean-field
Sherrington-Kirkpatrick �SK� model of spin-glasses, the
same expressions of Yk �Eq. �A5�� also appear �12,28�, but
with a different interpretation: the weights are those of the
pure states. As a consequence, the parameter ��T�, which is
a complicated function of the temperature, vanishes at the
transition ��Tc�=0 �only one pure state in the high tempera-
ture state� and grows as T is lowered towards ��T=0� of
order 0.5 �29�. This is in contrast with the REM model where
��T�=T /Tg grows with the temperature from ��T=0�=0
�only one ground state� to ��Tg�=1 at the transition, where
the number of important microscopic states is not finite any-
more. Nevertheless, the expression �Eq. �A5�� for the
weights of pure states means that the free-energy f of pure
states in the SK model is distributed exponentially

P�f� �
f→−�

e��T�f �A17�

with a parameter ��T�=��T� /T.
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3. Derrida-Flyvbjerg singularities

In Ref. �17�, the statistics of the weights wi normalized to

�
i

wi = 1 �A18�

for Lévy sums with 0���1 or equivalently of the REM or
SK model have been studied in detail. In particular, the prob-
ability distributions P1�w� of the maximal weight wmax

=maxi�wi�, P2�w� of the second maximal weight, and ��Y2�
of the parameter Y2=�iwi

2 present singularities at w=1/n
and Y2=1/n for n=1,2. . .: this shows that all the weight is
concentrated on a few terms.

The origin of these singularities is that the density of
weights given in Eq. �A7� satisfy �17�

f�w� = P1�w� for
1

2
� w � 1,

f�w� = P1�w� + P2�w� for
1

3
� w �

1

2
,

f�w� = P1�w� + ¯ + Pn�w� for
1

n + 1
� w �

1

n
.

�A19�

For w→1, P1�w� thus presents the same singular behavior as
f�w� of Eq. �A7�

P1�w = 1 − 
� �

→0


�−1. �A20�

For w→1/2, the singularity of P1�w� comes from the two
different expressions of Eqs. �A19�

P1�w =
1

2
+ 
 − P1�w =

1

2
− 


= f�w =
1

2
+ 
 − � f�w =

1

2
− 
 − P2�1

2
− 
�

�

→0

P2�1

2
− 
 . �A21�

For 1/3�w2�w1, the joint probability that the two largest
weights are w1 and w2 is given by Eq. �A9� for K=2

f�w1,w2� =
�

�2�1 − ����2��
w1

−1−�w2
−1−��1 − w1 − w2�2�−1

�A22�

and thus P2�w2� reads for 1 /3�w2�1/2

P2�w2� = �
w2

1−w2

dw1f�w1,w2� =
�

�2�1 − ����2��
w2

−1−�

��
w2

1−w2

dw1w1
−1−��1 − w1 − w2�2�−1. �A23�

The singularity near w2→1/2 is thus of order

P2�w2 =
1

2
− 
 � �

1/2−


1/2+


dw1�1

2
+ 
 − w12�−1

� 
2�.

�A24�

So for w1, w2→1/2, P1�w1� and P2�w2� have a singularity of
order 
2�, i.e., there is no divergence, in contrast with the
singularity near w→1, but there is an infinite slope for 0
���1/2. More generally, the singularities of P1�w1� at
w1=1/n−
 are weaker and weaker as n grows according to
�17�

P1�w1 =
1

n
− 
 � 
2�−2+n. �A25�

Similarly, for the distribution ��Y2�, the singularities are
given by �17�

��Y2 =
1

n
− 
 � 
n��+1/2�−3/2. �A26�

In particular, near Y2→1, ��Y2� exhibits the same diver-
gence as P1�w→1�

��Y2 = 1 − 
� � 
�−1 �A27�

and near Y2→1/2, the singularity

��Y2 =
1

2
− 
 � 
2�−1/2 �A28�

corresponds to an infinite slope for 0���
3
4 . We refer the

reader to Ref. �17� for more details. The shapes of P1�w�,
P2�w�, and ��Y2� can be found for �=0.3 and �=0.1 on
Figs. 3 and 4 of Ref. �17� respectively. Similar Derrida-
Flyvbjerg singularities describe above for the case of Lévy
sums or spin-glasses �REM or SK�, actually occur in many
other contexts, such as randomly broken objects �17,30�, in
population genetics �31–33�, in random walk excursions or
loops �16,34,35�.
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