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Nucleation is considered near the pseudospinodal in a one-dimensional �4 model with a nonconserved order
parameter and long-range interactions. For a sufficiently large system or a system with slow relaxation to
metastable equilibrium, there is a non-negligible probability of nucleation occurring before reaching metastable
equilibrium. This process is referred to as transient nucleation. The critical droplet is defined to be the con-
figuration of maximum likelihood that is dynamically balanced between the metastable and stable wells.
Time-dependent droplet profiles and nucleation rates are derived, and theoretical results are compared to
computer simulations. The analysis reveals a distribution of nucleation times with a distinct peak characteristic
of a nonstationary nucleation rate. Under the quench conditions employed, transient critical droplets are more
compact than the droplets found in metastable equilibrium simulations and theoretical predictions.
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I. INTRODUCTION

Standard nucleation theory predicts a single metastable
equilibrium nucleation rate, which gives rise to an exponen-
tial distribution of nucleation times. A key assumption in the
application of the standard theory is that the system is in
metastable equilibrium. In practice, any system that has un-
dergone a quench relaxes into metastable equilibrium. Dur-
ing this relaxation, the system has a finite probability of ini-
tiating a decay to the stable phase via an isolated droplet.
This process, referred to as transient nucleation, is of both
practical and theoretical interest. Experimentally, transient
nucleation has been observed in the laser melting of thin
silicon films �1�, crystallization in amorphous alloys �2,3�,
and liquid crystals �4�. Theoretical work has concentrated on
mean-field kinetic descriptions �5–12�. Studies of transient
nucleation in �4 models �13–16� have shown a distribution
of nucleation times with a distinct peak and exponential tail.

In a mean-field system, the spinodal defines the limit of
metastability. The spinodal divides the phase diagram into
two regions; one region exhibits a metastable phase while the
other does not. In a system with finite but long-range inter-
actions, the analogous limit of metastability is defined by the
pseudospinodal. As the interaction range increases, statistics
at the pseudospinodal converge to the corresponding mean-
field spinodal values. As the pseudospinodal is approached,
the metastable system exhibits diverging susceptibility, cor-
relation length, and correlation times that are characteristic
of a critical point �17,18�. Nucleation near a pseudospinodal
is structurally different from classical nucleation near the co-
existence curve. In classical nucleation, droplets are compact
fluctuations of the stable phase with a sharp interface sepa-
rating the interior and exterior �19�. However, near the pseu-
dospinodal, droplets do not exhibit a well-defined interface
or a stable-phase interior �20�. Evidence for nucleation near
the pseudospinodal is observed in deeply quenched liquids
�21,22� and in solid-solid phase transitions �23,24�. Our ob-
jective is to study transient nucleation rates and transient
critical-droplet profiles in a system with long-range interac-
tions near the pseudospinodal.

To make these ideas precise, we consider purely dissipa-
tive dynamics described by a Markovian Langevin equation
that is a sum of a deterministic drift term and a stochastic
noise term with zero mean. We define the metastable well to
be the set of configurations that would follow the �noiseless�
deterministic drift to a stationary configuration that is not the
global energy minimum. The metastable well boundary B

consists of configurations that, upon random perturbation,
would each drift to the metastable minimum with probability
1 /2. A similar definition is employed by Roy et al. and oth-
ers �25–27�. Transient critical droplets are defined as the
most probable configuration on the metastable well boundary
at a given time t since the quench.

We define the nucleation time as the latest time after the
quench such that the system configuration was located on the
metastable well boundary; the nucleating droplet is the cor-
responding system configuration. A system has nucleated
when there is a negligible probability of returning to the
metastable well.

Because the nucleation rate is an extensive quantity, tran-
sience is best observed when the relaxation to metastable
equilibrium is slow and the system size is large. Our primary
results are that in magnetic field quenches at a temperature
below the critical temperature, the transient nucleation rate is
adequately described by a quasiequilibrium theory. Near the
pseudospinodal, transient droplets are more compact than
those that nucleate in metastable equilibrium.

In Sec. II, we introduce the model and review the field-
theoretic treatment of nucleation near the mean-field spin-
odal, the basis for the subsequent analysis. Section III con-
siders the time-dependent likelihood of nonequilibrium states
characterizing relaxation to metastable equilibrium. In Sec.
IV, we find the time-dependent nucleation rate and transient
critical droplet as a perturbation about the metastable equi-
librium critical droplet. In Sec. V, we compare our theoretical
treatment to results from computer simulations. Section VI
interprets and compares our results to previous work.

II. METASTABILITY NEAR THE MEAN-FIELD SPINODAL

We consider a one-dimensional ferromagnetic system
with long-range interactions prepared in equilibrium with an*Electronic address: aschweig@physics.bu.edu
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initially negative external field hinitial�0. At time t=0, the
system is quenched and the external magnetic field h is set to
a positive value. The system then evolves toward metastable
equilibrium. At some point after the quench, it will decay to
the stable phase via nucleation.

The potential of the system is given by

V��� = ��2 + u�4 − h� , �1�

where ��0 and u�0. For systems of interaction range R,
the Ginzburg-Landau-Wilson Hamiltonian is

H��� =� dx�R2

2
�d�

dx
�2

+ V„��x�…	 . �2�

We assume purely dissipative dynamics, given by the time-
dependent Ginzburg-Landau equation

��

�t
= −

�H

��
+ � = R2�2�

�x2 − 2�� − 4u�3 + h + � , �3�

where �=��x , t� is a zero-mean white noise with

��x , t���x� , t���=2�−1��x−x����t− t�� and � is the inverse
temperature. The mean-field metastable well vanishes when
the applied magnetic field is the spinodal field, defined by
hsp

2 =8���3 /27u. The corresponding mean-field spinodal mag-
netization satisfies �sp

2 = ��� /6u. These quantities are obtained
from setting dV /d�=d2V /d�2=0.

Under the given quench conditions, the spinodal field is
positive, hsp�h�0, and the mean-field spinodal magnetiza-
tion is negative, �sp�0. For convenience, we introduce
	h=hsp−h, a measure of the depth of the metastable well.

We expand the potential about the spinodal magnetiza-
tion, �sp, retaining terms up to third order �20,28�,

V = �sp�	h −
3

8
hsp� + 	h�� − �sp� −

1

2

hsp

�sp
2 �� − �sp�3

+ O„�� − �sp�4
… . �4�

We concentrate on nucleation in the neighborhood of the
metastable well. Near the spinodal, the details of the poten-
tial for large positive magnetizations have a negligible effect
on nucleation. Therefore we drop the quartic term in the
subsequent analysis. Within this cubic approximation, the lo-
cation of the potential minimum is

�min = �sp�1 +
2	h

3hsp
	 � 0. �5�

We introduce the shifted field 
�x�=��x�−�min, so that the
minimum of the mean-field potential occurs precisely at 

=0. We rewrite the truncated potential in terms of the shifted
field and drop an overall constant to obtain

V�
� = −

6hsp	h

2�sp

2 −

1

2

hsp

�sp
2 
3 = a
2 − b
3, �6�

where the variables a=−
6hsp	h /2�sp�0 and b=a2 /3	h
�0 are introduced to simplify the notation. Near the mean-
field spinodal, the evolution of the field in the neighborhood
of the metastable well is given by a Langevin equation

�


�t
= R2�2


�x2 − 2a
 + 3b
2 + � . �7�

We define the stationary configurations by setting the time
derivative and the noise term to zero,

0 = R2d2


dx2 − 2a
 + 3b
2. �8�

Equation �8� has two spatially uniform solutions: the stable
configuration 
min�x�=0 and an unstable configuration.
There exists another nonuniform stationary configuration

S�x� that corresponds to the profile of the critical droplet in
metastable equilibrium �19,20�. Because the droplet can ap-
pear anywhere in the system, we fix the center of the droplet
at the origin. A droplet must be symmetric, 
S�x�=
S�−x�,
and cannot exhibit a sharp peak at its center, 
S��0�=0. At
large distances, the droplet profile approaches the metastable
background, limx→±�
S�x�=0. Solving Eq. �8�, the nonuni-
form solution is


S =
a

b
cosh−2�x
 a

2R2� . �9�

This stationary configuration is unstable: assuming noiseless
dynamics, a random perturbation about 
S would cause the
system to return to its metastable well with probability 1 /2.
Linear stability analysis about the nonuniform solution re-
veals a single negative eigenvalue −5a /2. The corresponding
eigenvector gives the initial direction of growth �or decay� of
the metastable equilibrium critical droplet �19,28,29�,


N = cosh−3�x
 a

2R2� . �10�

The amplitude of the growth eigenvector is concentrated at
its center; a spinodal critical droplet grows by first filling its
center �29�.

III. CHARACTERIZING RELAXATION
TO METASTABLE EQUILIBRIUM

In this section, we estimate the time dependent likelihood
of field configurations, which is required to find transient
critical-droplet profiles �30–32�. After the quench, the time
evolution of the probability is given by the functional
Fokker-Planck equation. We sidestep the formal solution and
use a quasistatic mean-field theory. We assume that at a time
t since the quench, the likelihood of a configuration in the
metastable well can be approximated by

P�
�t� � C exp�− �� dx�R2

2
�d


dx
�2

+ Ft	� , �11�

where C is an undetermined constant and Ft=Ft�
� is a time-
dependent polynomial in the field. At t=0, Eq. �11� should
agree with the equilibrium distribution prior to the quench.
At long times, we must recover the metastable potential
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lim
t→�

Ft = V�
� = a
2 − b
3. �12�

Because the quench only changes the external magnetic field,
we assume that Ft differs from the metastable equilibrium
potential given in Eq. �6� by a time-dependent effective ex-
ternal field J�t�

Ft = a
2 − b
3 + �h − J�t��
 . �13�

In the long-time limit, Eq. �12� implies that J�t�→h. We
expect that the quartic term can still be neglected since this
approximation will be used when t is close to teq, when the
system is in metastable equilibrium.

We choose J�t� so that the density given in Eq. �11� is
consistent with the time evolution of the mean-field magne-
tization. In the mean-field limit, all fluctuations are sup-
pressed and the system is described by a single scalar order
parameter 
�x , t�→mt. Within the spinodal approximation,
the time evolution of the mean-field system is governed by
the ordinary differential equation

d

dt
mt = − 2amt + 3bmt

2. �14�

The time evolution of the mean-field magnetization is

mt =
2am0

3bm0 + �2a − 3bm0�exp�2at�
, �15�

where the initial condition m0 denotes the prequench-shifted
mean-field magnetization. In order that Eq. �11� reproduce
the mean-field dynamics, Ft evaluated at mt must be a mini-
mum,

�dFt

d

�


=mt

= 0. �16�

The expression for the time-dependent effective field is

J�t� = 2amt − 3bmt
2 + h . �17�

Formally, Eqs. �11�, �13�, and �17�, define the first term of a
large-R asymptotic expansion of the solution to the func-
tional Fokker-Planck equation in the metastable well near the
mean-field spinodal.

Both the location of the minimum of Ft and its curvature
change as a function of t. For convenience, we introduce
	J=hsp−J�t� and

At =
1

2
Ft��mt� = a
	J/	h, �18�

a measure of the curvature of Ft about its minimum. At long
times, the mean-field magnetization approaches its meta-
stable equilibrium value, mt→0, which implies that At→a in
the same limit.

For a fixed time t, we define a corresponding fictitious
Langevin equation

�
�x,s�
�s

= R2�2


�x2 − Ft��
� + ��x,s� , �19�

where the coordinate s is distinct from the time t since the
quench. Once in metastable equilibrium, Eq. �19� samples
states from Eq. �11�. We note that the states sampled by Eq.
�19� must be restricted to those within the metastable well of
the complete dynamics of Eq. �3�. For example, configura-
tions that would nucleate Eq. �19� must be discarded because
they are not in the metastable well of the underlying dynam-
ics. With this restriction, we use Eq. �19� to compare the
statistics of Eq. �11� at a fixed time t to those generated from
simulation of the complete dynamics in Eq. �3�. Figure 1
compares the ensemble-averaged transient magnetization ob-
tained from Eq. �3� to the metastable equilibrium magnetiza-
tion sampled using Eq. �19� for various t.

To analytically estimate the transient magnetization of Eq.
�11�, we compute the stationary spatial average of Eq. �19�,

0 = − 2a

� + 3b

2� + J�t� − h , �20�

which relates the first and second moments. The second mo-
ment can be approximated by the second moment of the
Gaussian theory obtained by setting b=0,



2� � mt
2 +

1

2�R�2At�1/2 . �21�

Equations �20� and �21� yield an estimate of the magnetiza-
tion as a function of At, defined in Eq. �18�,



� � mt + Gt
−1 � mt, �22�

where

FIG. 1. �Color online� The mean transient magnetization prior to
nucleation �solid line� obtained from the solution of Eq. �3� com-
pared to the average obtained from simulating Eq. �19� in meta-
stable equilibrium �squares�. Both curves rise above the metastable
mean-field minimum �dashed line� given by Eq. �15�.
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Gt = 4�R	ha−1
2At � G�. �23�

This estimate of the magnetization also agrees with the av-
erage magnetization obtained from simulation, shown in Fig.
1.

IV. TRANSIENT NUCLEATION

At a time t after the quench, the transient critical droplet

C�x , t� is determined by maximizing the probability func-
tional in Eq. �11� constrained to the metastable well bound-
ary B,


C�x,t� = max

�B

P�
�t� . �24�

Note that the dynamically defined stationary configuration

S given in Eq. �9� lies on the boundary. Furthermore, we
assume that our transient critical droplets resemble the dy-
namical fixed point 
S. In this limit, we approximate the
metastable well boundary by a hyperplane �25� that is normal
to the growth eigenvector 
N, given in Eq. �10�. Figure 2
gives a schematic of the approximation for a two-
dimensional system. Within this approximation, a boundary
configuration 
B satisfies

� dx�
B − 
S�
N = 0. �25�

To find the configuration of maximum likelihood that satis-
fies the constraint, we introduce the Lagrange multiplier 
t
and extremize the functional

� dx�R2

2
�d


dx
�2

+ Ft�
� − 
t

N	 . �26�

Centered at zero, the time-dependent critical-droplet profile
solves the Euler-Lagrange equation

R2d2
C
dx2 = 2a
C − 3b
C − J�t� + h − 
t
N, �27�

where 
t is chosen so that 
C satisfies the constraint in Eq.
�25�. For large t, the transient solution reduces to the dy-
namical fixed point, limt→�
C=
S. At earlier times, the
equation and constraint can be solved numerically. Because
we have assumed that the transient critical droplet resembles
the fixed point, we expect 
t�1. This suggests a solution as
a perturbation in 
t. First, we take 
t=0 and find the analog
to Eq. �9�,


C
0�x,t� = mt +

At

b
cosh−2�x
 At

2R2� . �28�

Generally, the perturbation series is


C�x,t� = 
C
0�x,t� − 
ty�x,t� + O�
t

2� . �29�

The resulting differential equation for y�x� is

R2d2y

dx2 = 2y�x�At�1 − 3 cosh−2�x
At/2R2��

+ cosh−3�x
a/2R2� . �30�

We retain terms to first order in 
t, and substitute Eq. �29�

into the constraint to find the following equation for the mul-
tiplier 
t:


t =
� dx�
C

0�x,t� − 
S�
N

� dxy�x�
N

. �31�

The effect of the constraint is to decrease the amplitude of
the transient critical droplet.

With the transient droplet profiles characterized, we esti-
mate the time-dependent nucleation rate. Given a time t be-
fore any nucleation event, there is unit probability of being in
the metastable well. With this normalization, the nucleation
rate is proportional to the probability to realize the transient
critical droplet. We approximate this normalized probability
by the relative likelihood of the transient critical droplet over
the most likely metastable configuration, the uniform field
with magnetization mt,

��t� �
P�
C�x,t��t�
P�
 = mt�t�

. �32�

This rate estimate is simplified by defining the shifted effec-
tive potential

	Ft�
� = Ft�
� − Ft�mt�

= At�
 − mt�2 − 3b�
 − mt�3. �33�

With this definition, the transient nucleation rate is

��t� = �0 exp�− �� dx�R2

2
�d
C

dx
�2

+ 	Ft	� , �34�

where �0 is a prefactor that depends on the details of the
system �33�. For the quench considered here, ��t� is a strictly
increasing function of time. The experimentally accessible
nucleation time distribution is given by

FIG. 2. Schematic equipotential curves for a model system with
two arbitrary dynamical variables Q1 and Q2. The dashed line illus-
trates the linearization of the metastable well boundary.
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��t� = ��t�exp�− �
0

t

dt��t�� . �35�

V. NUMERICAL CALCULATIONS

We simulated Eq. �3� for a periodic system of length
L=104 where �=−5/9, u=1/4, R=10, and �=10. Prior to
the quench, the system is prepared in equilibrium with an
external field hinitial=−1.40 and shifted magnetization m0
=−0.727. After the quench, the applied field is set to h
=0.430. The distance to the mean-field spinodal is 	h
=0.021, and the location of the metastable minimum is given

by �min=−0.715. The corresponding parameters in the cubic
approximation are a=0.195 and b=0.609.

Throughout the run, the configuration of the system is
saved periodically. Once the system has nucleated, we search
for the nucleating droplet and nucleation time. We load a
saved configuration and find the latest configuration that,
upon perturbation, drifts to the stable phase with probability
1 /2 �26�. We do not consider runs where multiple droplets
appear at the nucleation time. The nucleation times were
binned and compared to the theoretical results �see Fig. 3�
where the free parameter �0 was chosen to produce the best
fit. Ensemble-averaged nucleating droplet profiles for two
different times are plotted in Fig. 4. The corresponding the-
oretical critical droplets obtained from Eq. �29� are plotted in
Fig. 5.

Figures 4 and 5 differ slightly because they represent dif-
ferent statistical quantities. The cubic term in Eq. �11� gives
rise to a skew in the distribution. Consequently, average and
extremal quantities do not agree. The same effect is demon-
strated in Fig. 1 and Eq. �22�, where the transient system
magnetization is found to differ from the mean-field magne-
tization. For distributions that are sufficiently peaked, we
expect the discrepancies to vanish �19,20�. This occurs when
the metastable-equilibrium Ginzburg parameter G� given in
Eq. �23� is large. In the case considered here, the Ginzburg
parameter is finite, G�=26, resulting in the contrast between
the averaged configurations and the extremal configurations.
However, a large G� suppresses the nucleation rate, �
�L exp�−G��, and obscures transience in the nucleating
droplets. To preserve the transient-nucleation regime while
increasing the Ginzburg parameter, the system size L must
scale exponentially with G�.

VI. SUMMARY AND DISCUSSION

We considered transient nucleation in a long-range one-
dimensional �4 model with dissipative dynamics. We defined

FIG. 3. �Color online� The theoretical distribution of nucleation
times computed from Eq. �35� �solid line� compared to the normal-
ized histogram of nucleation times obtained from direct simulation
of Eq. �3�.

FIG. 4. �Color online� Ensemble-averaged nucleating-droplet
magnetization profiles from simulations at t=4.5 �solid line� and
t=7.5 �dashed line�.
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FIG. 5. �Color online� Theoretical critical-droplet magnetization
profiles from Eq. �29� computed at t=4.5 �solid line� and t=7.5
�dashed line�.
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the metastable well boundary as the set of configurations
balanced between the metastable and stable phases. We esti-
mated the time-dependent likelihood of system configura-
tions. We defined the transient critical droplet as the most
likely configuration constrained to lie on the metastable well
boundary. We computed the likelihood of the transient criti-
cal droplet at various times. Our results explain the nonsta-
tionarity of nucleation rates reported in studies of the time-
dependent Ginzburg Landau equation.

As presented here, the theory is applicable to systems near
metastable equilibrium where the system magnetization
evolves slowly compared to the relaxation of other dynami-
cal variables, as is the case near a spinodal.

The theory provides a qualitative picture of the measured
ensemble-averaged profiles without any free parameters. The
analysis produces a distribution of nucleation times consis-
tent with the simulation results with a single free parameter.

Our analysis reduces to the earlier work �20� at long
times, when the system has relaxed to metastable equilib-

rium. We found that transient droplets decay to the back-
ground magnetization in the system at the time of nucleation.
Before metastable equilibrium, the background magnetiza-
tion acts as an anchor: transient droplets must have greater
amplitude, which in turn suppresses their rate of formation.
Furthermore, this suggests that in comparable experiments,
transient effects result in configurations that are more com-
pact than predicted by the metastable equilibrium analysis.
Moreover, in systems with a stable crystalline phase, these
results imply that transience may determine the symmetry of
critical droplets when nucleating near a spinodal.
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