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The anomalous translational diffusion including inertial effects of nonlinear Brownian oscillators in a double
well potential V�x�=ax2 /2+bx4 /4 is considered. An exact solution of the fractional Klein-Kramers �Fokker-
Planck� equation is obtained allowing one to calculate via matrix continued fractions the positional autocor-
relation function and dynamic susceptibility describing the position response to a small external field. The
result is a generalization of the solution for the normal Brownian motion in a double well potential to fractional
dynamics �giving rise to anomalous diffusion�.
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I. INTRODUCTION

The Brownian motion in a field of force is of fundamental
importance in problems involving relaxation and resonance
phenomena in stochastic systems �1,2�. An example is the
translational diffusion of noninteracting Brownian particles
due to Einstein �3� with a host of applications in physics
chemistry, biology, etc. Einstein’s theory relies on the diffu-
sion limit of a discrete time random walk. Here the random
walker or particle makes a jump of a fixed mean square
length in a fixed time and the inertia is ignored so that the
velocity distribution instantaneously attains its equilibrium
value. Thus the only random variable is the jump direction
leading automatically via the central limit theorem �in the
limit of a large sequence of jumps� to the Wiener process
describing the normal Brownian motion. The Einstein theory
of normal diffusion has been generalized to fractional diffu-
sion �see Refs. �4–6� for a review� in order to describe
anomalous relaxation and diffusion processes in disordered
complex systems �such as amorphous polymers, glass form-
ing liquids, etc.�. These exhibit temporal nonlocal behavior
arising from energetic disorder causing obstacles or traps si-
multaneously slowing down the motion of the walker and
introducing memory effects. Thus in one dimension the dy-
namics of the particle are described by a fractional diffusion
equation for the distribution function f�x , t� in configuration
space incorporating both a waiting time probability density
function governing the random time intervals between single
microscopic jumps of the particles and a jump length prob-
ability distribution. The fractional diffusion equation stems
from the integral equation for a continuous time random
walk �CTRW� introduced by Montroll and Weiss �7,8�. In the
most general case of the CTRW, the random walker may
jump an arbitrary length in arbitrary time. However, the jump
length and jump time random variables are not statistically
independent �7–9�. In other words a given jump length is
penalized by a time cost, and vice versa.

A simple case of the CTRW arises by assuming that the
jump length and jump time random variables are decoupled.
Such walks possessing a discrete hierarchy of time scales,
without the same probability of occurrence, are known as
fractal time random walks �5�. They lead in the limit of a
large sequence of jump times and the non inertial limit to the
following fractional Fokker-Planck equation in configuration
space �for a review see Refs. �5,7��

�f�x,t�
�t

= 0Dt
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�x
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Here x specifies the position of the walker at time t,
−��x��, kT is the thermal energy, K�=�� /kT is a gener-
alized diffusion coefficient, �� is a generalized viscous drag
coefficient arising from the heat bath and V�x , t� denotes the
external potential. The operator 0Dt

1−�� �
�t 0Dt

−� in Eq. �1� is
given by the convolution �the Riemann-Liouville fractional
integral definition� �6�

0Dt
−�f�x,t� =

1

�����0

t f�x,t��dt�

�t − t��1−� , �2�

where ��z� is the gamma function. The physical meaning of
the parameter � is the order of the fractional derivative in the
fractional differential equation describing the continuum
limit of a random walk with a chaotic set of waiting times
�fractal time random walk�. Values of � in the range
0���1 correspond to subdiffusion phenomena ��=1 cor-
responds to normal diffusion�.

Since inertial effects are ignored the fractional Fokker-
Planck equation in configuration space Eq. �1� only describes
the long time �low frequency� behavior of the ensemble of
particles. In order to give a physically meaningful descrip-
tion of the short time �high frequency� behavior, inertial ef-
fects must be taken into account just as in normal diffusion
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�1,10�. Inertial effects in the normal Brownian motion are
included via the Fokker-Planck equation �which for a sepa-
rable and additive Hamiltonian is known as the Klein-
Kramers equation� for the distribution function of particles
W�x , p , t� in phase space �x , p� �1,10�. In order to incorporate
these effects in anomalous translational diffusion, Metzler
�12� and Metzler and Klafter �13� have proposed a fractional
Klein-Kramers equation �FKKE� for the distribution function
W=W�x , ẋ , t� in phase space

�W

�t
= 0Dt

1−��1−��− ẋ
�W

�x
+

1

m

�V

�x

�W

�ẋ

+ 		 �

�ẋ
�ẋW� +

kT

m

�2W

�ẋ2 
� , �3�

where �= �x2�0 /K1 has the meaning of the intertrapping time
�waiting time between jumps�, K1=kT / �m	� is the diffusion
coefficient for normal diffusion, 	=�1 /m is a friction coeffi-
cient arising from the heat bath, and the angular brackets
denote the equilibrium ensemble average. Equation �3� de-
scribes a multiple trapping picture, whereby the tagged par-
ticle executes translational Brownian motion. However, the
particle gets successively immobilized in traps whose mean
distance apart is 
= �kT /m��, where � is the mean time be-
tween successive trapping events. The time intervals spent in
the traps are governed by the waiting time probability den-
sity function w�t�
A�t−1−� �0���1�. The entire Klein-
Kramers operator in the square brackets of Eq. �3� acts non-
locally in time, i.e., drift friction and diffusion terms are
under the time convolution and are thus affected by the
memory. However, a model based on a FKKE of the form of
Eq. �3� provides a physically unacceptable picture of the be-
havior of physical parameters such as the dynamic suscepti-
bility in the high frequency limit �→� �in particular, it pre-
dicts infinite integral absorption �10�; see Sec. IV below�.
The root of this difficulty apparently being that in writing Eq.
�3�, the convective derivative or Liouville term, in the under-
lying Klein-Kramers equation, is operated upon by the frac-
tional derivative. This problem does not arise in the FKKE
proposed by Barkai and Silbey �15�, where the fractional
derivative term acts solely on the dissipative part of the nor-
mal Klein-Kramers operator �see Eq. �3��

�W

�t
= − ẋ
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�ẋ2 � .

�4�

In order to justify a diffusion equation of the form of Eq. �4�,
Barkai and Silbey �15� consider a “Brownian” test particle
moving freely in one dimension and colliding elastically at
random times with particles of the heat bath which are as-
sumed to move much more rapidly than the test particle. The
times between collision events are assumed to be indepen-
dent, identically distributed, random variables, implying that
the number of collisions in a time interval �0, t� is a renewal
process. This is reasonable, according to Barkai and Silbey,
when the bath particles thermalize rapidly and when the mo-
tion of the test particle is slow. The FKKEs of Metzler and
Klafter and Barkai and Silbey have recently been extended to

the analogous fractional rotational diffusion models in a pe-
riodic potential by Coffey et al. �10,16�.

As an example of application of the FKKE to a particular
problem, we shall now present a solution for the Barkai and
Silbey kinetic model of anomalous diffusion of a particle in a
double-well potential, viz.,

V�x� = ax2/2 + bx4/4, �5�

where a and b are constants �the Metzler and Klafter model
can be treated in like manner�. The model of normal diffu-
sion in the potential given by Eq. �5� is almost invariably
used to describe the noise driven motion in bistable physical
and chemical systems. Examples are such diverse subjects as
simple isometrization processes �17–21�, chemical reaction
rate theory �22–30�, bistable nonlinear oscillators �31–33�,
second order phase transitions �34�, nuclear fission and fu-
sion �35,36�, stochastic resonance �37,38�, etc. If the inertial
effects are taken into account, a large number of specialized
solutions exist mostly for particular parameters in the above
problem. For example, the normalized position correlation
function and its spectra for small dumping were treated in
Refs. �32,39–41�. Voigtlaender and Risken �42� calculated
eigenvalues and eigenfunctions of the Kramers �Fokker-
Planck� equation for a Brownian particle in the double-well
potential �5� and evaluated the Fourier transforms of the po-
sition and velocity correlation functions. The method is as
follows. First the distribution function is expanded in Her-
mite functions in the velocity and then in Hermite functions
in the position. Next by inserting this distribution function
into the Fokker-Planck equation they obtain a recursion re-
lation for the expansion coefficients. By introducing a suit-
able vector and matrix notation this recurrence relation be-
comes a tridiagonal vector recurrence relation. Finally, this
vector recurrence relation is solved by matrix continued frac-
tions. The matrix continued fraction solution of the problem
in question has been further developed in Ref. �43�.

Fractional Klein-Kramers equations can in principle be
solved by the same methods as the normal Klein-Kramers
equation, e.g., by the method of separation of the variables.
The separation procedure yields an equation of Sturm-
Liouville type. Anomalous subdiffusion in the harmonic po-
tential and double-well potential �5� has been treated by this
method in Refs. �44–46� when inertial effects are ignored
using an eigenfunction expansion with Mittag-Leffler tempo-
ral behavior. This method has recently been extended to the
analogous fractional rotational diffusion models in a periodic
potential by Coffey et al. �10,47�. There, the authors have
developed effective methods of solution of fractional diffu-
sion equations based on ordinary and matrix continued frac-
tions �as is well known continued fractions are an extremely
powerful tool in the solution of normal diffusion equations
�1��. Here we apply the methods of Coffey et al. �10,43,47�
to account for inertial effects in fractional translational dif-
fusion. The main objective of the present paper is to ascer-
tain how these effects in anomalous diffusion in a bistable
potential modify the behavior of the normalized position cor-
relation function �x�0�x�t��0 / �x2�0��0 and its spectra �charac-
terizing the anomalous relaxation�.
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II. BASIC EQUATIONS

By introducing the normalized variables as in �43�

y =
x

�x2�0
1/2 , A =

a�x2�0

2kT
, B =

b�x2�0
2

4kT
,

� =�m�x2�0

2kT
, 	� = �	 , �6�

the fractional kinetic Eq. �4� becomes

�
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�t
+ �ẏ

�W

�y
−

1

2�

dV

dy

�W

�ẏ

= �1−�	�0Dt
1−�� �

�ẏ
�ẏW� +

1

2�2

�2W

�ẏ2 � , �7�

where �=2	�� and V�y�=Ay2+By4. For A
0 and B
0, the
potential V�y� has only one minimum. For A�0 and B
0
�which is the case of interest�, the potential V�y� has two
minima separated by a maximum at y=0 with the potential
barrier 
V=Q=A2 /4B. The new normalization condition
�y2�0=1 implies that the constants A and B are not indepen-
dent and are related via �48�

B = B�Q� =
1

8�D−3/2�sgn�A��2Q�

D−1/2�sgn�A��2Q�
�2

, �8�

where Dv�z� is Whitaker’s parabolic cylinder function of or-
der v �14�. According to Barkai and Silbey �15�, Eq. �7� has
hitherto been regarded as been valid for subdiffusion in ve-
locity space, 0���1. However, the subdiffusion in velocity
space gives rise to enhanced diffusion in configuration space
�10,47�. Furthermore, if 1���2, Eq. �7� is also regarded as
describing enhanced diffusion in velocity space, then the en-
hanced diffusion in velocity space gives rise to subdiffusion
in configuration space �10,47�.

Just as normal diffusion �42,43�, one may seek a general
solution of Eq. �7� in the form

W�y, ẏ,t� =
��

�
e−�2ẏ2−��2y2+V�y��/2�

n=0

�

�
q=0

�
1

�2n+qn!q!
cn,q�t�

�Hq��y�Hn��ẏ� , �9�

where Hn�z� are the orthogonal Hermite polynomials �14�,
�=�B1/4 and � is a scaling factor with value chosen so as to
ensure optimum convergence of the continued fractions in-
volved as suggested by Voigtlaender and Risken �42� �all
results for the observables are independent of ��. By substi-
tuting Eq. �9� into Eq. �7� and noting that �14�

d

dz
Hn�z� = 2nHn−1�z�, Hn+1�z� = 2zHn�z� − 2nHn−1�z� ,

we have the fractional differential recurrence relations for the
functions cn,q�t�

�
d

dt
cn,q�t� = − n	��1−�

0Dt
1−�cn,q�t� + �n + 1�eqcn+1,q+3�t�

+ dq
−cn+1,q+1�t� + dq−1

+ cn+1,q−1�t� + eq−3cn+1,q−3�t��

− �n�eqcn−1,q+3�t� + dq
+cn−1,q+1�t�

+ dq−1
− cn−1,q−1�t� + eq−3cn−1,q−3�t�� , �10�

where

dq
± =

B1/4�q + 1

2�3 �3�q + 1� − 2�2�Q ± �4� , �11�

eq =
B1/4�q + 1

2�3
��q + 3��q + 2��q + 1� . �12�

For �=1, Eq. �10� coincides with that for normal diffusion
�42,43�.

Equation �10� can be solved exactly using matrix contin-
ued fractions as described in Appendix A. Having deter-
mined c0,2q−1�t�, one can then calculate the position correla-
tion function C��t�= �y�0�y�t��0 �see Appendix B�

C��t� =
�ZB1/4

��
�
q=1

�

c0,2q−1�0�c0,2q−1�t� , �13�

its spectrum C̃����=�0
�C��t�e−i�tdt, and the dynamic suscep-

tibility �̂���=�����− i����� defined as

�̂��� = − �
0

�

e−i�t d

dt
C��t�dt = 1 − i�C̃���� . �14�

Here Z is the partition function in configuration space given
by �47�

Z = �
−�

�

e−Ay2−By4
dy = ���2B�−1/4D−1/2�− �2Q�eQ/2.

�15�

We remark that the dynamic susceptibility ���� characterizes
the ac response of the system to a small perturbation �42�.

III. NONINERTIAL SUBDIFFUSION IN CONFIGURATION
SPACE

In the high damping �or noninertial� limit, 	��1, and
1���2, i.e., noninertial subdiffusion in configuration
space, the low-frequency behavior ��→0� of the suscepti-
bility may be evaluated as �47�

���� � 1 − �i���2−��int/� + ¯ , �16�

where the relaxation time �int is given by

�int = �
0

�

C1�t�dt . �17�

For normal diffusion, �int corresponds to the correlation �or
integral relaxation� time �the area under the correlation func-
tion C1�t��. Now �int for normal diffusion in a double well
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potential �5� may be expressed in exact closed form, viz.
��10�, Chap. 6�,

�int = �
��eQ/2D−1/2�− �2Q�

23/4D−3/2
2 �− �2Q�

�
0

�

e�s − �Q�2
�1 − erf�s − �Q��2 ds

�s
,

�18�

where erf�z�= 2
��

�0
ze−z2

dz is the error function �14�. The low
frequency part of the susceptibility spectrum ���� may also
be approximated by a Cole-Cole-like equation �16,46�

���� �
1 − �

1 + �i�/�R�2−� + � , �19�

where

�R � �−1���1�1/�2−�� �20�

is the characteristic frequency, �1 is the smallest nonvanish-
ing eigenvalue of the Fokker-Planck equation for normal dif-
fusion, and � is a parameter accounting for the contribution
of the high-frequency modes. In the time domain, such a
representation is equivalent to assuming that the correlation
function C��t� may be approximated as

C��t� � �1 − ��E2−��− ��1�t/��2−�� + � , �21�

where E��z� is the Mittag-Leffler function defined as �4,5�

E��z� = �
n=0

�
zn

��1 + n��
.

The behavior of �1 for normal diffusion can be evaluated
with very high accuracy from the approximate equation
�10,46�

�1 =
D−3/2�− �2Q�

�D−1/2�− �2Q�� eQ

1 + erf��Q�
�

0

� �
0

�

e−�s − �Q�2−�t − �Q�2

�
erf��2st�

�st
dsdt�−1

. �22�

In the low temperature limit �Q�1� �1
−1 and �int have the

simple asymptotic behavior �10,46�

1/�1 

��eQ

4�2Q
	1 +

5

8Q
+ ¯
 ,

�int 

��eQ

4�2Q
	1 +

1

2Q
+ ¯ 
 . �23�

Equations �19�–�23� allow one to readily estimate the
qualitative behavior of the susceptibility ���� and its
characteristic frequency �R. In particular, �R

�4�2Q /��1/�2−��e−Q/�2−�� /� in the low temperature limit
�Q�1�. Noninertial subdiffusion in a double well potential
has been treated in detail in Ref. �46�.

IV. RESULTS AND DISCUSSION

The imaginary ����� part of the dynamic susceptibility
for various values of the barrier height Q, friction coefficient

	�, and fractional exponent � are shown in Figs. 1 and 2.
The low-frequency asymptotes �Eq. �16�� are also shown
here for comparison. Apparently for high damping, 	��1,
the low frequency part of the spectrum may by approximated
by Eq. �19�. This low frequency relaxation band is due to the
slow overbarrier relaxation of the particles in the double-well
potential. A very high-frequency band is also visible in Figs.
1 and 2 due to the fast inertial oscillations of the particles in
the potential wells. As far as the behavior of the high-
frequency band as a function of 	� is concerned, its ampli-
tude decreases progressively with increasing 	�, as one
would intuitively expect. For large friction 	��1 �small in-
ertial effects�, the characteristic frequency of this band can

FIG. 1. The imaginary part of ���� vs �� �solid lines� for the
fractional exponent �=1.5 and various values of the damping coef-
ficient 	� and barrier height Q. The Cole-Cole-like spectra �Eq.
�19�� and low frequency asymptotes �Eq. �16�� are shown by sym-
bols and dashed lines, respectively.

FIG. 2. The same as in Fig. 1 for �=0.5.
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be estimated as �W
�8Q�1/�2−�� /� �46� �for 1���2�. On
the other hand, for very small friction 	��1 �large inertial
effects�, two sharp peaks appear in the high-frequency part
of the spectra. These peaks appear at the fundamental and
second harmonic frequencies of the almost free periodic mo-
tion of the particle in the �anharmonic� potential V�x�
=ax2 /2+bx4 /4. For Q�1, 	��1, and �=1, the character-
istic frequency of the high-frequency oscillations �L can be
estimated from the analytic solution for the position correla-
tion function �x�0�x�t��0 at vanishing damping, 	�→0, as
�L
2Q3/4�−1 �32,42,43� �detailed discussion of the un-
damped case is given in Refs. �32,39,43��. Moreover, just as
in normal Brownian dynamics, inertial effects cause a rapid
falloff of ����� at high frequencies. The “integral” absorp-
tion defined as �0

�������d� satisfies the sum rule �11�

�
0

�

������d� = �
0

�

�2Re�C̃����d�

= −
�

2
C̈�0�

=
�

2

�ẋ2�0��0

�x2�0��0

=
�

4�2 , �24�

which relates the second spectral moments of position auto-
correlation functions to their second time derivative at t=0.
The sum rule Eq. �24� dictates that the integral absorption
remains finite. We remark, on the other hand, that for a
model based on a FKKE of the form of Eq. �3�, this sum rule
is not fulfilled as here �0

�������d�=�. The behavior of
���� and the low-frequency asymptotes �Eq. �16�� for high
damping is shown in Figs. 3 and 4 for various values of the
fractional exponent �. Apparently, the agreement between
the exact continued fraction calculations and the approximate
Eq. �16� at low frequencies is very good when 1���2, i.e.,
noninertial subdiffusion in configuration space. As far as the
dependence of the characteristic frequency �R
��−1���1�1/�2−�� �Eq. �20�� of the low-frequency band on the
barrier height Q and fractional exponent � is concerned the
frequency �R decreases exponentially 
e−Q/�2−�� as Q is
raised and �→2. This behavior occurs because for normal
diffusion the probability of escape of a particle from one well
to another over the potential barrier exponentially decreases
with increasing Q.

The model we have outlined incorporates both relaxation
and resonance behavior of a nonlinear Brownian oscillator
and so may simultaneously explain both the anomalous �low-
frequency� relaxation and high frequency resonance spectra.
The present calculation also constitutes an example of the
solution of the fractional Klein-Kramers equation for anoma-
lous inertial translational diffusion in a double well potential
and is to our knowledge the first example of such a solution.
We remark that all the above results are obtained from the
Barkai-Silbey fractional form of the Klein-Kramers Eq. �7�
for the evolution of the probability distribution function in

phase space. In that equation, the fractional derivative acts
only on the diffusion term. Hence the form of the Liouville
operator, or convective derivative is preserved so that Eq. �7�
has the conventional form of a Boltzmann equation for the
single particle distribution function. Thus the high frequency
behavior is entirely controlled by the inertia of the system,
and does not depend on the anomalous exponent. Although
such a diffusion equation fully incorporates inertial effects
and produces physically meaning results much work remains
to be done in order to provide a rigorous justification for
such inertial kinetic equations.

APPENDIX A: MATRIX CONTINUED FRACTION
SOLUTION

The solution of Eq. �10� can be found by modifying the
solution for normal diffusion �43�. We introduce the column
vectors

C2n−1�t� = �c2n−2,1�t�
c2n−2,3�t�

�
�, C2n�t� = �c2n−1,0�t�

c2n−1,2�t�
�

� �n � 1� .

Now, Eq. �10� can be rearranged as the set of matrix three-
term recurrence equations for the one-sided Fourier trans-

forms C̃n���=�0
�Cn�t�e−i�tdt, viz.,

FIG. 3. The real �� and imaginary �� parts of the dynamic
susceptibility ���� vs �� �solid lines� for various values of the
fractional exponent �=1 �normal diffusion�, 0.8, and 0.6; the bar-
rier height Q=10 and damping coefficient 	�=100. The Cole-Cole-
like spectra �Eq. �19�� and low frequency asymptotes �Eq. �16�� are
shown by symbols and dashed lines, respectively.
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�i�� + 	��i���1−��n − 1��C̃n��� − Qn
−C̃n−1��� − Qn

+C̃n+1���

= ��n,1C1�0� , �A1�

where Qn
+ and Qn

− are the four-diagonal matrices. Their ma-
trix elements are given by

�Q2n
− �p,q = − �2n − 1��p,q+2e2p−5 + �p,q+1d2p−3

− + �p,qd2�p−1�
+

+ �p,q−1e2�p−1�� ,

�Q2n
+ �p,q = �2n��p,q+2e2p−5 + �p,q+1d2p−3

+ + �p,qd2�p−1�
−

+ �p,q−1e2�p−1�� ,

�Q2n−1
− �p,q = − �2n − 2��p,q+1e2�p−2� + �p,qd2�p−1�

− + �p,q−1d2p−1
+

+ �p,q−2e2p−1� ,

�Q2n−1
+ �p,q = �2n − 1��p,q+1e2�p−2� + �p,qd2�p−1�

+ + �p,q−1d2p−1
−

+ �p,q−2e2p−1� ,

where dq
± and eq are defined by Eqs. �11� and �12�.

By invoking the general method �10� for solving the ma-
trix recursion Eq. �A1�, we have the exact solution for the

spectrum C̃1��� in terms of a matrix continued fraction, viz.

C̃1��� = ��1���C1�0� , �A2�

where the matrix continued fraction 
1��� is defined by the
recurrence equation

�n��� = ��i�� + 	��i���1−��n − 1��I − Qn
+�n+1���Qn+1

− �−1.

and I is the unit matrix. Having determined C̃1��� �whose
elements are c̃0,2q−1���, q�1�, we can evaluate the spectrum
of the position correlation function C��t�= �y�0�y�t�� defined
by Eq. �13� �here the initial values c0,2q−1�0� are calculated
from Eq. �B2� of the Appendix B�.

The exact matrix continued fraction solution �Eq. �A2��
we have obtained is easily computed. As far as practical
calculations of the infinite matrix continued fraction are con-
cerned, we approximate it by a matrix continued fraction of
finite order �by putting 
n+1=0 at some n=N�; simulta-
neously, we confine the dimensions of the infinite matrices
Qn

−, Qn
+, and I to a finite value M �M. N and M are deter-

mined so that further increase of N and M does not alter the
results. Both N and M depend mainly on the dimensionless
barrier �Q� and damping �	�� parameters and must be chosen
taking into account the desired degree of accuracy of the
calculation. The final results are independent of the scaling
factor �. The advantage of choosing an optimal value of �
is, however, that the dimensions N and M can be minimized.
Both N and M increase with decreasing 	� and increasing Q.

APPENDIX B: DERIVATION OF EQ. (13)

Equation �13� follows from the definition of the correla-
tion function C��t�, viz.,

C��t� = �y�0�y�t��0

= �
−�

� �
−�

� �
−�

� �
−�

�

yy0W�y, ẏ,t�y0, ẏ0,0�

�W0�y0, ẏ0�dydy0dẏdẏ0,

where y0=y�0�, W0�y0 , ẏ0�= �� /��Z�e−�2ẏ0
2−V�y0� is the

equilibrium �Boltzmann� distribution function, and
W�y , ẏ , t �y0 , ẏ0 ,0� is the transition probability, which satis-
fies Eq. �7� with the initial condition W�y , ẏ ,0 �y0 , ẏ0 ,0�
=��y−y0���ẏ− ẏ0� and is defined as

W�y, ẏ,t�y0, ẏ0,0�

=
��

�
e−�2ẏ2−��2�y2+y0

2�+V�y�−V�y0��/2�
n=0

�

�
q=0

�

�
m=0

�

�
p=0

�

�
�G�t��q,p

n,mHp��y0�Hm��ẏ0�Hq��y�Hn��ẏ�
�2n+m+p+qm!p!n!q!

,

�B1�

where �G�t��q,p
n,m are the matrix elements of the system matrix

G�t� defined as

�G�t��q,p
n,m =

��

�
�

−�

� �
−�

� �
−�

� �
−�

�

dydy0dẏdẏ0W�y, ẏ,t�y0, ẏ0,0�

� Hp��y0�Hm��ẏ0�Hq��y�Hn��ẏ�

�e−�2ẏ0
2−��2�y2+y0

2�−V�y�−V�y0��/2.

The coefficients cn,q�t� can be presented in terms of �G�t��q,p
n,m

as �42�

FIG. 4. The same as in Fig. 3 for �=1 �normal diffusion�, 1.2,
and 1.4; 	�=10 and Q=10.
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cn,q�t� = �
m=0

�

�
p=0

�

�G�t��q,p
n,mcm,p�0� .

Whence

c0,q�t� = �
p=0

�

�G�t��q,p
0,0c0,p�0�

with the initial conditions

c0,p�0� =
1

Z�2pp!B
�

−�

�

xHp��x�e−��2x2−2Qx2+x4�/2dx .

�B2�

Noting that �G�0��q,p
m,n=�q,p�m,n, we have from Eq. �B1�

W�y, ẏ,0�y0, ẏ0,0� =
��

�
e−�2ẏ2−��2�y2+y0

2�+V�y�−V�y0��/2

� �
p=0

�
Hp��y0�Hp��y�

2pp!

��
m=0

�
Hm��ẏ0�Hm��ẏ�

2mm!
.

Taking into account that �1�

f��y,y0� = �
p=0

�
�p

p!
Hp��y�Hp��y0�

=
1

�1 − 4�2
exp� 4��2

1 − 4�2 �yy0 − �y2 − �y0
2��

and

lim
�→1/2

f��y,y0� =
��

�
e�2y0

2
��y − y0� ,

we have Eq. �13�.
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