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Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical
models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular
engines, the models we study do not have particle transport. We consider a two-spin system and a coupled
oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic
forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous inter-
pretation of results. We demonstrate that while both our models seem to be built on similar principles, one is
able to function as a heat pump �or engine� while the other is not.
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The idea of constructing miniature versions of engines,
motors, and pumps has been an interesting one. The earliest
theoretical construct of such a device is probably Feynman’s
pawl-and-ratchet model discussed in �1�. In this article Feyn-
man uses this simple microscopic model to demonstrate why
a Maxwell’s demon cannot work. In the same article he also
shows how this model can be used to construct a micro-
scopic heat engine and discusses its efficiency. There have
been a number of recent detailed studies on the pawl-and-
ratchet model, and some subtle flaws in Feynman’s original
arguments have been pointed out �2,3�. A different class of
ratchet models have also been studied in �4�. In these models
Brownian particles, kept in an asymmetric periodic potential
and acted upon by periodic time-dependent forces, are found
to exhibit directed motion. A number of variations of this
model have been studied �5�. Among its applications it has
been proposed that this could provide a mechanism of trans-
port of motors in biological cells �6�.

Ratchet models which work on somewhat different prin-
ciples are models of quantum pumps which are recently be-
ing studied theoretically �7� and have also been experimen-
tally realized �8�. A typical and simple example of such a
device would be two coupled quantum dots each separately
in contact with particle reservoirs which are at the same
chemical potential. One applies ac gate voltages v1
=v0 cos��t� and v2=v0 cos��t+�� to the two dots, respec-
tively. This leads to a net flow of particle current between the
two reservoirs whose sign depends on the phase �. An es-
sential ingredient seems to be a periodic variation of at least
two parameters such that the area enclosed in parameter
space is nonzero. Since these pumps also work at zero tem-
perature, it appears that noise is not an essential feature,
which is unlike the case for usual ratchet models. Motivated
by the quantum particle pump model, Segal and Nitzan have
proposed a model for a heat pump �9�. In this model a mol-
ecule with two allowed energy levels interacts with two heat
reservoirs kept at different temperatures. The energy levels
are modulated in a periodic way. Thus unlike the particle
pump model here only a single parameter is varied. How-
ever, an asymmetry is incorporated by taking reservoirs with
different spectral properties and different couplings to the
molecule. This seems to lead to the desired pumping of heat
from the cold to the hot reservoir.

Motivated by the quantum pump model, in this Rapid
Communication, we examine classical models which have
the same basic design as the quantum version. We consider
two different models: �i� a spin system consisting of two
Ising spins each driven by periodic magnetic fields with a
phase difference and connected to two heat reservoirs and
�ii� an oscillator system of two interacting particles driven by
periodic forces with a phase difference and connected to two
reservoirs. In both cases we analyze the possibility of the
models to work either as pumps or as engines. Our main
result is that the spin system can work both as a pump and as
an engine. On the other hand, the oscillator model fails to
perform either function.

Our first model consists of two Ising spins driven by time-
dependent magnetic fields hL�t� and hR�t�, respectively, and
each interacting with separate heat reservoirs. The Hamil-
tonian of the system is given by

H = − J�1�2 − hL�t��1 − hR�t��2, �1,2 = ± 1, �1�

where J is the interaction energy between the spins. The
magnetic fields have the forms hL�t�=h0 cos��t� and hR�t�
=h0 cos��t+��. The interaction of each spin with the heat
baths is modeled by a stochastic dynamics. Here we assume
that the time evolution of the spins is given by Glauber dy-
namics �10�, generalized to the case of two heat baths, with
temperatures TL and TR. Thus the Glauber spin-flip rates rL

and rR for the two spins, respectively, are given by r�1�2

L

=r�1−�L�1�2��1−�L�1� and r�1�2

R =r�1−�R�1�2��1−�R�2�
where �L,R=tanh�J /kBTL,R�, �L,R=tanh�hL,R /kBTL,R�, and r is
a rate constant. The master equation for the evolution

of the spin distribution function P̂= �P�+, + , t� , P�−, + , t� ,
P�+,−, t� , P�−,−, t��T is then given by

�P̂

�t
= TP̂ , �2�

where
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We define Q̇L and Q̇R to be the rates �averaged over the
probability ensemble� at which heat is absorbed from the left

and right baths, respectively, while ẆL and ẆR are the rates
at which work is done on the left and right spins by the
external magnetic field. These can be readily expressed in
terms of the spin distribution function and the various tran-
sition rates. Thus we find

Q̇L = �
�1,�2

P��1,�2,t�r�1�2

L �E1��1,�2� ,

Q̇R = �
�1,�2

P��1,�2,t�r�1�2

R �E2��1,�2� ,

ẆL = − ��1	ḣL = − ḣL �
�1,�2

�1P��1,�2,t� ,

ẆR = − ��2	ḣR = − ḣR �
�1,�2

�2P��1,�2,t� , �3�

where �E1=2�J�1�2+hL�1� and �E2=2�J�1�2+hR�2� are
the energy costs in flipping the first and second spins, respec-
tively. The average energy of the system is given by
U= �H	=��1,�2

H��1 ,�2�P��1 ,�2 , t�. It is easy to verify the

energy conservation equation U̇= Q̇L+ Q̇R+ẆL+ẆR. Note

that even at long times the steady-state distribution P̂ re-
mains time dependent. We will also be interested in the fol-
lowing time-averaged rates of heat exchanges and work

done, evaluated in the steady state: q̇L,R= 1
� 
0

�Q̇L,Rdt and

ẇL,R= 1
� 
0

�ẆL,Rdt, where �=2	 /� is the time period of the
driving field.

We numerically solve the master Eq. �2� and then evaluate
the various steady-state energy exchange rates q̇L,R and ẇL,R.
In all our numerical calculations we set r=0.5 and J /kB=1
and all other quantities are measured in these units. In Fig. 1
we consider the parameter values TL=TR=0.5,
h0=0.25, and �=225 and plot q̇L and q̇R and ẇ= ẇL+ ẇR as
functions of the phase �. It can be seen that, for certain
values of the phase, both q̇L and q̇R are negative while ẇ is
positive. Following our sign conventions, this means that all
the work from the external driving is getting dissipated into
the two baths. More interestingly we find that for certain
values of the phase we can get q̇L
0 and q̇R�0 which
means that there is heat flow from the left reservoir to the
right reservoir. The direction of heat flow can be reversed by
changing the phase. From continuity arguments it is clear
that this model can also sustain heat flow against a small
temperature gradient. Thus the inset of Fig. 1 shows the cur-
rents when the right reservoir is kept at a slightly lower
temperature TR=0.499. In the absence of any driving we
would get a steady current q̇L=−q̇R=1.41�10−4 from the
left to right reservoir. In the presence of driving and at

a phase value �=2.2 we get q̇R=3.674�10−4 and
q̇L=−1.025�10−3 which means that heat flows out of the
cold reservoir. Thus we see that our model can perform as a
heat pump or a refrigerator. Similarly we find that the model
can also perform like an engine and convert heat to work.
This can be seen in Fig. 2 where we consider the parameter
values TL=1.0, TR=0.1, h0=0.25, and �=190. In this case we
find that for certain values of � we can have ẇ�0 which
means that work is being done on the external force. For
typical values of the parameters that we have tried we find
that the efficiency of the engine is quite low. For example,
for Fig. 2 with �=0.7	, we find = �ẇ� / q̇L=1.75�10−2.

Finally in Fig. 3 we plot the time-dependent energy
transfer rates given by Eq. �3� for parameter values corre-
sponding to the refrigerator and engine modes of operation.
In both cases the initial configuration was chosen with
P�+, + , t=0�=1. At long times we see that all quantities vary
periodically with time with the same period � as the driving
force. Figure 3 corresponds to the parameter values TL=0.5,
TR=0.499, h0=0.25,�=225, and �=2.2 while the inset cor-
responds to the engine parameters TL=1.0, TR=0.1,
h0=0.25, �=190, and �=2.2.

FIG. 1. �Color online� Plot of q̇L, q̇R, and ẇ versus � with both
baths at the same temperature. The inset shows the currents for the
case where the right bath is slightly colder.

FIG. 2. �Color online� Plot of q̇L, q̇R, and ẇ versus � for param-
eter values chosen such that the model performs as an engine.
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The second model of our engine consists of two particles
which separately interact with two reservoirs kept at different
temperatures. The particles interact with each other and are
also driven by two external periodic forces with a phase dif-
ference. We consider the system to be described by the
Hamiltonian

H =
p1

2

2m
+

p2
2

2m
+

1

2
kx1

2 +
1

2
kx2

2 +
1

2
kc�x1 − x2�2

− �fL�t�x1 + fR�t�x2� . �4�

The two particles are acted on by external periodic forces
given by fL�t�= f0 cos��t� and fR�t�= f0 cos��t+��, respec-
tively, where � is a phase difference. The effect of the heat
baths at temperatures TL and TR is modeled by Langevin
equations. Thus the equations of motion are

mẍ1 = − �k + kc�x1 + kcẋ2 − �x1 + L + fL�t� ,

mẍ2 = − �k + kc�x2 + kcẋ1 − �x2 + R + fR�t� ,

where the two noise terms are Gaussian and uncorrelated
and satisfy the usual fluctuation-dissipation relations
�L,R�t�L,R�t��	=2kBTL,R���t− t��. Multiplying the two
equations above by ẋ1 and ẋ2, respectively, and adding them

up we get Ḣ= �−�ẋ1+L�ẋ1+ �−�ẋ2+R�ẋ2− ḟ L�t�x1− ḟR�t�x2,
which has the obvious interpretation of an energy
conservation equation. Averaging over noise we get

U̇= Q̇L+ Q̇R+ẆL+ẆR, where the various energy exchange
rates have the same interpretations as in the previous

discussion and are given by Q̇L= ��−�ẋ1+L�ẋ1	, Q̇R

= ��−�ẋ2+R�ẋ2	, ẆL=−� ḟ Lx1	, and ẆR=−� ḟRx2	. As before
we define the average energy transfer rates in the steady
state, q̇L, q̇R, ẇL, and ẇR. The present model being linear, it is
straightforward to exactly compute these as we now show.

We first obtain the steady-state solutions of the equations
of motion. We write the equations of motion in the following
matrix form:

MẊ = − �X − �Ẋ + �t� + f�t� , �5�

where X= �x1 ,x2�T, = �L ,R�T, f = �f0 cos��t� , f0 cos��t
+���T, M and � are diagonal matrices with diagonal ele-
ments m and �, respectively, and � is the force constant
matrix. The steady-state solution of this equation is

X�t� = XN�t� + XD�t� , �6a�

where

XN�t� = �
−�

�

d�e−i�tG���̃��� ,

XD�t� = Re�G��� f̃e−i�t� , �6b�

with

G��� = �� − �2M + i���−1, �6c�

and ̃=
−�
� d�e−i�t�t� and f̃ = 1,e−i��T. It is easy to see

that the matrix G��� has two independent elements, and
we denote them as A���=G11=G22= �k+kc−m�2− i��� /
��k+kc−m�2− i���2−kc

2� and B���=G12=G21=kc /
��k+kc−m�2− i���2−kc

2�. Using the above solution in Eq.
�6� and after some bit of algebraic simplifications, we obtain
the following results:

q̇L = −
f0

2�

2
�AI��� + BI���cos��� + D���sin����

+
kB�kc

2�TL − TR�
2�mkc

2 + �k + kc��2�
,

q̇R = −
f0

2�

2
�AI��� + BI���cos��� − D���sin����

+
kB�kc

2�TR − TL�
2�mkc

2 + �k + kc��2�
,

ẇL =
f0

2�

2
�AI��� + BI���cos��� − BR���sin���� ,

ẇR =
f0

2�

2
�AI��� + BI���cos��� + BR���sin���� , �7�

where AR, AI and BR, BI are the real and imaginary parts of A
and B, respectively, and D���=2�2�2kc /Z��� where Z���
= ��k+kc−m�2− i���2−kc

2�2. From Eqs. �7� it is clear that the
heat transfer rates can be separated into deterministic parts
�depending on the driving strength f0� and noisy parts �de-
pendent on temperature of the two reservoirs�. The work
terms are temperature independent. We now note that the
deterministic parts of q̇L and q̇R are both negative. This can
be shown by using the facts that AI�0 and AI

2−BI
2−D2

=�2�2��k+kc−m�2�2+�2�2−kc
2�2 /Z2�0. This means that

for TL
TR, we always get q̇R�0, and hence we can never
have heat transfer from the cold to the hot reservoir. Thus
this cannot work as a heat pump. Also we note that while ẇL
and ẇR can individually be negative, the total work done

FIG. 3. �Color online� Plot of Q̇L, Q̇R, and Ẇ as a function of
time for parameters corresponding to pump and engine �inset�.
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ẇL+ ẇR is always positive. This means that this model cannot
work as an engine either. These conclusions remain un-

changed even if we define work as ẆL= �fLẋ1	, ẆR= �fRẋ2	.
In Fig. 4 we plot the dependence of the rates of

heat transfer and work done in the system on the phase dif-
ference �. The figures correspond to the parameter values
k=2, kc=3, m=1, f0=1, �=1, and TL=TR=T. The plots are
independent of the temperature T. Note that the only effect of
the driving is to pump in energy which is asymmetrically
distributed between the two reservoirs. The asymmetric en-
ergy transfer into the baths is an interesting effect consider-
ing that there is no built-in directional asymmetry in the
system.

In this model the heat baths and the external driving seem
to act independently on the system. It is clear that the linear-
ity of the model leads to this separability of the effects of the
driving and noise forces, and this could be the reason that the
model is not able to function as a heat pump. Hence it is

important to consider the effect of nonlinearity. We have nu-
merically studied the effect of including a nonlinear part of
the form ��x1

4+x2
4+ �x1−x2�4� /4 in the oscillator Hamil-

tonian. From simulations with a large range of parameter
values we find that the basic conclusions remain unchanged
and the model does not work either as a pump or as an
engine.

In conclusion, we have studied two models which have
the same ingredients as those on which recent models of
quantum pumps have been constructed. We find that the first
model performs as a heat pump to transfer heat from a cold
to a hot reservoir. Thus pumping is not an essentially
quantum-mechanical phenomena. Also our model performs
as an engine to do work on the driving force. It is useful to
compare our model with the other well-studied microscopic
model of a engine: namely, the Feynman pawl-and-ratchet
model. Recent detailed studies have shown that this model
can function both as an engine and as a refrigerator �11�. One
difference of this model from ours is that there is no periodic
external driving. However, this also means that in order for
the model to work in a cyclic way, at least one of the degrees
of freedom has to be a periodic �or angular� variable. This
may not always be a desirable feature in realistic models.
Surprisingly our second model, though apparently built on
the same principles, fails to perform either as a pump or as
an engine.

The important difference between microscopic models of
heat engines, such as those studied here, and the usual ther-
modynamic heat engines is that here the effects of thermal
fluctuations are important. A second difference is that here
the system is simultaneously in contact with both the cold
and hot baths. Understanding of these microscopic models
requires the use of nonequilibrium statistical mechanics, and
there are currently no general principles as in classical ther-
modynamics. It is clear that further studies are necessary to
understand the pumping mechanism in simple models of mo-
lecular pumps, and this can perhaps lead to more realistic
and practical models of molecular pumps and engines.
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FIG. 4. �Color online� Plots of heat transfer and work done as a
function of phase difference � in the two-particle model. Here
�=2	 /3.

MARATHE, JAYANNAVAR, AND DHAR PHYSICAL REVIEW E 75, 030103�R� �2007�

RAPID COMMUNICATIONS

030103-4


