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Acoustic wave dispersion in a one-dimensional lattice of nonlinear resonant scatterers
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Nonlinear effects of acoustic wave propagation and dispersion are observed in a one-dimensional lattice
made of Helmholtz resonators connected to a tube. These regularly spaced scatterers exhibit individually a
wave frequency dependence, which induces a strong velocity dispersion. In addition, they exhibit a wave
amplitude dependence (acoustic nonlinearity), which induces nonlinear effects on the dispersion relation of
waves in the lattice. The usually observed forbidden frequency band gaps for the transmission coefficient
through the lattice are shown to be amplitude dependent. Experimental results are compared to a developed
model taking into account the nonlinear behavior of the Helmholtz resonator.
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Since the work of Brillouin in the middle of 20th century
[1], the wave propagation and dispersion in ordered lattices
have been widely studied. The solutions for the wave field
were derived by the use of the Bloch theory [2], which al-
lows one to find the dispersion relation of the periodic lattice
by supposing a wave field based on functions that have the
spatial periodicity of the lattice. The analysis of the obtained
dispersion relation shows the existence of forbidden band
gaps (corresponding to evanescent waves) and allowed band
gaps (corresponding to propagative waves) in the transmis-
sion spectrum of the lattice. The first studies were performed
in quantum physics where numerous works made use of
Bloch waves [3,4]. For instance, the propagation of electrons
through periodic potentials shows the existence of band gaps
in the transmission spectrum [5,6]. More recently, some at-
tention was brought to classical waves: the photonic crystals
are now widely studied in particular for light filtering appli-
cations.

For elastic waves, the same fundamental properties of dis-
persion can be found. The string loaded by masses and
springs [7], the granular beads in contact [8,9] or Helmholtz
resonators connected to an acoustic waveguide [10-13] are
some examples of applications where the Bloch waves have
been observed.

In parallel, the studies of wave propagation through vari-
ous disordered lattices allowed to observe the so-called
Anderson localization [14] in quantum physics [15,16], in
optics [17,18], and in mechanics [19-24]. Interestingly, the
theory of wave transmission through nonlinear ordered lat-
tice has also been developed [25-28]. The first theoretical
studies on wave propagation through a nonlinear lattice were
carried out using a dynamical approach [29-31]. These
works show that the presence of localized nonlinearities in-
troduces an interplay between nonlinear effects and spatial
periodicity. Some experimental studies have been performed
and revealed that the nonlinear effects may be strong enough
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to allow the propagation of waves even in the presence of a
strong disorder [32-34]. However numerous questions have
still to be answered. For example, what is the influence of the
nonlinearities type (quadratic, cubic, ...) on the propagation
in a nonlinear ordered lattice?

In this work, we study the acoustic wave propagation
through a periodic lattice made of Helmholtz resonator. This
system of Helmholtz resonator periodically connected to an
acoustic waveguide can be considered as a one-dimensional
(ID) medium (when the acoustic wavelength is significantly
larger than the guide cross section) with regularly spaced
scatterers. Interestingly, the properties of this periodic lattice
are not only due to the spacial periodicity but also to the
frequency dependence of the Helmholtz resonator response,
which influences dramatically the dispersion relation [11].
Another important feature of the Helmholtz resonator behav-
ior, is its amplitude dependence, which in addition to the
frequency dependence introduces important nonlinear effects
on the acoustic wave propagation. Besides, these particular
frequency and amplitude dependent behaviors have been
used to generate acoustic solitons [35,36].

This study shows that localized nonlinearities due to the
Helmholtz resonators of the periodic lattice can produce fre-
quency band gaps with an amplitude dependent width.

In the first part, a simple analytical model is developed to
take into account the effect of the nonlinear response of the
resonators on the dispersion relation. The nonlinear effect is
introduced through a “nonlinear” impedance of the Helm-
holtz resonators and the amplitude influence on the disper-
sion relation is shown.

In a second part, experimental results are presented and
discussed. They are compared to the analytical study and are
in good agreement with the predictions. The amplitude de-
pendence of the transmission is clearly demonstrated and the
influence of the frequency on the propagation is studied
through the determination of the attenuation length of the
lattice.

A short discussion finally presents the other physical pro-
cesses that may possibly play a role in the presented results,
and some extensions of the present study.
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FIG. 1. Schematic representation of the Helmholtz resonator
lattice.

I. MODEL OF THE NONLINEAR PROPAGATION
OF ACOUSTIC WAVES IN A ONE-DIMENSIONAL
LATTICE

A. Description of the lattice under study

We consider the problem of propagation of the lowest
acoustic mode in a cylindrical waveguide of section S on
which Helmholtz resonators are connected regularly each
distance d,. The Helmholtz resonators numbered by n are
connected to the pipe through a pinpoint connection, the ra-
dius of the throat’s cross sectional area s, of the nth resonator
being assumed to be small compared to the wavelength of
the acoustic wave (v v”/ N<1). Each connection is located
along the axis of the waveguide by its coordinate z,, with
axial spacing d,, between two consecutive points as shown in
Fig. 1. A Helmholtz resonator is composed of (i) a neck of
section s,, and length € (ii) a cavity having a volume V/, (iii)
and in our case a piston which allows to adjust the volume
V), and consequently the resonance frequency f|, of the reso-
nator.

B. Propagation equation and dispersion properties

In the part of the pipe between two consecutive connec-
tion points, the acoustic wave characterized by the pressure
p(z,1) is the solution of the plane wave equation

Pp(z,0) 1 Fp(z1)

9z* 02 i’

=0, (1)

where ¢ is the sound speed in free space.

At each connection point (denoted by z, in Fig. 1), the
boundary conditions require the conservation of acoustic
flow and the continuity of acoustic pressure. By using the
Euler equation, the propagation of acoustic waves through
the lattice can be modeled by

Psn (z,1)

ﬁzp(z,t) 1 ﬁzp(z )
(7Z2 C E 5( Zn ot > (2)

where p is the air density at rest, v the acoustic wave par-
ticular velocity, and 6 the Dirac function.
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For a monochromatic acoustic wave with a frequency be-
low the cutoff frequency of the waveguide (i.e., only the
lowest mode can propagate), the acoustic pressure p(z,7) and
the acoustic velocity v(z,7) along the waveguide are

p(z,1) = p(z)e

where w=kc is the angular frequency and j= V=1. Using Eq.
(2), the pressure p(z) is given by the solution of the Helm-
holtz equation associated to the propagation equation (2)

dzp (z)

and v(z,1) = v(z)e’”,

+K2p(z) = 2 8z —z,)0,p(2), 3)

n

where o,=—jwps,/(SZ,). In this relation, Z, is the imped-
ance of the nth resonator connected at the location z=z, and
seen from the waveguide, and o, is the jump of the pressure
derivative 2| .

The matrix method is generally adequate to solve this
type of problem and the case of an ordered 1D lattice is well
known. Introducing a spatial periodicity condition on p(z), a
general dispersion equation is usually obtained [2] and can
be written in our case as

cos(gd) = cos(kd) + %{ sin(kd), 4)

where ¢ is called the Bloch wave number, k=w/c and o
=0,, Vn, because all the resonators are considered as iden-
tical. This dispersion relation (4) exhibits the peculiar char-
acteristic of filters with forbidden frequencies (or gaps, stop-
bands) and allowed frequencies (or passbands) in the
frequency domain. In our case, the band gaps are the result
of both the Helmholtz resonances and the periodic arrange-
ment of the medium. Waves that obey the relation |cos(gd)|
=< | are within a passband and travel almost freely in the duct
and waves such that |cos(gd)|>1 are in a forbidden band
and are quickly damped spatially (i.e., they are evanescent).

In Fig. 2(a), the quantity cos(gd) is plotted as a function
of the frequency using the geometrical parameters of our
system. As described above, the modulus of cos(gd) allows
to know if the wave frequency is in an allowed or a forbid-
den band gap. Three forbidden band gaps, for which
|cos(gd)|>1, are identified in the frequency range
0-2000 Hz. The largest band gap is the lowest in frequency
and is associated with the Helmholtz resonator resonance.
The band gap located around 1300 Hz is associated with the
resonance of the cavity V. The third band gap, around
1800 Hz, is the so-called Bragg band gap and is associated
only with the spatial periodicity of the medium. In Fig. 2(b),
an experimental transmission coefficient recorded in the
same system configuration than the results of Fig. 2(a) is
plotted as a function of frequency. Forbidden band gaps are
clearly seen as frequency bands where the transmission falls
abruptly. They are observed at the same location than those
indicated in black in Fig. 2 and obtained in the frame of Eq.
4).

Due to the fact that each band gap is associated with a
given physical process, it is already possible to predict that
the nonlinear behavior of the Helmholtz resonator will not
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FIG. 2. Dispersion properties of a 1D lattice made up Helmholtz
resonators. (a) Dispersion relation of the linear lattice obtained from
Eq. (4). A zoom of the surrounded region is shown in Fig. 3. (b)
Example of an experimental acoustic transmission through the cor-
responding one-dimensional lattice (in log-scale with arbitrary ref-
erence). The band gaps defined as |cos(gd)|>1 are highlighted by
the black regions.

have any effect on the band gap associated only to the spatial
periodicity of the medium (the Bragg band gap). As seen in
the following, the nonlinear acoustic behavior of the disper-
sion relation will only be visible on the Helmholtz band gap,
due to the nonlinearity of the Helmholtz resonator.

C. Nonlinear model of Helmholtz resonator

A simple model of the Helmholtz resonator requires the
following assumptions: (i) the pressure inside the cavity of
volume V,, is spatially uniform, (i) the fluid in the neck
moves like a solid piston. In this case, the air enclosed in the
resonator acts as a spring for the lumped mass of air moving
within the neck. A general description of the nonlinear be-
havior of the Helmholtz resonator may be derived by taking
into account the quadratic term in the restoring force of the
spring (see [37] and references therein).
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The relative change of the pressure p,, in the cavity of the
nth resonator due to a displacement x,, of the air in the neck
induces a restoring force F, that has the following form
[11,37]:

2.2
pcs 2 3
Fn=pnsn=_ n[xn_ anxn+0(xn)]a
0
where the nonlinear quadratic parameter a,=(y

+1)s,/(2V,) and y=1.4 is the specific heat ratio of air at
normal conditions. The spring force is no longer linear and
its stiffness is now described by two geometrical parameters
s, and V. For a monochromatic wave, the displacement x,, of
the air in the neck is related to the acoustic velocity v,
=v(z,) by the relation v,=jwx,. The Euler relation applied to
the air mass m=pl_s, (where [/ is the effective neck length
accounting for the acoustic radiation impedance at the end
the neck, see [38,39] for details) submitted to the harmonic
force p,/(pl)e’*" reads

2
jov, + wé[& : an(l.’—") . o((um)] =)
J@ Jw pl.

where wé:s,lcz/ (Vol}) is the linear resonance frequency of
the Helmholtz resonator, i.e., its resonance frequency for an
infinitely small acoustic amplitude. The relation between the
acoustic pressure and the velocity just outside the opening of
the nth resonator is usually written for plane waves as

Pn =van- (6)

Note that this relation (6) can be nonlinear if Z, depends on
P, or equivalently on v,. By using the relation (6) in Eq. (5),
a second degree equation on the nonlinear impedance Z, is
found:

2 2
w w
z, —jwplz{l - ;3}2,1 = apl—p,=0. (7)

The solution physically allowed for Z, defines an impedance
of Helmholtz resonator with an amplitude dependent small
correction.

Using the classical method of successive approximations
in nonlinear acoustics [40], it is possible to write ¢, which
depends on Z, as o,,=a~+d)", where o” is the linear contri-
bution (i.e., the value of o, when the acoustic amplitude is
infinitely small) and o{yL is the nonlinear correction arising
from the nth Helmholtz resonator nonlinearity. It is important
to note here that the other acoustic nonlinearities due to the
intrinsic air behavior and due to the Eulerian description of
the movement [40] are considered to be negligible compared
to the nonlinearity of the Helmholtz resonators. In other
words, the contribution of the localized Helmholtz resonators
to the nonlinearity of the system is dominating the weak
nonlinearity of air. Consequently, only the Helmholtz reso-
nator nonlinearity is taken into account in this model. Once
the expression for the nonlinear o, is found, it can be intro-
duced as a small correction in the right-hand side of Eq. (3),
and this equation should be solved. This can be interpreted as
a correction to the Bloch wave number ¢ due to nonlinear
effects in the lattice. If one defines a Bloch wave phase ve-
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FIG. 3. Acoustic amplitude dependence of the dispersion rela-
tion around the low-frequency side of the first band gap. The arrow
indicates the direction of the increasing acoustic amplitude.

locity in the lattice as g=w/c,, an amplitude dependent c,, is
obtained, similarly to classical nonlinear acoustics of homo-
geneous media with a quadratic nonlinearity for instance
[40].

For the numerical calculations presented in the following,
the complete expression for the nonlinear impedance Z, has
been introduced, and the expression for o, is consequently
not written simply as (T,,=oj,; + ajnv L The pressure amplitude
p,, introduced in o, through the relation (7), should be de-
pendent on the coordinate z (or equivalently dependent on n)
but is taken constant in space (p,=p for all n). Consequently,
in this assumption, the right-hand side of Eq. (3) remains in
principle linear but takes into account the excitation ampli-
tude dependent effects in the lattice, if one calculates the
wave number ¢ for two different p, for instance. Equation
(3) is then solved as previously for the linear case, and Eq.
(4) with a new expression for o=0, is found. This assump-
tion of constant wave amplitude for the amplitude dependent
part of o is reasonable in the case where self-action is stud-
ied, i.e., frequency w is launched in the medium and fre-
quency o is detected. This would not be the case for fre-
quency mixing processes, for instance, where the amplitude
dependent right-hand side of Eq. (3) needs to contain new
frequencies starting from a monochromatic initial pressure
field. Figure 3 shows a zoom of the dispersion relation
around the low frequency side of the first stopband for in-
creasing acoustic amplitudes. The quantity cos(gd) is now
amplitude dependent due to the presence of p, in the expres-
sion of o [see Eq. (4)]. The influence of the wave amplitude
on the characteristic frequency f. corresponding to
|cos(gd)|=1 is clearly visible. This characteristic frequency
f. defines the lower limit of the band gap as it is associated
with the transition from a propagative behavior of the waves
to an evanescent behavior. This transition takes place at a
decreasing frequency when the acoustic level is increased. In
Fig. 3, for the linear case of an infinitely small acoustic level,
f.=315 Hz, while for an acoustic amplitude of 300 Pa, f.
=310 Hz. The lower limit of the band gap is consequently
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FIG. 4. (Color online) Picture of a part of the lattice under
study.

sensitive to the resonance frequency shift of the Helmholtz
resonators. Note that if the band gap limit is sufficiently
steep as a function of frequency, a small shift of this limit
can be responsible for a strong nonlinear induced attenuation
of waves with frequencies f=f,=315 Hz. Concerning the
upper limit of this Helmholtz band gap, there is no noticeable
amplitude dependent effect. The resonance frequency shift of
the Helmbholtz resonators does not play an important role in
this case. As a consequence the band gap width tends to
increase with the acoustic amplitude, the lower limit is de-
creasing in frequency and the upper limit stays practically
unchanged. Opacity of the medium is increased by the wave
amplitude.

II. EXPERIMENTAL RESULTS

Experimental setup. Figure 4 shows a picture of the lattice
under study. It consists in a 8 m long cylindrical waveguide
with an inner radius r=2.5X 1072 m and a 0.5 cm thick wall.
This pipe is connected to an array of 60 Hemholtz resonators
periodically distributed. The distance between two consecu-
tive scatterers is d=0.1 m. Each resonator is composed by a
neck (cylindrical tube with an inner area s=7.85X 107> m?
and a length /,.=2 cm) and a variable length cavity (cylindri-
cal tube with an inner area §=7.85X 107> m? and a maxi-
mum length /=16.5 cm) as described in Fig. 1. The sound
source is a compression chamber, designed to deliver high
acoustic power level, connected to one end of the main tube.
At the other end of the main tube, an anechoic termination
made of a 10 m long waveguide partially filled with porous
plastic foam suppresses the back propagative waves. A mi-
crophone designed for high acoustic powers is used to mea-
sure the pressure at the beginning of the lattice close to the
acoustic source. Another microphone mounted on a transla-
tion system measures the pressure field inside the lattice at
each resonator location. The data acquisition is performed by
means of a spectrum analyzer.

Results and discussions. As it is shown in the first section,
the nonlinear effects associated with the Helmholtz resonator
are present at the Helmholtz resonance frequency. Conse-
quently, we choose to study the propagation of acoustic
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FIG. 5. Acoustic transmission through the lattice as a function
of the frequency for different lattice lengths. The corresponding
number of resonators is indicated on each curve.

waves through the lattice around the first band gap (due to
the Helmholtz resonance of the scatterers). This forbidden
band is found between approximately 200 and 400 Hz (see
Fig. 2).

The transfer function of the medium is measured for dif-
ferent lattice lengths by changing the location of the micro-
phone. Figure 5 shows the evolution of the transmission for
15 different amounts of resonators (from 1 to 50) in a fre-
quency range around the first band gap. For a short lattice
made of few resonators (1-3), the band gap is not well de-
fined yet. The strong frequency dependence due to the Helm-
holtz resonance is however clearly visible, even for only one
resonator, and precludes the further apparition of the band
gap. After a distance corresponding to ~10 resonators, the
band gap is well defined and its shape does not change quali-
tatively at larger distance, except for a general diminution of
the transmission due in particular to acoustic energy thermo-
viscous absorption at all frequencies.

Figure 6 shows the influence of the wave amplitude on the
transmission through the lattice in the first forbidden band.
Only the lowest side of the band gap is influenced by the
wave amplitude excitation level. The theoretical results pre-
sented above have the same tendency (see Fig. 3) and the
same magnitude is found for the shift of the characteristic
frequency of the band gap lowest side (of the order of
10 Hz). This observation can be interpreted as a nonlinear
conversion of the propagative waves toward evanescent
waves. This phenomenon is found to be in agreement with
the introduced quadratic type of nonlinearity for the Helm-
holtz resonator behavior. This observation is different from
several other works considering cubic nonlinearity, where the
lattice exhibits a self-transparency, i.e., an enhanced trans-
mission with an increased amplitude [13].

A different presentation of the same phenomenon is per-
formed in Fig. 7. The spatial distribution of the wave level in
the lattice is plotted as a function of the distance from the
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FIG. 6. Amplitude dependence of the band gap width. (a)
Acoustic transfer function measured by a microphone located at the
9th resonator for two acoustic excitation levels [132 dB (thin line)
and 147 dB (thick line)]. (b) Detail of the low frequency side of the
first band gap. Acoustic transfer function for 9 acoustic excitation
levels (from 132 to 147 dB).

first resonator for different frequencies located around the
first band gap. As expected, when the frequency is in a pass-
band, there is almost no attenuation and the wave is well
transmitted through the lattice. When the frequency is lo-
cated in the middle of the band gap or inside the band gap
but close to its upper-frequency side, the wave is quickly
damped in the lattice whatever the amplitudes of the excita-
tion are. In contrary, when the frequency is close to the low-
frequency side of the band gap (for instance f=250 Hz), the
spatial attenuation is amplitude dependent: the greater the
excitation amplitude is, the higher the attenuation is. This
effect on the attenuation length confirms the frequency local-
ized character of the observed nonlinear manifestation.
Focusing now on the low-frequency side of the band gap
under study (Fig. 8), where the nonlinear effects are the most
visible, it is possible to plot the attenuation length as a func-
tion of the excitation amplitude, for different frequencies
covering the band gap side. Here, the attenuation length has
been defined as the distance from the source where the level
is decreased by 10 dB. The points under —40 dB (around the
noise level) have been removed to perform the least square
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FIG. 7. Normalized level of the acoustic wave for different char-
acteristic frequencies (f=200,250,300,430 Hz) as a function of
the distance from the first resonator. Two acoustic excitation levels
are compared.

linear fit of the acoustic level as a function of distance used
in the derivation of the attenuation length.

When the attenuation length is of the order of the lattice
size (600 cm), the medium is considered as transparent and
the wave propagates without significant attenuation. In con-
trast, when the attenuation length is close to several centime-
ters, the waves are strongly attenuated over distances lower
than the wavelength and can consequently be considered as
evanescent. Figure 8 shows that the attenuation length is de-
pendent on the frequency but also on the excitation ampli-
tude. The most important is that the amplitude dependence is
clearly localized inside a limited frequency range corre-

sponding to the side of the band gap, i.e., from
235 Hz to 285 Hz.
600 “210 Hz
500 | \
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FIG. 8. Attenuation length in the lattice for different frequencies
as a function of the acoustic excitation amplitude in a linear scale.
The acoustic excitation amplitudes correspond to acoustic excita-
tion levels ranging from 130 to 147 dB.

PHYSICAL REVIEW E 75, 026615 (2007)

Discussion. The developed model based on a quadratic
elastic nonlinearity for the Helmholtz resonator is in good
agreement with the presented experimental results and inter-
pretations. Both the magnitude of the frequency shift and its
location only on the low-frequency side of the band gap
confirm the validity of the model. However, other physical
processes that are usually involved in the nonlinear acoustic
wave propagation in fluids may play a (minor) role in the
observed amplitude dependencies. Further studies should
consider the role of the nonlinear wave absorption due to
Helmholtz resonator, which was not considered in the
present study. This idea is suggested by the amplitude depen-
dence of the transfer function observed for frequencies above
the studied band gap (above roughly 430 Hz, see the top of
Fig. 6), and not described in the frame of the nonlinear
model developed here. We attribute this particular effect to
the presence of the Helmholtz resonators because the experi-
ment was carried out in the same condition on a tube without
any resonator and a maximum saturation of the transfer func-
tion of —0.6 dB (corresponding to a ratio 0.93) was observed.
This is less than the ratio 0.25/0.3=0.83 observed in Fig. 6.
This particular experimental observation is not described
correctly by the developed model either because the model
assumptions are too strong (the assumption that p, is con-
stant in the lattice for instance), either because there is an
additional source of nonlinear attenuation in the Helmholtz
resonators, not taken into account in the model. For a large
acoustic particular velocity, formation of vorticity at the neck
of the resonators can be a source of nonlinear energy dissi-
pation.

Improvements of the model dedicated to this study can be
performed if future experimental results make it necessary,
such as considering different incident acoustic amplitudes on
the resonators as a function of distance from the first resona-
tor. The introduction of nonlinear absorption of acoustic en-
ergy in the comportment law of the Helmholtz resonator is a
further possible improvement of the present model.

A possible application of such observed effect, is for in-
stance a nonlinear acoustic filter, that saturates the acoustic
wave level transmitted through the lattice when the input
acoustic energy is increased. This effect may be optimized
by modifying strongly the geometrical parameters of the
Helmholtz resonators, because the effective quadratic param-
eter of nonlinearity «, depends on these parameters (see Sec.
10).

III. CONCLUSION

In this paper, we have investigated the nonlinear proper-
ties of the acoustic transmission through a one-dimensional
lattice with localized nonlinear scatterers, the Helmholtz
resonators. Due to the frequency dependence of the Helm-
holtz resonator response to an acoustic solicitation, it is pos-
sible to observe a low-frequency band gap associated with
the resonance frequency of the Helmholtz resonator. This
low-frequency band gap exhibits a nonlinear behavior on its
low-frequency side, induced by the nonlinear behavior of the
resonator resonance. A possible explanation of such observa-
tion is the downward frequency shift of the resonance fre-
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quency of the resonators. A good agreement is obtained be-
tween the presented experimental results and the developed
model to describe the nonlinear behavior of the Helmholtz
resonator.
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