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Arbitrarily short coherence length in wave fields within finite lossless source regions
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We show that it is possible to construct stochastic source distributions that generate wave fields with any
desired spatial coherence properties inside a prescribed finite region, regardless of the refractive-index distri-
bution therein. In particular, we demonstrate that there is no universal sinc-function form for the field corre-
lations produced by statistically homogeneous and isotropic source distributions within large lossless regions,
contrary to what is suggested by previous work. The results also disprove the commonly held belief that in
lossless source regions the coherence length of the light is bounded below by the blackbody coherence
length—that is, by approximately half the wavelength of the field.
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The spatial coherence properties of random, stationary
fields within source regions have recently attracted consider-
able interest [1-7]. Initially fields produced by &-correlated
sources in lossless spherical regions were examined [1]. As
the results suggested that large source regions are well ap-
proximated by all space, subsequent studies have concen-
trated on infinite source domains. In particular, it has been
shown that when a source distribution filling all space is
statistically homogeneous and isotropic, the coherence func-
tion of the generated field is of a universal sinc-function
form at the limit of no absorption [2]. That result has been
extended to dimensions other than 3 [5] and to vectorial
electromagnetic fields [6], but it has also been shown not to
generally hold in the presence of losses, no matter how small
the absorption is [7]. More precisely, regardless of the weak-
ness of the absorption, it is always possible to find sources of
infinite extent that produce wave fields whose coherence
length is as short as desired.

In the present paper we show that even for finite-sized
lossless regions it is, in fact, straightforward to construct sta-
tistically homogeneous and isotropic sources that give rise to
fields whose coherence functions do not exhibit the universal
form. More generally, an analogous construction can be used
to obtain a source distribution (not necessarily isotropic nor
homogeneous) that produces a field with any specified spa-
tial coherence properties within a finite-sized region, irre-
spective of the refractive-index distribution therein. In par-
ticular, such a source distribution can generate a wave field
with an arbitrarily short coherence length inside a lossless
source region. Specifically the coherence length is indepen-
dent of the wavelength N at which the field is considered.
Therefore, the belief that d-correlated sources or blackbody
radiators must produce the most incoherent fields attainable,
suggesting that A/2 is a de facto lower limit for the coher-
ence length of the field within lossless regions (see, e.g.,
Refs. [1,3]), is erroneous. It is important to note that the
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possibility of an arbitrarily short coherence length, as will be
reported here, is not an effect that is due to (extreme) losses
within the source region, which are known to yield short
coherence lengths [7,8]. Instead, it stems from properly
tuned interferences between the fields produced in different
parts of the source and is therefore an effect that exists for
any particular refractive-index distribution.

To avoid unnecessarily complex expressions and thus to
bring out the important aspects of the results in a clear and
concise manner, we limit our considerations here to scalar
electromagnetic fields, but as we note later on, this should
not affect the generality of the results. In a scalar treatment
each monochromatic component of an electromagnetic field
is modeled by a scalar function [9]. Such a scalar field u(r)
satisfies an inhomogeneous Helmholtz equation of the form

Vu(r) + 1 (r)u(r) = - 4ap,(r), (1)

where k(r)=kyn(r) with ky=27/\, being the vacuum wave
number and n(r) the refractive index. Here \ is the vacuum
wavelength of the monochromatic field. The function p,(r)
in Eq. (1) is the primary source distribution that generates the
field u(r). We assume that both this function and «(r) are
piecewise continuous. In addition, we consider only finite
source and scatterer regions, whereby it follows that there is
a finite region ) C R3, such that p,(r)=0 and «(r)=k, when
r ¢ (). Since the field u(r) is generated within the finite re-
gion (), it is reasonable to require that u(r) carry energy only
out of that region—i.e., that the field be outgoing. The out-
going solution to Eq. (1) is characterized by the Sommerfeld
radiation condition [10,11]

lim A 9,u(r) — ikou(r)] =0,

r—o,

unif. T, (2)

where r=|r| and t=r/r. This condition is sufficient to make
the solution u(r) to Eq. (1) unique if Im{«*(r)} >0 wherever
k(r) # ko [12]. In general Egs. (1) and (2) have a unique
solution precisely when the corresponding homogeneous pair
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support internal resonances. In order to ensure unique solu-
tions in what follows, we will take all scatterers considered
henceforth to be of this kind.

Let us then assume that f(r) is an arbitrary twice continu-
ously differentiable function. Together with the field u(r) we
can use this function to define a function u’(r) by

u'(r) = O(r)f(r) +[1 - O(r)Ju(r), 3)

where ©(r) is an arbitrary twice continuously differentiable
real function such that ®(r) €[0,1], with O(r)=0 and
O(r)=1 when r ¢ () and r € )/, respectively. Here )’ is a
subregion of ) with the property that dQ)' N dQ=Q, where
dQ) and Q' are the boundaries of the regions () and ()'.
Since f(r) and O(r) are twice continuously differentiable and
since it can be shown that the piecewise continuity of the
functions «(r) and p,(r) in Eq. (1) implies that the field u(r)
is twice differentiable [13], we can use Eq. (3) together with
Eq. (1) to compute

VZu' (r) + k*(r)u’ (r)
= O(r)[V* + (r)]f(r) — 471 - O(r)]p,(r)
+[V?O(r) +2VO(r) - V][f(r) — u(r)]
=—4mp,(r), 4)

where the last step defines the function p,(r), which, in view
of the properties of the constituent functions, is piecewise
continuous. In addition, the properties of the functions p,(r)
and O(r) imply that p,,(r)=0 when r ¢ ; i.e., the function
p,(r) is localized within the region (). Finally, since the
scatterer k(r) is assumed not to support internal resonances,
it follows that given p,.(r), Eq. (4) has a unique solution
u'(r), which by Eq. (3) is equal to f(r) when r € )’ and u(r)
when r & (). Together with Eq. (2) the latter of these proper-
ties implies that the field u'(r) satisfies the Sommerfeld ra-
diation condition.

To reiterate, we have constructed a source distribution
p,(r), which in the presence of the scatterer «(r) gives rise
to a scalar field u'(r). Within the region ' this field coin-
cides with the function f(r), whereas outside the region () it
coincides with the field u(r) generated by the source distri-
bution p,(r). In the transition region Q\{)' the field is given
by Eq. (3). We note that this kind of a construction is well
known in the theory of nonradiating sources (see, e.g., Ref.
[14]).

The second-order spatial coherence (correlation) proper-
ties of an ensemble {g} of fields (functions) g(r) are fully
contained in the cross-spectral density (covariance) function
[15,16]

W,(ry,ry) = (g (r)g(ry)), (5)

where the angular brackets and the asterisk denote statistical
averaging and complex conjugation, respectively. Suppose
now that each source distribution in {p,} is related to a field
from the ensemble {u'} through Eq. (4). Then we have
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167 W, (1.15) = (= 4m)p,, (1) (= 4m)p, (1))
=[Vi+ k() ][V + ()]
XW,(r),r,), (6)
where V,, i={1,2}, operates on the position vector r;. The
exchange of the order of differentiation and averaging is mo-
tivated by the existence of the ensemble average [16]. If we
now assume that the fields in {u'} are related to the fields in
{u} and the functions in {f} by Eq. (3), and that these fields
and functions are uncorrelated—i.e., {f (r;)u(r,))=0 when
r eQ, r, e QO'—we get from Eq. (5) the expression
W, (r,r)) =<u'*(r])u’(r2)>
=0(r))O(ry) Wr,,r,)
+[1=-0(r)][1-0(r)W,(r,r). (7)

We then consider the degree of (spectral) coherence,
which is defined for an ensemble {g} by [15]

Wg(rl’rZ)
\“”Wg(rl ’ rl)Wg(rb 1'2)

(8)

Iug(rl’rZ) =

with the convention 0/0=0. The modulus of the degree of
coherence is in the interval [0, 1], where the upper and lower
limits correspond to complete coherence and complete inco-
herence, respectively [15]. When r; € }’, we get from Eq.
(7), for the degree of coherence of the ensemble {u’}, the
expression

,U/f(rl,rz), l'z (S Q,,
My (T,15) = lﬂ(l‘z)/.bf(l‘l,l‘2), r, e Q\Q/', )
Oy r2 ¢ Q,

where i(r) € [0, 1]. Hence, for points inside the region {)’,
the degree of coherence of the fields {u'} is equal to that of
the functions {f}. In addition, its modulus for a point in )’
and a point outside that region never exceeds the modulus of
the corresponding degree of coherence of {f}. Finally, when
r;,rp ¢, Egs. (7) and (8) imply that pu,(r;,ry)
=pu,(r|,1,); that is, for points outside the region () the de-
gree of coherence of {u'} equals that of {u}. Thereby the
coherence properties of the ensemble of fields {u’}, corre-
sponding to the constructed ensemble of source distributions
{p.'}, are completely determined inside ()’ by the coherence
properties of the ensemble of arbitrary twice continuously
differentiable functions {f}.

The coherence length of an ensemble of functions (fields)
{f} is roughly the distance over which correlations between
pairs of points are significant—i.e., where the degree of co-
herence w/(ry,r,) differs appreciably from zero [15]. This
definition is necessarily vague by nature, since not all func-
tional forms that the degree of coherence may have can be
assigned a coherence length in a meaningful way. The situ-
ation is reminiscent of the difficulty to define the effective
spectral range of multimode radiation [15]. However, in the
specific case when the degree of coherence is of sinc type, or
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FIG. 1. The source cross-spectral density Wpu,(rl ,I,) (top) and
the degree of coherence u,/(r;,r;) of the generated field (middle)
around r;, when [r;|=0.00\,.

), (10)

where y € R and jy(z) is the spherical Bessel function of
zeroth order, the coherence length is conventionally taken to
be precisely L=/x [3,15]. Therefore, to avoid getting
tangled up in a vague definition, we concentrate here only on
ensembles with a degree of coherence that is of the form of
Eq. (10) inside the region €}’'. Hence they are in particular
statistically homogeneous and isotropic therein.

Let us now consider a situation where the regions ) and
Q' are balls of radii R and R’ <R, respectively, and «(r)
=k when r € (). Furthermore, we assume that W(r,r)=1 for
all r, so that the definition (8) implies that Wr,r,)
=uyr;,ry). In addition, we take the fields in the ensemble
{u} to be given by

ULio(xr) = jo(kR)IRG" (koR)
+ wlkojl (KRR (koR)},
Undlkjy(kRRS (kor).

where U, with (f' (r)U)=0 for all r, is a random variable that
alone indexes the realizations, hf)l)(z) is the spherical Hankel
function of zeroth order, and the primes denote differentia-
tion. The fields u(r) thus defined correspond to constant
source distributions p,(r)=p, within ). Finally, if we also
assume that in the transition region R'<r<<R we have
@(r)=p(;__—1;), where p(t)=—6+15t*~10*+1, we can use
Egs. (11), (5), (7), (6), and (8) to determine the functions
Wpu,(rl,rz) and w,(r;,r;). The magnitudes of these func-

u(ry,15) = jo(x|ry = raf) = sinc(x|r; - r,

r<R, (11)
r>R,

u(r) =

tions are plotted in Figs. 1-3 for the specific case when
klky=1.1 (A=0.91)\y), R=5.0\, (=5.50N), R’'=4.9)\,
(=5.39\), x/ko=5 (x/k=4.55), and {|U|*)=1007. We ob-
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FIG. 2. Same as Fig. 1, but with |r;| =2.50\,.

serve that this choice of parameters implies that the scatter-
ing ball k(r) does not support internal resonances and hence
the constructed source cross-spectral density Wpu,(rl ,T5)

indeed uniquely gives rise to the degree of coherence
,(ry,ry) of the generated fields {u'}. In the plots these
quantities are shown as functions of the logarithmically dis-
played distance |r,—r;|/\, and the angle Z(r,,r,-r,) for
the cases when |r|/\q€{0.00,2.50,4.89}. The solid and
dashed curves in the bottom part of each figure correspond to
the outlines of the regions () and ()’, respectively. The dot-

- /"2\1‘1//%
rl=489% S 93

~

|Wp“‘(r1,r2)|/<|U|2>

Z(ry,ry-ry)

FIG. 3. Same as Fig. 1, but with |r;| =4.89\,.
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ted curves in turn correspond to the first zeros of u,(r;,r,)
(inner) and j(ko|r;—r,|) (outer). These figures clearly show
that inside the region ()’ the coherence length L of the fields
{u'} is much shorter than the coherence length Ly=/k,
=M\y/2 corresponding to the latter function. In fact, from Eq.
(10) it follows that L=/ x=1/(5ky)=N\o/10.

In the example we have used as a yardstick the vacuum
wavelength A\, rather than the wavelength \ associated with
the field within the source region. The wavelength inside a
source or a scatterer is, in general, not unambiguously de-
fined since the refractive index may be position dependent or
complex valued (lossy medium). This is, though, not the case
in the analyses in Refs. [1-3,5,6], in which a lossless me-
dium is taken to fill all space (including the source region).
We emphasize that since the general construction put for-
ward in this paper can be used to obtain field coherence
properties (including the coherence length) that are indepen-
dent of the vacuum wavelength A\, and the refractive-index
distribution «(r), they are also independent of the wave-
length in the medium. For lossless and homogeneous media
(scatterers) k(r)=k=nk,, so that \=\,/n. Thereby, although
we compare the coherence length in the example to the
vacuum universal form jo(ky|r;—r,|), the conclusions de-
rived from the example are not altered if k, (A,) is replaced
by x (N).

The significance of the presented example lies in the fact
that it shows that even when the source region is large and
the source distribution is statistically homogeneous and iso-
tropic, the field correlations are not of the universal sinc-
function form jy(ky|r;—r,|) [or jo(k|r;—r,|)] in a lossless
medium, contrary to what could be expected from the results
in Refs. [2,5]. Indeed, the source distribution is statistically
homogeneous and isotropic within the smaller ball €)', and
the radius of the source region in the example is 5\, which
by Ref. [1] constitutes a large region (even if the radius is
interpreted as 5.50\) at least when r;=0. Furthermore, an
analogous construction can be used for balls with arbitrarily
large radii. Although the correlations of the source distribu-
tion are within the region ()" exactly of the form considered
in Ref. [3], they are, however, more complex inside the
boundary region Q\Q'. It is precisely the existence of such a
region that invalidates the universality results. That is, the
assumption of an infinite source region, as used in obtaining
the universality results, prohibits the existence of any bound-
aries and hence cannot account for any effects due to them.
In view of these considerations and since any actual region,
however large, has a boundary, it thereby seems that the
applicability of the universality results to large finite systems
should be carefully evaluated on a case-by-case basis.

It is also of interest to note that the coherence length of
the field in the example is A/ 10, which is much less than the
sinc-function (universal) coherence length /2 (or \/2),
which also corresponds to a field produced by an infinite
S-correlated source [1]. In fact, since there is no restriction to
the parameter y in Eq. (10), it is possible to construct a
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source distribution which yields a field with an arbitrarily
short coherence length inside a region with any specified
refractive-index distribution, lossy or not. In particular, this
coherence length does not depend on the refractive-index
distribution or on the wavelength of the field (however it is
defined) within the source region. This is in contrast to the
short coherence length obtainable in a lossy system with a
6-correlated source distribution, where the coherence length
can be made arbitrarily short by increasing the losses in the
system since absorption reduces the effective range of the
contribution to the field as produced by each source point
[7].

The fact that the field can have an arbitrarily short coher-
ence length in a finite lossless system, although obvious from
the equations derived here, is perhaps not so from a physical
point of view. Indeed, the idea that blackbody or -correlated
sources produce the fields with the shortest coherence
lengths is entertained implicitly and explicitly in, for ex-
ample, the seminal papers, Refs. [1,3]. In the former of these
references it is argued that for the coherence length of the
field to be shorter than \/2, the correlations of the source
distribution must be more singular than the ¢ function. The
results and the example in the present paper show this con-
clusion to be false, since the short coherence length is ob-
tainable even for a piecewise continuous source distribution.
In Ref. [3], on the other hand, an explicit example of a
shorter coherence length is obtained, but it is dismissed as an
extreme case of the A/2 bound for fields whose cross-
spectral density function is not of the sinc form. There is also
some anecdotal evidence that the N/2 limit has been even
more widely adopted. One reason for this is probably the
universality results [2,5], which predict a N/2 coherence
length for fields produced by a wide class of source distribu-
tions. Another likely reason is that the N/2 limit also appears
in considerations of so-called free fields. The Fourier trans-
form of such fields over all space is concentrated on a spheri-
cal shell of radius ky=2m/\, and it is reasonable to assume
that no collection of such fields could harbor structures that
are significantly smaller than the wavelength \. This fact is
proven for an isotropic ensemble of uncorrelated plane
waves in Ref. [4].

Even though the analysis in this paper is based on scalar
fields, the generalization concerning the universality results
of infinite statistically homogeneous and isotropic source re-
gions to a full vectorial description of electromagnetic fields
[6] suggests that it should be straightforward to extend our
results to hold for vectorial fields as well. Indeed, the explicit
construction of a source distribution that yields a field with
prescribed properties, on which our conclusions are based, is
not only available for scalar fields but can also be performed
in the realm of a complete vector-valued description of
electromagnetic fields [17].
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