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Vector potential formulation and parametric studies of electromagnetic scattering problems of a sphere
characterized by the rotationally symmetric anisotropy are studied. Both € and m tensors are considered herein,
and four elementary parameters are utilized to specify the material properties in the structure. The field
representations can be obtained in terms of two potentials, and both TE (TM) modes (with respect to 7) inside
(outside) the sphere can be derived and expressed in terms of a series of fractional-order (in a real or complex
number) Ricatti-Bessel functions. The effects due to either electric anisotropy ratio (A,=¢,/€,) or magnetic
anisotropy ratio (A,,=u,/u,) on the radar cross section (RCS) are considered, and the hybrid effects due to
both A, and A,, are also examined extensively. It is found that the material anisotropy affects significantly the
scattering behaviors of three-dimensional dielectric objects. For absorbing spheres, however, the A, or A,, no
longer plays a significant role as in lossless dielectric spheres and the anisotropic dependence of RCS values is
found to be predictable. The hybrid effects of A, and A,, are considered for absorbing spheres as well, but it is
found that the RCS can be greatly reduced by controlling the material parameters. Details of the theoretical

treatment and numerical results are presented.
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I. INTRODUCTION

Due to recent advances in material science and technol-
ogy and increasing applications of anisotropic materials for
microstrip circuits and microwave engineering, analysis and
characterization of electromagnetic interactions with aniso-
tropic materials have been a subject of great interest in recent
years. Among those investigations in the literature, scattering
of electromagnetic waves by anisotropic three-dimensional
(3D) objects has attracted considerable attention [1,2]. In the
analysis of scattering problems associated with anisotropic
media, the 3D Fourier transform technique was widely used
[3.4] to relate the space and spectral domains and this is
especially true for waves and fields in planar multilayered
structures. The Lorenz-Mie analytical approach is an impor-
tant theory and is usually employed [5-7] especially when
the problem geometry is of spherical and radially layered
configurations. The method of angular spectrum expansion is
also often applied to provide a coordinate transformation [8].
The dyadic Green’s function technique [9] is a powerful ana-
lytic method for solving boundary-value problems and is a
kernel for the integral equation necessary for the method of
moments and the boundary element method. Scattering by
inhomogeneous 3D objects is treated by the method of sepa-
ration of variables [10] in spheroidal coordinates and by ex-
tending the Lorenz-Mie theory to spherically multilayered
cases [11], and scattering by periodical spherical structures
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[12] and gyrotropic spheres [13,14] are studied as well.

For most of these published works, however, investiga-
tions of the scattering behaviors of anisotropic media are
carried out by considering only planar geometry [15-17] or
cylindrical structures [18—20]. Due to the mathematical com-
plexity of studying spherical anisotropic objects, some stud-
ies have been done and progress has been made in the analy-
sis of 3D anisotropic objects recently, which only focused on
field expressions [21,22] using the method of moments [23],
the second-harmonic generation approach [24], and the
coupled-dipole methods [25]. As far as we know, little work
has been done so far on parametric studies of the material
anisotropy effects on the scattering performance in spherical
coordinate system or spherical anisotropic 3D objects with
both electric and magnetic anisotropic properties. So far,
there is no reported process to fabricate such anisotropic ma-
terials, but such materials are likely to be fabricated in the
future especially with the fast advancement of nanoscience
and nanotechnology. The theorem developed in this paper
will be very useful and helpful especially in engineering
those uniaxial materials. Also, it provides us some ideas to
control (by minimizing and maximizing) the radar cross sec-
tions (RCS’s) if unintentional uniaxial anisotropy in the sur-
face of the material is introduced during the manufacturing
process.

In this paper, field expansions in all regions due to an
incident plane wave propagating in the presence of aniso-
tropic spheres are made using potentials with TE and TM
decompositions. The scattered field and total field can be
thus obtained by imposing boundary conditions at the sphere
surface and using the superposition technique, respectively.
The parametric studies are of particular interest in this paper,
from which we can find how the RCS’s will be affected and
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FIG. 1. Geometry of scattering of a plane wave by an aniso-
tropic sphere.

what we could do to control of the RCS values. To gain
physical insight, the RCS results are studied for a wide range
of joint anisotropy (A, and A,,), and compared to the results
of both the isotropic case and the single-anisotropy (only A,
or A,,) case. It is worthwhile to note that RCS’s will exhibit
some new characteristics in joint an_isot_ropy cases and we
:%;:ZP to predict RCS’s
for anisotropic spheres, which will be of great use in radar
detection and military purposes. It is of major interest to
know how significantly anisotropy influences electromag-
netic scattering, so that we can adjust the parameters of the
3D objects to control the RCS values, either for enhancement
or for reduction.

also construct a general expression |

II. POTENTIAL FORMULATION AND FIELD
EXPANSIONS

In this paper, electromagnetic scattering of a plane wave
by an anisotropic sphere (as shown in Fig. 1) is treated,
where the material parameters are characterized by constitu-
tive tensors of permittivity and permeability to be specified
later. For anisotropic media, the constitutive relationships as
used in the Maxwell equations are

VXE=-iop-H, (1)

VXH=iwe E+J, (2)

where the time dependence ¢’ has been assumed but sup-
pressed. Consider an anisotropic sphere of radius a located at
the origin of a coordinate system as shown in Fig. 1. The
constitutive relations are given by
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€=¢|0 ¢ 0], 3)
0 0 ¢
m 00

n=po| 0 wm O f, (4)
0 0 w

where the identity dyadic is expressed as I=FF+ 00+ ¢ and
€ (or w) is the permittivity (or permeability), and €, (or w,)
and ¢, (or u,) stand for the relative permittivities (or perme-
abilities) perpendicular and parallel to the sphere surface,
respectively. In an alternative form, we can rewrite Egs. (1)
and (2) as

VX (€' -D)=-iwB, (5)

VX (w' -B)=iwD+]. (6)

Considering the source-free case of the equations above
with the vector identities, we can express B and D in terms
of the following two sets of scalar eigenfunctions:

By =V X (Fihry) (7)

D =-V X (Fifrg), (8)

where g and i denote potentials for the TM and TE
modes, considered with respect to 7 in the spherical coordi-
nate system.

Substituting Egs. (7) and (8) into Egs. (5) and (6), we
obtain

1
Bry=- (VX [€"-V X ()]l ©)

Dry=—(V X [E VX Gyl (10

After some manipulations of those equations regarding B
and D, we obtain

€ rm 1 J ( . ,,&(//TM> 1 FPiru
- 5 + > . \smo D) B
€ or r°sin 696 a6 rosin 6 d¢é
+ 0 o €oht, €Y =0, (11)
g | ( . nalﬁTE) 1 Py
T 5 to o \smd T o2 2
M Or r~sin 696 a0 r-sin® 6 d¢

+ o’ po€o € =0. (12)

It can be seen that in the case of €,=¢, and w,=pu,, the above
equations are reduced to the results of isotropic media [26].

Using the separation of variables method, we find that the
solutions to the above equations are composed of superposi-
tions of Ricatti-Bessel functions, associated Legendre poly-
nomials, and trigonometric functions—i.e.,

. - cos
Y= 2y, (k1) Pyl (cos ) . mp,  (13)

m,n
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. i cos
V1w = 2 byo, (k)P (cos ) m, (14)
1 172 1
= +DA A+~ -2, 15
vr=[nlnt DA+ | =5 (15)
{ 112
= + 1A, +— -, 16
vy = nln+ DA, + 7 > (16)
—
k= w\ o€ phss (17)

where A,=¢€,/€,. and A,,=u,/u, represent the electric and
magnetic anisotropy ratios, respectively, a,, , and b,, ,, denote
the expansion coefficients, and v and v, stand for the orders
of spherical Ricatti-Bessel functions which can be complex
in value. Thus, the field expansions in spherical coordinates
can be obtained using the TE and TM decompositions

E —3<ﬁ+k2>¢ (18)
r_l.k,2 3}’2 t T™ >

-1 g @ Py

= , 19
g €€r sin 0 P iktzr araf (19)
1 9 &>
4= e +— w‘ lpTM’ (20)
€er 90 ik;rsin 0 drdp
o &
Ho=—|—5+ k2> , 21
r zk?(ﬁrz t wTE ( )
_© Py 1 Irn
06— .2 + . s (22)
ik;r drd6  uoprsin 0 dé
w &ZwTE _ 1 drm (23)

o ikjrsin 0 drdg  popmr 90

As we can see, the wave propagation is dependent on both A,
and A,,.

III. SCATTERED FIELD AND RCS’s

We notice that if the nondiagonal components of the ma-
terial tensors € and m are zero, then the rotations would be
equivalent to letting 77 be unchanged while rotating the
transverse elements (to 7) with 7 as axes. The material in our
study remains invariant under such a rotation, which was
called G type [27] where the analysis was in 2D with respect
to Z as the axis of rotation. In that case, G type is referred to
z. If we extend that to the present G type with respect to 7,
we can have the characterization for anisotropic material ten-
sors in spherical coordinates (r, 6, ¢).

For absorbing spheres, the elements in ‘€ and g, or at least
one of these two tensors, are complex in value. A plane
wave, as shown in Fig. 1, is characterized by

Ei — ﬁ:e‘ikOr cos 0, (24)
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| € .
Hi =j‘, _Oe—lkor cos 0’ (25)
Mo

where a unity amplitude of the incident wave propagating
upon the sphere is assumed. To match the boundary condi-
tions at the surface of the sphere, the exponential terms in the
above equations can be expanded in terms of spherical har-
monics by employing the following identity:

‘ o i2n+ 1
e—lkor cos 0 _ 2 Mjn(kor)[’n(cos 0) (26)
n=0 kor

By equating the radial components in Egs. (24) and (25) to
those in Egs. (18)—(23), the scalar functions of /. and ¢/
for incident fields can be expressed as

sin pa i+ 1)

e = 1
M= 2 anr 1) ko Puleos 6). - (27)
. “ n 2 1
v = Co(i(bn:l i nEnr:"'l) )jn(kor)P,l,(cos 0. (28)

Similarly, ¢4 and ¢4, for scattered fields can be thus de-
rived to be

W= LS ()P (cos 6a), (29)
0 n=1
cos ¢ ” @) :
Py = > a,h? (kgr) P (cos 6), (30)
n=1

where j,(-) and h1(12)(') denote first-kind spherical Bessel and
second-kind Hankel functions, respectively. Then, ¢/ and
Yy for the transmitted fields inside the sphere can be re-
duced to

LUy d,j, (ki) Pl(cos 6), (31)
W7o y=1
L Cufo, (k) PL(cos ), (32)
w

n=1

where a,, b,, c,, and d, are unknown expansion coefficients
to be determined by matching the boundary conditions which
require continuity of the tangential components of the elec-
tromagnetic fields on the surface at r=a. Normally, there are
four sets of boundary equations

E'fa) = Elfa) + E}(a), (33)
Elya) = E'y(a) + E}a), (34)
Hya) = Hya) + Hya), (35)

'a) = Hiy(a) + H)a). (36)

Actually, after careful examination, it is found that only two
sets of equations (33) and (35) or the other two sets of equa-
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tions (34) and (36) are sufficient enough to determine those
expansion coefficients. These coefficients are obtained and
given as

. .! o .
Vil €ju(koa)jy, (kia) = j(Koa) jy (ki)
an = 2 — N
W (koa)jy, (ki) = N €h D (koa) ) (ki)

T,. (37)

\“‘s/'l’tlétj;;(koa)jvz(kra) - jn(k()a)jéz(kta)
by=— , — T, (38)
12 (koa)j, (ki) =\l &h? (ko) (kia)

i

=T . By T,, (39)
vﬂ/efhn (koa)jyl(kfa) - hn (koa)jvl(kta)

d = i V’Mt/ &
I (koa)jy, (ki) =Nl e (koa)jy, (ki)

T,, (40)

iM(2n+1)

"= nn+1) ° (41)

where Wronskians for spherical pairs of solutions are em-
ployed herewith. The derivative in the above equations is
taken with respect to the argument (i.e., d[j,(x)]/dx). With
these coefficients solved, the field components of the scat-
tered, transmitted, and total fields can be obtained by corre-
sponding substitutions. Of particular interest is the backscat-
tered field, from which we can calculate the RCS:

E52
Axx=lim<477r2| J ) (42)

|E?

r—ow

IV. NUMERICAL RESULTS

In this section, we mainly focus on the following two
areas: that is, the effects of (i) dielectric spheres and (ii)
absorbing spheres. For each area, typical results for (a) single
electric and magnetic anisotropy effects, (b) joint anisotropy
effects, and (c) RCS prediction on the RCS values will be
studied in a wide range. In all the following RCS calcula-
tions, the truncation of the summations is chosen to be 50, at
which the convergence has been verified to be acceptable.

A. Dielectric spheres

For dielectric spheres, all elements in ‘€ and pu are real
values. First, we consider the RCS results for isotropic
sphere as shown in Fig. 2.

In Fig. 2, it is shown that these two curves agree quite
well for dielectric spheres (v, =v,=n) where there is actually
no difference theoretically. Further simulation results show
that the backscattering behaviors are the same for these two
dielectric spheres (€, and w, for the first case, €, and u, for
the second case) only if Ve u =Veu, and Vu,/€
=1/Ju,/ €. It can be also verified by observation in Eqs.
(37) and (38). In the calculation of the backscattering RCS
(A,,) of spheres, the expression will be in the form of a
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FIG. 2. Normalized RCS values versus kpa of an isotropic
sphere.

summation and each term will have b,—a,. Under the con-
ditions of e u;=Veu, and Vu,/€,=1/u,/ €, each sum-
mation term of b,—a, for those two dielectric spheres will
only have a sign change, but the final expression in Eq. (3)
will not change since it is dependent on the absolute value of
b,—a,. Later, we will compare the results of the following
anisotropic cases with those of the isotropic case so as to find
out the rules of RCS dependence prediction.

1. Electric and magnetic anisotropy effects

For uniaxial ferrite spheres, we assume that €,=¢,=1 ap-
plies to all cases in Fig. 3. In Fig. 3(a), the RCS values due
to a negative uniaxial sphere (w,<pu,) with A,=1.2, A,
=1.4, and A,,=1.6 are shown, while in Fig. 3(b), the RCS
values due to a positive uniaxial sphere (w,>pu,) with A,

304
—=— =20, =24 (A_=1.2)
254|—0—p=2.0, u=2.8 (A =1.4)
—A— =20, 4=3.2 (A =1.6)
N(“ 20_ a AI
B
\X
< 154
104
5.
(@)
8-

—m—p=2.0, =10 (A_=0.5)
—a—p=2.0, p=14 (A_=0.7)
6| —e—n=2.0, =18 (A =0.9)

FIG. 3. Normalized RCS values versus kya for uniaxial ferrite
spheres under the condition €,=¢,=1 (a) Negative uniaxial Ferrite
spheres. (b) Positive uniaxial Ferrite spheres.
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20~
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----§72,=3.2, =2, n=24

FIG. 4. Normalized RCS values versus kga for generalized an-
isotropic spheres. (a) Solid Curve: A,=1.2, A,,=1.4; Dashed curve:
A,=1.2,4A,=009. (b) Solid Curve: A,=0.7, A,,=1.2; Dashed curve:
A,=1.6,A,=12.

=0.9, A,,=0.7, and A,,=0.5 are depicted. It is observed that
the RCS values are quite sensitive to the anisotropy and the
scattering characteristics of a dielectric sphere are greatly
affected by the presence of anisotropy. In addition, the oscil-
lation of the RCS values due to negative spheres is much
sharper and more irregular than that due to positive spheres,
and the oscillation range of RCS values of negative spheres
is wider.

For electric anisotropic spheres, we assume that the con-
dition of w,=u,=1 applies to all cases. After careful exami-
nation and simulation, it is found that the dependence of
RCS’s exhibits the same scattering performance with ferrite
spheres in both negative and positive cases. Hence the fig-
ures of normalized RCS results for electric anisotropic
spheres will not be given in detail due to length restrictions.

2. Hybrid anisotropy effect

In this case where €,.# €, and u,# u,, the hybrid effects
due to A, and A,, are of particular interest. In Fig. 4(a), we
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FIG. 5. Normalized RCS values versus kya for isotropic absorb-
ing spheres.

keep the € constant and change w, and u, so as to examine
the anisotropy effect on the dependence of RCS values. By
comparing Fig. 4 with Fig. 3, it is observed that under the
same A,,, the RCS values are affected significantly by the
existence of A,, leading to hybrid anisotropy effects.

3. RCS prediction

By comparing those results in Fig. 3 for uniaxial ferrite
spheres with those in Fig. 4 for generalized anisotropic
spheres and in Fig. 2 for isotropic spheres, it can be con-
cluded that (a) the scattering performance of a dielectric
sphere is significantly affected by the presence of anisotropy
of the sphere, and (b) by studying many other different cases
for a wide range of anisotropy effects, it is obvious that the
dependence of RCS’s on anisotropy is in a complex form and
no general rules to predict the scattering behavior due to the
anisotropy have been found in the present work. Therefore,
control of the RCS values can be made by adjusting the
factors or parameters in many different ways.

B. Absorbing spheres

In absorbing spheres, the elements of ‘€ and m in Egs. (3)
and (4) are complex in value. The imaginary parts represent
absorptions. Subsequently, we will first examine the charac-
teristics of isotropic absorbing spheres. In the cases given in
Fig. 5, the orders of Bessel functions (i.e., v, and v,) in Egs.
(13) and (14) are still integers. Figure 5 shows that for suf-
ficiently large isotropic absorbing spheres (koa>17), nor-
malized RCS values steadily approach 0.0529 and 0.0357 for
solid and dashed curves, respectively. For small values of
koa, a high oscillation would be present, and these results are
comparable with the diagrams given in [1]. This fact thus
confirms the validity of our theoretical formulation.

1. Electric and magnetic anisotropy effects

In this section, it is assumed that €,=¢,=1 for all single-
anisotropy cases. In Fig. 6(a), the RCS results for negative
absorbing spheres (u,<um,) with A,=1.3-0.1i, A,
=1.4-0.3i, and A,,=1.5-0.5i are shown. It can be observed
that when kya > 15, all three curves approach their own con-
stant values 0.08665, 0.1088, and 0.1325, respectively. It is
noted that the periods and limits of damped oscillations
which occur for kga <5 exhibit an irregular form, and for
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FIG. 6. Normalized RCS values versus kgpa for absorbing
spheres when €,=¢,=1 (a) Negative absorbing spheres. (b) Positive
absorbing spheres.

larger values of kya, the oscillations start to show a regular
decaying form, which agrees with the results for isotropic
cases for perfectly conducting spheres [1]. In Fig. 6(b), RCS
values for positive absorbing spheres (u,> u,) in the three
cases are shown. It exhibits characteristics of oscillation pe-
riods and limit values similar to those in Fig. 6(a); however,
it can be seen that the higher the imaginary part of the com-
plex permeability parallel to the spherical surface, the
smaller the oscillation period for the region when kya>S5.
Higher absorption via the imaginary part in w, results in
higher values of the limits of the damped oscillations. For
practical purposes of RCS reductions, the positive absorbing
spheres are preferred, since the backscattered field due to a
positive absorbing sphere is only about one-fifth of the field
due to a negative absorbing sphere.

2. Hybrid anisotropy effects

In this section, the A, and A,, under consideration can be
any complex numbers simultaneously assumed. It is worth-
while to note that some novel characteristics of RCS values
will be presented. By comparing Fig. 7 with Fig. 4, it can be
observed that the loss tangents or the imaginary parts of €
and u significantly reduce the RCS values (almost hundreds
of times) and also make the oscillation more flattened and
predictable. This observation might be very useful in practi-
cal applications, especially in identifying aircraft coating ma-
terials which may generate some “invisible” effects.

Finally, we will obtain the RCS results for a special case
where €, and u, can be arbitrary but €,=u, As is shown in
Figs. 8(a) and 8(b), for absorbing spheres (no matter of
single or joint anisotropy), once the parallel permittivity
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FIG. 7. Normalized RCS values versus kya for general absorb-
ing spheres. (a) Solid Curve: A,=1.32-0.24i and A,,=1.52-0.24i;
Dashed curve: A,=1.32-0.24i and A,=0.84+0.12i. (b) Solid
Curve: A,=1.68-1.16i and A,,=1.32-0.24i; Dashed curve: A,
=0.72-0.04i and A,,=1.32—-0.24i.

equals parallel permeability, RCS values will approach zero
in the region of kya>3 regardless of what €, and u, are.
However, the dielectric sphere still shows an irregular fluc-
tuation in Fig. 8(c) and the oscillations do not end up with a
stable limit.

3. RCS prediction

From Fig. 5 to Fig. 8, it can be concluded that the trans-
verse components of € and g dominate the scattering char-
acteristics of absorbing spheres, which makes it possible to
control the backscattering effects of anisotropy. We propose
a general RCS prediction scheme here to calculate the limit-
ing value of a damped oscillation in all figures in this sec-

tion:
1 2
\/ = -1
€,

: (43)

Niimit = ,
lad} +1
V €

t

which is applicable to all sufficiently large absorbing spheres
and can be reduced to the geometrical optics limit given in
[28].

The physical insight here is that for a sufficiently large
sphere, the electric vector of the incident plane wave is par-
allel to the boundary surface of the sphere. The permittivity
€, and permeability u,, which are perpendicular to the elec-
tromagnetic perturbations of the incident wave, do not affect
the backscattering behaviors. This phenomenon is due to the
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FIG. 8. Normalized RCS values versus kya for absorbing and
dielectric spheres when €=pu,. (a) Absorbing sphere with €=,
=2.4—1.8i. (b) Absorbing sphere with €,=u,=1.8—3i. (c) Absorb-
ing sphere with €,=u,=2.8.

attenuation of the transmitted wave inside the absorbing
spheres which causes all the scattering due to the reflection at
the external boundary surface. If we use Eq. (43) to compute
all limits of the figures, it is found that the theoretical results
agree well with the numerical data.

V. CONCLUSIONS

In this paper, scattering by rotationally symmetric aniso-
tropic spheres is studied extensively. Much effort has been
spent not only in the formulation of potentials and TE- and
TM-wave (with respect to ) decomposition, but also in the
parametric studies of RCS characteristics. Calculated RCS
values for an incident plane wave reveal that the existence of
anisotropy significantly influences the scattering behavior of
spherical objects. Furthermore, the hybrid anisotropy greatly
affects the characteristics and dependence of RCS results
more than a single anisotropy. If the material parameters are
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manipulated properly, the objects can be “transparent” to the
detecting devices on the ground.

It is found that for the cases of dielectric spheres, the
scattering behavior depends on the uniaxial anisotropy in a
complex way. For the cases of absorbing spheres, however,
the RCS values are affected primarily by the imaginary parts
of the transverse component of ‘€ and u; therefore, the de-
pendence of backscattering RCS on single and joint anisotro-
pies is found to be predictable. It is also observed that the
RCS values approach a limit, which is determined by ¢, and
M, the permittivity and permeability elements parallel to the
boundary surface. A determination of the limit of damped
oscillations has been proposed in Eq. (43). Hence, if unin-
tentional anisotropy is introduced due to natural reasons or
due to the shear in the surface plan during processing, an
absorbing material would be a better choice than a lossless
dielectric material as a coating on a scatterer, and if single
anisotropy exists, it will be much better to utilize the hybrid
anisotropy to minimize or control the scattering behaviors
further.

This paper, therefore, not only derives an analytic series
solution to the theoretical problem for field representations
of rotationally symmetric anisotropic spheres (where both €
and u are tensors), but also carries out extensive parametric
studies of single- and joint-anisotropic effects on scattering
behaviors. As far as anisotropic spheres are concerned, dy-
adic Green’s functions for radially multilayered anisotropic
spheres, using spherical Bessel functions of fractional order,
will be reported in the future. In that case, the source and
field points can be arbitrarily located. If the number of total
layers becomes 2, it is just the specific case studied in this

paper.
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APPENDIX: SOME PROPERTIES OF RICATTI-BESSEL
AND HANKEL FUNCTIONS AND LEGENDRE
POLYNOMIALS

In the formulation of potential and field quantities in this
paper, spherical Ricatti-Bessel and Hankel functions are em-
ployed, and they are defined as follows

3=\ 1)
1) =\ Han).

In the calculation of RCS values, the following identities
have to be used for simplicity:

(A1)

(A2)
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9) _Jul) |1

ox 2x + E[jn—l(x) _jn+1(x)] (A3)
h,(x)  h,(x) 1
o) ) Ly )l (a9

When the argument of the second-order Ricatti-Hankel func-
tions approaches a sufficiently large value, we will have
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(AS)

For the associated Legendre polynomials, the following
properties have been utilized in this paper:

P (x) = i™le™™,  x — oo,

P, 0 +1
Heosd| ety
a0 pu 2
P}/(cos 60 +1
n(fos ) :(_1),,_111(" )5:’1 (A7)
sin@ |, 2

where 5,1n denotes the Kronecker delta function.
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