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Skyrmion-like states in two- and three-dimensional dynamical lattices
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"

We construct, in discrete two-component systems with cubic nonlinearity, stable states emulating Skyrmions
of the classical field theory. In the two-dimensional case, an analog of the baby Skyrmion is built on the square
lattice as a discrete vortex soliton of a complex field [whose vorticity plays the role of the Skyrmion’s winding
number (WN)], coupled to a radial “bubble” in a real lattice field. The most compact quasi-Skyrmion on the
cubic lattice is composed of a nearly planar complex-field discrete vortex and a three-dimensional real-field
bubble; unlike its continuum counterpart which must have WN=2, this stable discrete state exists with WN
=1. Analogs of Skyrmions in the one-dimensional lattice are also constructed. Stability regions for all these
states are found in an analytical approximation and verified numerically. The dynamics of unstable discrete
Skyrmions (which leads to the onset of lattice turbulence) and their partial stabilization by external potentials

are explored too.
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I. INTRODUCTION

Intrinsic localized modes in nonlinear lattices have drawn
much attention [1] due to their relevance to various physical
systems, including optical waveguide arrays [2], photonic
crystals [3], Bose-Einstein condensates (BECs) trapped in
deep optical lattices [4], and Josephson-junction ladders [5].
A wide variety of species of these modes have been predicted
and observed, such as bright and dark optical discrete soli-
tons [6,7] in arrays of semiconductor waveguides [7], multi-
dimensional solitons in photonic lattices [8], discrete vorti-
ces, supervortices, and multipoles in two-dimensional (2D)
[9-11] and three-dimensional (3D) [12] settings, lattice di-
poles [13], multicomponent solitons [14], soliton trains [15],
necklace solitons [16], discrete gap solitons [17], twisted lo-
calized modes (TLMs) [18], and others.

These developments raise the question whether counter-
parts of more complex structures known in continuum media
within field-theoretical contexts can be constructed in dy-
namical lattices. Challenging objects of this type are three-
dimensional (3D) Skyrmions, proposed in the field theory as
models of nucleons [19]. Their 2D counterparts, baby Skyr-
mions in the sigma model [20], may account for the disap-
pearance of antiferromagnetism and the onset of high-T.. su-
perconductivity [21], as well as formation of the ground state
in quantum-Hall ferromagnets [22]. Skyrmion-like objects
have also been predicted in BECs [23]. On the other hand,
lattice Skyrmions were considered in the Heisenberg model
of magnetism and as electron spin textures in quantum Hall
systems [24].

In this work, we construct Skyrmion-emulating discrete
structures as stable 2D and 3D lattice solitons with topologi-
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cal properties resembling those of Skyrmions in the con-
tinuum theory. The newly found states may be relevant not
only to lattice media per se, but also to the quantization of
the original Skyrme model, as its nonrenormalizability [25]
makes it necessary to put it on a lattice.

We aim to construct discrete quasi-Skyrmions in the stan-
dard nonlinear-lattice model, viz., the discrete nonlinear
Schrodinger (DNLS) equation. DNLS provides a universal
envelope equation for nonlinear Klein-Gordon lattice mod-
els, and serves as a direct model for BECs trapped in strong
lattices [4] and crystals built of microresonators [26]; in ad-
dition, the two-dimensional DNLS equation is a model of
optical waveguide arrays [2,6]. Based on the hedgehog an-
satz (HA) [19], static 3D Skyrmions necessarily involve
three scalar fields, hence their dynamical description re-
quires, at least, two complex fields. Therefore in this work
we study a two-component DNLS equation. This model is by
itself directly relevant to waveguide arrays [14] when the
light is carried by different polarizations or frequencies, and
to BEC mixtures of two different spin states [27].

After introducing the model, we construct 2D analogs of
baby Skyrmions on the square lattice and their 1D counter-
parts, and then extend them into foroidal quasi-Skyrmions on
the cubic lattice, which are the most compact (hence most
experimentally relevant) 3D objects with the Skyrmion-
emulating topology. Stability regions for all the states are
found in an analytical approximation and verified via nu-
merical computation of stability eigenvalues. Simulations of
the evolution of unstable lattice quasi-Skyrmions reveals an
onset of lattice turbulence. We also show that a parabolic
external trapping potential, which is a necessary ingredient
of the BEC setting, may partially stabilize the lattice objects
of the Skyrmion type.

II. THE MODEL AND ANALYTICAL CONSIDERATIONS

We introduce a vectorial DNLS

equation  for
=1V, @} on the cubic/square lattice,
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id)) == CABY + | P o) + Blos P,

i =— CAGP + |22 + AP, (1)

where the overdot stands for time derivative (or derivative
with respect to the propagation distance, in the optical-
waveguide model), n={n 3} or {n;,} is the vectorial dis-
crete coordinate in the 3D and 2D lattices, C is a coupling
constant, the discrete D-dimensional Laplacian is Adg,
=2 monj=1 Pm—2D ¢y, and B is a relative strength of the on-
site interspecies interaction. Stationary solutions are looked
for as

¢£ll) =u, exp(—iAr),

PP = v, exp(=iA1),

where A is the frequency (chemical potential, in the context
of BECs), and stationary lattice fields obey the equations

Au, = CAu, - (|un|2 + B|vn|2)un,

AUn = CAUH - (|Un|2 + B|un|2)vn'

Note that the nonlinear terms in Egs. (1) imply onsite self-
repulsion, while self-attraction can be transformed into the
present form by the usual staggering transformation [4,18],
P = (=1)1#"2%"36  for D=3, or its counterpart for D=2.

We start by constructing Skyrmion-emulating lattice con-
figurations in the anticontinuum (AC) limit, C=0; in terms of
the BEC, this bears similarities to the limit case of a Mott
insulator with fully confined atoms [28], lending support
(alongside the earlier works indicating the relevance of dis-
crete descriptions of such dynamical superfluid-insulator
transitions [29] and their quantitative experimental verifica-
tion [30]), to the validity of such a discrete model. We then
verify a possibility to continue solution branches to C >0, by
means of fixed-point iterations (i.e., by using the Newton
method to identify solutions of the ensuing system of non-
linear algebraic equations for given C). While arbitrary struc-
tures can be introduced in the AC limit, only true solutions
admit continuation to finite C.

The linear stability analysis is then performed for a per-
turbed solution,

¢£11,1)Jert = (Mn + ane“ + bne)\" t)e—iAt,
¢£12.1)Jen = (Un + Cne)‘l + dne)\ t)e—iAz, 2)

where (a,,b,,c,,d,) constitute an eigenmode of infinitesi-
mal perturbations, and N\ is the corresponding eigenvalue
[computed by the application of a standard eigenvalue solver
to the matrix formed by substitution of the perturbed solution
in Egs. (1)]. The stationary solution is unstable if at least one
pair of the eigenvalues has Re(\) # 0.

We first consider the 2D case and look for a representa-
tion of the vector field in the form of the above-mentioned
hedgehog ansatz for the baby Skyrmion in the continuum
field theory [20]. In the polar coordinates, r and 6, this ansatz
reads

PHYSICAL REVIEW E 75, 026603 (2007)

sin[f(r)]cos(q6)
W = sin[f(r)]sin(g6) |, (3)
cos[f(r)]

with boundary conditions lim,_, f(r)=0, and lim,_,..f(r)
=mN, with ¢ and N being integers. The latter may be com-
bined into a single topological charge, alias winding number,
WN=[1-(~1)"]q/2. We aim to construct a lattice ansatz
emulating the continuum ansatz in Eq. (3). In particular,
combining the first two components of the ansatz as WV,
+iW¥,, we obtain a complex field with vorticity g. To con-
sider a lattice analog of the fundamental baby Skyrmion, we
set g=1 and N=1, hence WN=1. In this case, the complex
field represents a localized discrete vortex, which carries the
WN in the form of its vorticity, S (although the latter is not
related to a conserved angular momentum, which does not
exist on a lattice, S can be unambiguously defined in lattice
fields for D=2 [9] and D=3 [12]), while the remaining real
field takes the form of a bubble in the quasiradial direction
on the lattice (see, e.g., Ref. [31]),which helps to support the
vortex. In fact, the hedgehog ansatz (3) demonstrates that the
WN of the baby Skyrmion may also be interpreted as the
usual vorticity in the continuum space. Thus the 2D con-
tinuum hedgehog ansatz of Eq. (3) is directly transferred
onto the 2D lattice, with correspondence W, +iV,—u and
W;—v. We note that a definition of a Skyrmion on the 2D
lattice through these asymptotic features was proposed in a
different context in Ref. [32].

The construction of the desired lattice structure for D=2
proceeds by setting up a discrete vortex (alias vortex cross)
at C=0. To this end, we assign the complex field, u, a non-
zero absolute value, V"A, and phases 0, 7/2, m, 3/2, at four
sites surrounding the origin, (n,,n,)=(1,0), (0,1), (-1,0),
and (0,-1) [9]. In the same AC limit, the radial bubble in the
real field is seeded by setting v o= \e’K, vnl’nz:O at the above-

mentioned set of four sites, and u,ll,,h:—\ﬂK elsewhere. The
thus constructed lattice ansatz indeed closely emulates the
baby Skyrmion in the continuum. Note that we have chosen
the minimal spatial size for it; the size may be made larger in
the AC limit, but this would adversely affect the stability
[33], and, generally, the possibility to create the pattern in the
experiment. It is easy to construct higher-order lattice baby
Skyrmions, whose core will be a planar discrete vortex with
$§=2,3,.... However, the minimum size of such an object is
essentially larger than that its fundamental counterpart, with
S=1 [10], while the stability region is narrower, hence it
would be harder to observe it in the experiment. We also note
in passing that, while arbitrary configurations can be chosen
at the anticontinuum limit of C=0, only a small subset of
these, satisfying stringent Lyapunov-Schmidt conditions (de-
veloped for one-component systems in [33,34]; an example
for multicomponent systems is given in [35]) will survive for
nonzero couplings.

A cross section of the 2D seed ansatz also suggests a
possibility to build an analog of the lattice baby Skyrmion
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FIG. 1. (Color online) The one-dimensional discrete analog of
the baby Skyrmion. Left and right panels in the top row show
norms Ny =3, |uy)? (solid line) and N,=2,(A-|v,|?) (dashed line),
as well as the two most unstable eigenvalues vs coupling C (the
vertical dashed line is the analytically predicted instability onset).
Left and right panels in the middle and bottom rows display, respec-
tively, the solutions u, (solid line) and v, (dashed line) for C
=0.05 and 0.15, and the corresponding spectral planes (\,,\;) of the
eigenvalues, A=N\,+i\;. In this figure and below, results are pre-
sented for B=1/4 and A=2. This case is generic, as revealed by
systematic simulations.

for D=1, in terms of 1D complex and real lagice fields, u,
and v,,, by adopting u,=VA(8,~6,_1), vo=V\A, v;=v_;=0,
and v,=—VA for |n|>1, in the AC limit. This 1D structure
essentially consists of a twisted localized mode (TLM) [18]
in the complex field, coupled to a bubble [31] in the real one
(see Fig. 1). This 1D state is possible only in the lattice
setting, as TLMs do not exist in the continuum.

Proceeding to the search for discrete analogs of Skyrmi-
ons for D=3, we notice that a variety of such structures can
be generated from the baby Skyrmion constructed, as de-
scribed above, on the 2D lattice. We limit the consideration
to the simplest (most compact, hence easiest for the experi-
mental realization) seed pattern for D=3, which is defined, in
the AC limit, by taking the complex field precisely as in the
above planar configuration in the central plane, n;=0, and
zero elsewhere. At finite C, this seed continues into a true 3D
lattice solution, in which the complex field, u,, is a flat 3D
vortex (alias vortical torus [12]), while the real field, v,, is
shaped as a 3D bubble. In this 3D configuration, the role of
the WN, which keeps value 1, inherited from the quasi-2D
seed, is played by the vorticity of the 3D vortex. Comparing
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this lattice solution with known types of Skyrmions in the
3D field theory, we conclude that it emulates not the funda-
mental state, which is based on the spherically symmetric
hedgehog ansatz [19], but rather the toroidal di-Skyrmion,
which is a stable solution in the continuum model for D=3
(it is interpreted as a model of the deuteron [36]). However,
in the continuum limit the toroidal Skyrmion exists only with
WN=2 (this WN may also be interpreted as the topological
charge of the 3D vortex, which lies at the core of the di-
Skyrmion), while our results demonstrate that its more com-
pact stable toroidal analog with WN=1 exists on the 3D
lattice, thus being the most favorable target for experiments
(with binary BECs in deep 3D optical lattices or with mi-
croresonator crystals). In fact, it is easy to construct higher-
order toroidal lattice quasi-Skyrmions with WN=2, whose
core will be a higher-order 3D lattice vortex; however, we
expect that, as well as in the case of D=2, the size of such
objects will be larger and the stability region smaller than in
the case of WN=1.

Proceeding to the stability analysis for the lattice quasi-
Skyrmions, we first examine it through the dispersion rela-
tion of Egs. (1) linearized around such solutions (i.e., we aim
to find the continuous spectrum of small perturbations, from
which unstable eigenvalues may emerge). Accordingly, far
from the center, the perturbation with infinitesimal ampli-
tudes (a,b,c,d) [see Eq. (2)] is

1 = a4 itk

by=— \;K + cellrtkn) | q-i(wrkn)

in terms of Eq. (2), A=iw. Then, for k oriented along a
lattice axis (i.e., for 1D plane waves with k-n=kn), the lin-
earization of Egs. (1) yields

w= *+[A(l - B) —4C sin®*(k/2)]

and

w= +\[A+4Csin?(k/2)]2 - A2.

From these dispersion relations and their straightforward ex-
tensions for D=2 and D=3, we find the spectral bands of the
real excitation frequencies

—
|w| < V(A +4CD)? - A?

for the second component and

A(1=-B)—4CD < |w| <A(1-p) forB<1,

AB-1)<|ow| <A(B-1)+4CD for f>1

for the first component. These two bands have opposite
Krein signatures [37], hence their merger, which occurs with
the increase of C, at

c“’)—A (1-p*22-p)]
4D |VpE-2B+2-1

for <1,

for B> 1 “)
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FIG. 2. (Color online) Same as in Fig. 1 for the lattice analog of
the two-dimensional (baby) Skyrmion. Left and right paired panels
pertain, respectively, to C=0.025 and 0.075, displaying, respec-
tively, stable and unstable solutions. The top, middle, and bottom
rows of the solution profiles display contours of real and imaginary
parts of the complex field, and the real field, respectively.

(recall D is the dimension of the lattice), generates a set of
unstable complex eigenvalues. Thus the lattice quasi-
Skyrmions are predicted to be stable in the interval of 0
=C< Cgr)) [note that the stability interval is absent if S=1,
in which case Eq. (1) is a discrete version of the Manakov’s
system].
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III. NUMERICAL RESULTS

Findings produced by the numerical computations for D
=1 are summarized in Fig. 1, which shows norms of the two
components of the solution defined with respect to the
boundary conditions, Ny =3, | u,|> and N,=3,(A—|v,|?), and
most unstable eigenvalues (computed on the 1D lattice with
600 sites). In this case, Eq. (4) predicts Cg):l) ~(0.0804,
while the numerical finding is 0.083 (the destabilization oc-
curs via the collision of two spectral bands, as expected). It is

worthwhile to note here that the oscillatory instability which
sets in at C= C(D D remains extremely weak at C=<0.1, as
shown in the 1nset of Fig. 1. Examples of stable and unstable
1D solutions are included too, for C=0.05 and 0.15, respec-
tively.

Numerically found results for the analogs of the baby
Skyrmion on the 2D lattice are displayed in Fig. 2, for which
the prediction of Eq. (4) is Ci?ﬂ) ~(.0402, while the respec-
tive numerical value is =0.042 (see the inset in Fig. 2).

Figure 3 shows an example of the toroidal lattice structure
emulating the 3D Skyrmion, constructed as described above,
with the complex field carrying the vorticity in the horizontal
plane, and the real field featuring a 3D radial bubble. Here,
the analytical prediction is Ci?:3)20.027. The example in
Fig. 3 shows a weakly unstable solution, for C=0.05.

The next step is to simulate the evolution of unstable so-
Iutions. With a cascade of secondary instabilities produced
by collisions between the spectral bands beyond the primary
instability threshold [given by Eq. (4)], one may expect that
the corresponding multitude of unstable eigenmodes leads to
dynamical chaos (“lattice turbulence”), especially because
the critical eigenmodes, belonging to the continuous spec-
trum, are delocalized at the instability thresholds. This ex-
pectation is borne out by the simulations, as shown in Fig. 4
for C =0.149>C£?=1) for D=1. The weakly unstable con-
figurations remain undisturbed for a while, but, at suffi-
ciently long times (#= 650 in Fig. 4), the instability generates
spatial chaos in the real-field component and breathings in its
complex counterpart. This dynamics persists indefinitely
long (unless effects of boundary conditions come into the
play). A transition to chaotic behavior is also observed for
D=2, as well as in simulations on the 3D lattice.

We also considered the influence of external potentials,
which is relevant to BEC, as explained above. The latter
amounts to adding a term (Q?/2)n%¢ to Egs. (1). As seen in
Fig. 5, the real-field pattern acquires a finite size in this case,
as per the Thomas-Fermi approximation [38]. The main
novel feature induced by the trap is the appearance of gaps in

FIG. 3. (Color online) A three-dimensional
lattice structure emulating the toroidal Skyrmion,
for C=0.05. The left and right panels show, re-
spectively, contours of the complex field, at
Re(u)=+1 (blue/red in the color version and dark
gray/gray in black and white) and Im(u)==1
(green/yellow in the color version and light gray/
very light gray in black and white), and of the
real field, at v=(1,0,-1) (blue, green, and red,
i.e., contours from the inside out, respectively).
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FIG. 4. (Color online) Development of the instability of one-
dimensional lattice quasi-Skyrmions. The top two panels show
space-time contours of the absolute value of the complex field and
the real one. The two bottom panels show the spatial distribution of
the respective fields at +=1100.

the linearization spectrum. The overall shape of the respec-
tive dependence of the largest unstable eigenvalue on C (top
panel of Fig. 5) traces its counterpart in Fig. 1, which per-
tains to the spatially uniform system, but the gaps lead to
restabilization of the discrete quasi-Skyrmions in certain in-
tervals. For instance, the 1D solution is stable for 0.083
=C=0.099 and 0.113=C=0.115, where it is unstable
without the trapping potential. Similar restabilization mecha-
nisms can be found also for D=2 and 3 (not shown here).

IV. CONCLUSIONS

We have constructed lattice structures that emulate 2D
and 3D Skyrmions on the dynamical lattice with the cubic
nonlinearity, and also provide for a 1D lattice counterpart of
the Skyrmions. The discrete analogs of 2D (baby) Skyrmions
were built following the hedgehog ansatz, and, accordingly,
their structure resembles that of 2D Skyrmions in the con-
tinuum, combining a vortex soliton in the complex field and
a radial bubble in a real field, that support each other. Also
similar to the 2D continuum Skyrmions, the winding number
(WN) of the 2D quasi-Skyrmion is represented by the vor-
ticity of the complex field. The 3D lattice analog of the Skyr-
mion was built as a toroidal one, which is the most compact
3D pattern of the Skyrmion type, i.e., the one which is most
relevant to the experiment. The WN of the discrete toroidal
quasi-Skyrmion is represented (as well as in the toroidal
Skyrmions in the 3D continuum field theory) by the topo-
logical charge of the 3D complex-field vortex, which consti-
tutes its core. However, unlike its continuum counterpart
which may only exist with WN=2, stable toroidal quasi-
Skyrmions on the lattice exist with WN=1 (higher-order
states, with WN=2, can be readily constructed too). We
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FIG. 5. (Color online) The most unstable eigenvalues for the
one-dimensional lattice quasi-Skyrmion (top), and an example of a
restabilized field configuration, u,, (solid line) and v,, (dashed line),
and the respective eigenvalues for C=0.115 (middle and bottom) in
the presence of the trapping potential with (=0.1.

have investigated the stability of the 1D, 2D, and 3D discrete
quasi-Skyrmions in an analytical approximation which is the
first example of a direct analytical approach to the stability
problem for Skyrmion-like structures in any setting, and
verified it by numerical computation of the eigenvalues. We
have also demonstrated that the evolution of unstable dis-
crete Skyrmions leads to the onset of lattice turbulence. A
possibility of further stabilization of the Skyrmions by means
of external confining potentials was highlighted too. More
sophisticated types of 2D and 3D lattice quasi-Skyrmions
can be built too. In particular, the nearly planar vortex lying
at the core of the 3D state may be replaced by a nonplanar
vortex cube [12]. Moreover, there is a possibility to construct
zero-WN lattice quasi-Skyrmions by placing a planar quad-
rupole [10] or cubic octupole [12] at the core. Results ob-
tained in these directions will be reported elsewhere.
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