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Dynamic phase transition in the Ginzburg-Landau model of the anisotropic XY spin system in a rotating
external field is studied. We observe several types of oscillations, limit cycles, quasiperiodic oscillations and
chaotic motions. It is found that limit cycle oscillations can have the periodicity of multiple times of the period
of the applied field and that the system shows two kinds of scenarios leading to the onset of quasiperiodic
oscillations, i.e., the saddle-node and Hopf bifurcations. Furthermore, this paper reports the findings of chaotic
behaviors in the context of dynamic phase transition and that there exist two types of chaos with and without
a certain kind of symmetry.
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I. INTRODUCTION

Dynamic phase transition �DPT� is an example of the
nonequilibrium phase transition in the presence of the tem-
porally oscillating external field H�t� which has usually the
symmetry H�t�=−H�t+T /2�, T being its period. Temporal
oscillation of the response M�t� can be classified into two
types according to its symmetry. One is the symmetry-
restoring oscillation �SRO� which holds the symmetry
M�t�=−M�t+T /2�, and the other the symmetry-breaking os-
cillation �SBO� without this symmetry. The transition be-
tween SRO and SBO states under the change of the fre-
quency or the amplitude of the external field is called DPT.
In a magnetic system, H�t� and M�t� correspond to the mag-
netic field and the magnetization, respectively. After its dis-
covery �1�, DPT has been extensively studied in the frame-
works of the mean field theory �1–7�, Monte Carlo
simulation �3,8–13�, and laboratory experiments �14,15�. Re-
lated works in the ferromagnetic systems are reviewed in
Refs. �16,17�. Recently, DPTs have been investigated in vari-
ous physical systems such as in the CO oxidation process on
a catalytic surface by changing the partial pressure of CO
�18� and in two-dimensional fully frustrated Josephson-
junction arrays �19�. Associated with DPT, a method to sta-
bilize the unstable SRO in SBO regime has been proposed
�20�.

The deterministic nature of the temporally oscillating
force plays a crucial role for DPT. This implies that the de-
terministic models capture the characteristics of DPT.
Fujisaka, Tutu, and Rikvold studied the DPT in the Ising
model below the critical temperature Tc using the time-
dependent Ginzburg-Landau �TDGL� equation in a periodic
external force

Ṡ�r,t� = �TS − S3 + D�2S + h cos��t�,

��T � Tc − Ttemp � 0� �1�

from the viewpoint of the deterministic mean field theory.

Here, Ttemp is the system temperature and S�r , t� is identical
to the local magnetization at location r and time t �4�. They
found that DPT is equivalent to the bifurcation observed as
either h or � is changed. They have shown that DPT belongs
to the universality class of the equilibrium phase transition in
the two-dimensional Ising model. This fact has been con-
firmed with the Monte Carlo studies of two-dimensional
Ising model in an oscillating magnetic field �9–11,16�.

Equation �1� can be extended to the anisotropic XY model

�̇�r,t� = �T · � − ���2� + ��* + �2� + H�t� , �2�

where the complex variable ��r , t�=X�r , t�+ iY�r , t� is the or-
der parameter whose real and imaginary parts denote, respec-
tively, the X and Y components, and H�t� denotes the peri-
odic external field which holds the symmetry H�t�=−H�t
+T /2�. The real coefficient � represents the magnitude of the
anisotropy. Yasui et al. studied DPTs of the uniform solution
in a linearly polarized external field H�t�=h cos��t� �5�.
They found a new DPT which causes the emergence of a
component perpendicular to the external field. This type of
DPT has been recently reported with Monte Carlo study in
two-dimensional anisotropic Heisenberg spin system in a lin-
early polarized magnetic field �21�. Furthermore, Fujiwara et
al. studied the domain wall dynamics in Eq. �2� for H�t�
=h cos��t� �22�.

Studies of DPT in the multicomponent systems suggest
that there exist new types of DPTs if we change type of the
external field. Acharyya reported DPTs between three differ-
ent phases in a uniaxially anisotropic Heisenberg model in an
elliptically polarized external field using the Monte Carlo
method �23�. In the present paper, we consider the mean-field
equation with a rotating external force H�t�=hei�t and show
that various DPTs occur. After a suitable rescaling of vari-
ables, Eq. �2� is rewritten as

�̇�r,t� = � − ���2� + ��* + �2� + hei�t. �3�

We consider the uniform solutions of this equation through-
out this paper.

The paper is organized as follows. In Sec. II, we discuss
the symmetry of Eq. �3� which plays an important role for
DPTs. In Sec. III, we show numerical results for DPTs of the

*Electronic address: naoya@acs.i.kyoto-u.ac.jp
†Electronic address: takeo@acs.i.kyoto-u.ac.jp
‡Electronic address: fujisaka@i.kyoto-u.ac.jp

PHYSICAL REVIEW E 75, 026202 �2007�

1539-3755/2007/75�2�/026202�11� ©2007 The American Physical Society026202-1

http://dx.doi.org/10.1103/PhysRevE.75.026202


uniform solution. Periodic oscillations are classified by their
periods and the symmetry. Furthermore, it will be shown that
quasiperiodic oscillation and chaotic oscillation are also ob-
served. This paper is the first report of the observation of
quasiperiodic oscillation and chaos in the context of DPT.
There exist two types of chaotic attractors. One has a certain
symmetry which is associated with that of the external field,
and the other does not have this symmetry. We will observe
the symmetry breaking of the chaotic attractor with the
change of either the frequency or the amplitude of the exter-
nal field. We will show five fundamental phase diagrams in
the �-h plane for different values of the anisotropy param-
eter �. The results are summarized in Sec. IV.

II. CHARACTERISTICS OF THE MODEL

In this section, paying attention to the spatially uniform
oscillation of Eq. �3�, we will study the following equation of
motion:

�̇�t� = � − ���2� + ��* + hei�t. �4�

The real and imaginary parts of ��t�=X�t�+ iY�t� obey the
equations of motion,

Ẋ�t� = �1 + ��X − �X2 + Y2�X + h cos��t� , �5�

Ẏ�t� = �1 − ��Y − �X2 + Y2�Y + h sin��t� . �6�

Since Eqs. �5� and �6� are invariant under the transformation
�→−�, X→−Y, Y →X, t→ t+T /4, we choose as ��0 in
the present paper. The period of the external force is given by
T=2� /�. The insertion of �=��t�ei�t+i	�t� with the ampli-
tude � and the phase 	 into Eq. �4�, we obtain the evolution
equations

�̇ = � − �3 + �� cos�2��t + 	�� + h cos 	 , �7�

� + 	̇ = − � sin�2��t + 	�� −
h sin 	

�
. �8�

One easily finds that Eq. �4� is invariant under the trans-
formation

t → t + nT/2, � → − � , �9�

where n is an odd number. Because of this symmetry of the
fundamental equations of motion, we expect that there exist
trajectories satisfying the symmetry

��t� = − ��t + nT/2� �n:odd� . �10�

In the remainder of the paper, the motion with the symmetry
�10� is called the symmetry-restoring oscillation and the mo-
tion without this symmetry the symmetry-breaking oscilla-
tion. From the definition of SRO, if it exists, we should have
the period with an odd number multiple of the period of the
applied field. On the other hand, the period of the SBO limit
cycle can be an either even or odd number multiple of the
period of the applied field. For the limit cycle with the period
Tp, ��t� satisfying the symmetry �10�, the time average

� �
1

Tp
�

0

Tp

��s�ds �11�

vanishes for SRO and is finite for SBO. The limit cycle
satisfying

��t� � ��t + kT� �k = 1,2, . . . ,n − 1� ,

��t� = ��t + nT� , �12�

is called a period-n limit cycle. A period-n limit cycle with
�without� the symmetry �10� is called the period-n SRO
�SBO� and is denoted as SRO-n �SBO-n�.

The phase 
�t� of the external field at time t, defined as
0�
�t��2�, is given by


�t� = �
�0� + �t� mod 2� , �13�

and satisfies the relation


�t + kT� = 
�t� �k = 0,1,2, . . . ,n − 1� . �14�

Therefore, for a same phase of the external field, there can
exist n different state points on the trajectory of a period-n
limit cycle. By noting that these states depend on the phase 

of the external field, they are written as �k�
	 �k
=1,2 , . . . ,n�, which satisfy

�n�
�t�	 = �n−1�
�t + T�	

= ¯ = �1�
„t + �n − 1�T…	 = �n�
�t + nT�	 .

�15�

Because of the symmetry under the transformation �9�, if
the SBO �+�t� exists, then the limit cycle �−�t� with the
relation �−�t�=−�+�t+T /2� also exists. The limit cycle at-
tractor whose time average of the X component is positive is
denoted by �+ and that with the negative time average by �−.
We thus find that, there exist two limit cycle attractors �± in
SBO-n, on which there exist 2n state points �k

±�
	 �k
=1,2 , . . . ,n� for the phase 
 of the external field.

III. DYNAMIC PHASE TRANSITIONS AMONG VARIOUS
DYNAMICAL PHASES

In this section we show the characteristics of the temporal
oscillation of the dynamical phases and DPTs between them.
Equation �4� was numerically integrated using the fourth-
order Runge-Kutta method with the time step �t=T /2000
for ��0.5 and �t=T /1000 for ��0.5. Depending on the
anisotropy parameter �, the system �4� exhibits several types
of oscillations, period-1 and period-n limit cycles �n
=2,3 , . . . �, quasiperiodic oscillation and chaos, with differ-
ent symmetry of attractors. One observes that there exist five
fundamental characteristic phase diagrams depending on the
value of the anisotropy parameter �.

For any parameter values of � �except �=0� and �, we
observe SBO-1 for sufficiently small value of h and SRO-1
for sufficiently large value of h. These facts can be explained
as follows. First consider the case h=0, for which the system
has two fixed point attractors since the system under consid-
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eration is below the critical temperature and the symmetry of
the states is broken. Depending on the initial condition, one
of these fixed points is chosen. If a weak field is applied to
the broken-symmetry state, the system shows a weak oscil-
lation whose amplitude is proportional to h and its frequency
is equal to �. This oscillation is identical to SBO-1. As the
amplitude h is increased, the amplitude of oscillation in-
creases, showing temporally broken oscillations. From the
symmetry �9�, there exist two limit cycle oscillations except
�=0. As h is further increased, these two attractors come to
merge, which leads to a symmetric oscillation. This is iden-
tical to SRO. Since the oscillation is synchronized to the
applied field, the system shows SRO-1 for large h.

The present system with Eqs. �7� and �8� is regarded as
the self-oscillatory system superimposed by the external
force with the period T /2. Therefore, SRO and SBO trajec-
tories are regarded as the synchronized motions and the qua-
siperiodic oscillation as the nonsynchronized oscillation to
the external force. Let �� be the frequency of ��t� and 	�t�.
Since ��t�=��t+T /2�, 	�t�=	�t+T /2� for ��=2�, we ob-
tain

��t� = − ��t + T/2� . �16�

This relation implies that the trajectory under consideration
turns out to be an SRO-1 trajectory. On the other hand, since
��t��−��t+T /2� for ��=�, the oscillation corresponds to
the SBO trajectory. Generally, if � is a half-odd number
multiple of ��, the limit cycle oscillation is identical to SRO
and otherwise it is SBO. In the following, we will give five
typical phase diagrams for different values of the anisotropy
parameter �.

A. Phase diagram 1: Period-1 limit cycles

Numerical integration was carried out for a strong aniso-
tropy, i.e., for large values of � with �=0.6. In this case, we
observe two types of limit cycle oscillations, SRO-1 and
SBO-1. Figures 1�a� and 1�b� are, respectively, the projec-
tions of trajectories of SRO-1 and SBO-1 onto the XY plane.
In each figure, the state points move in the anticlockwise
way. The SRO trajectory satisfies the relation �10� and has a
rotational symmetry around the origin X=Y =0. In the SBO
phase, there exist two limit cycles �+ and �−, one of which is
observed according to the initial condition. For a strong an-
isotropy, only DPT between SRO-1 and SBO-1 is observed.
Since the system under consideration is generated by the
periodic external field, there exists no zero-value Floquet ex-
ponent except the quasi-periodic case. The Floquet exponent
vanishes at the DPT points. The phase diagram drawn in Fig.
2 was determined by observing vanishing points of the Flo-
quet exponent as the parameter, either h or �, is changed.

B. Phase diagram 2: Period-2 limit cycles

For small values of the anisotropy parameter �, we ob-
serve limit cycle oscillations with period longer than the pe-
riod of the applied external field. For anisotropy parameter
value, e.g., �=0.55, we fundamentally observe SRO-1 simi-
lar to those shown in Fig. 1�a� and SBO-1 in Fig. 1�b�. In

addition, there exists SBO-2 shown in Fig. 3 in a certain
region of h and �. For a given phase 
 of the external force,
there exist four state points, i.e., two points �1,2

+ on the tra-
jectory �+ and �1,2

− on the trajectory �−. Due to Eq. �15�, they
are related to each other via

�2
±�
�t�	 = �1

±�
�t + T�	 = �2
±�
�t + 2T�	 . �17�

For �=0.55, there exists DPT between SBO-1 and SBO-2
which associates with the change of the period of limit

FIG. 1. �a� The SRO-1 trajectory for �=0.6, �=1.0, and h
=1.5. �b� The SBO-1 trajectory for �=0.6, �=1.0, and h=0.86.
There exist two trajectories �+ and �−. State points �1

+�0	 and �1
−�0	

denoted by the symbol * are equal to the values of ��t� for the
phase 
�t�=0 of the external force. The dotted curve in �b� repre-
sents the unstable SRO-1.

FIG. 2. Phase diagram for �=0.6. DPT between SRO-1 and
SBO-1 is observed.
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cycles in addition to DPT between SRO-1 and SBO-1 which
brings the change of the symmetry of oscillation as for �
=0.6. Since the largest Floquet exponent vanishes at the bi-
furcation point between SBO-1 and SBO-2, we can deter-
mine their transition point. Figure 4 shows the bifurcation
diagram and the largest Floquet exponent drawn as a func-
tion of the strength h of the applied field for �=0.55 and
�=0.5. In Fig. 4�a�, phase points in �+ are drawn. In addi-
tion to them, there exist phase points belonging to �−. How-
ever, they are not shown in the figure. Here the quantity Xm
in Fig. 4�a� is defined as

Xm � X�t0� + X
t0 +
�2m + 1�T

2
� �m = 0,1,2, . . . �

�18�

the time origin t0 being chosen as the time when X has the
maximum value X�
=0	. The Xm’s in Figs. 7, 8, and 14 are
defined in the same way as the above. For this selection of t0,
we find Xm
0 for SRO. If the oscillation is a period-n tra-
jectory, i.e., Xn=X0, then we have n phase points,
�X0 ,X1 , . . . ,Xn−1	. For SRO-n, because of the relation �10�,
we find X�n−1�/2=0. On the other hand, the relation �10� does
not hold for SBO-n. Thus, one can distinguish SRO and SBO
by observing whether a state point in the bifurcation diagram
satisfy Xm=0 for m= �n−1� /2. The periodicity of the oscil-
lation is found by observing the number of the points. Since
commonly used period-averaged order parameter does not
give information on the period of a limit cycle, the bifurca-
tion diagrams in this paper are plotted as described above.

The largest Floquet exponent � is drawn in Fig. 4�b�. The
bifurcation point is determined by that where � vanishes.
The phase diagram obtained from the Floquet analysis is
shown in Fig. 5. As shown above, for �=0.55, there exists
the SBO-2 phase for the frequency region 0.49���0.79 in
the SBO phase. The bifurcation diagram Fig. 4�a� for �
=0.55 and �=0.5 shows that there exist SRO-1 for h
�0.7496, SBO-1 for 0.74�h�0.7496 and h�0.7381, and
SBO-2 for 0.7381�h�0.74.

Our basic time evolution equation �4� has three variables,
X, Y, and t. For � is sufficiently large, the effective degree of
freedom is reduced to two because the Y component is so
small that it does not influence on the dynamics of X. The
time evolution for �=0 can be described by two variable
equations �19� and �20�, which will be discussed in Sec.
III D. Since the number of effective degrees of freedom re-
duces in the limits of both small and large �, chaotic oscil-
lation is observed only in the intermediate range of � value.
As � is further decreased below 0.55, the system shows a
period doubling bifurcation and SBOs with long periodicity
are observed. For ��0.4, only the limit cycle oscillations
exist.

C. Phase diagram 3: Chaos

We numerically integrated the system for an intermediate
value of the anisotropy parameter, �=0.3, for which there

FIG. 3. SBO-2 trajectories for �=0.55, �=0.65, and h=0.81.
There exist two attractors corresponding to trajectories �+ and �−.
The state points �1

+, �2
+, �1

−, and �2
− represent all the values of

��
=0	 on the attractor, corresponding to the phase 
=0. The dot-
ted curve stands for the unstable SRO-1 trajectory.

FIG. 4. �a� Bifurcation diagram and �b� the largest Floquet ex-
ponent � for �=0.55 and �=0.5. The bifurcation point is deter-
mined by that where the largest Floquet exponent vanishes. For the
definition of Xm, see the text.

FIG. 5. Phase diagram for �=0.55. There exist two dynamical
phases SBO-1 and SBO-2 in the SBO region.
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exist several types of complex motions. Particularly, we ob-
served chaotic oscillation for �=0.5 �Figs. 6�a� and 6�b��.
This is the first observation of chaotic phase in the context of
the dynamic phase transition. The Lyapunov exponents for
the trajectories in Figs. 6�a� and 6�b� are found to be positive.
Since the chaotic attractor in Fig. 6�a� is symmetric around
the origin, the long time average of ��t� vanishes. The sym-
metry of the governing equation �4� implies that if the state
point ��
	 for the phase 
 is on the attractor, then −��

+�	 is also on the same attractor. This type of chaotic tra-
jectory will be called the symmetry-restoring chaos �SRC�.
On the contrary, the chaotic motion shown in Fig. 6�b� is not
symmetric in the sense that the long time average of � does
not vanish. This type of chaos will be called the symmetry-
breaking chaos �SBC�. From the symmetry, there exist two
SBC attractors. One of them ��+� is drawn in Fig. 6�c�. Fig-
ure 6�d� represents the SRO-3 trajectory.

The bifurcation diagram and the largest Lyapunov expo-
nent for �=0.3 and �=0.5 are shown in Fig. 7. The largest
Lyapunov exponent takes a positive value in the chaotic
phase. One observes SRO-1 for h�0.5553, chaotic motion
for 0.5406�h�0.5517 and in a small region near h
=0.5025, SRO-3 for 0.5025�h�0.5387, SBO-3 for
0.5387�h�0.5406 and SBO-1 for h�0.499.

Figure 8�a� shows the enlargement of Fig. 7�a�. In this
parameter region, chaotic motion sets in through the period-
doubling bifurcation. It should be noted that the long time
average of X�t� vanishes for SRC. Therefore, by observing
the distribution of Xm for large m, one can determine whether
chaos in Figs. 7 and 8 belong to either SRC or SBC. When
two SBC attractors merge, the symmetry of the dynamics
comes to recover and SRC is observed. This phenomenon is
an example of the attractor merging crisis �24�. The long
time average of X�t� is calculated and the result is shown in
Fig. 8�b�.

The phase diagram is shown in Fig. 9. Transition points
are again determined as the vanishing points of Floquet ex-
ponents of limit cycles. For �=0.3, there exists SBO-2 for a
certain range of �. This situation is similar to that for �
=0.55. Furthermore, in contrast to that for �=0.55, there
exist chaos and SRO-3 in the inner side of the SBO-2 region.
The phase diagram is more complex than for �=0.55.

D. Phase diagram 4: Quasiperiodic motion for �=0
(the isotropic XY model)

For the isotropic case, i.e., for �=0, it is numerically
found that there exist DPT between SRO-1 and quasiperiodic
motion �QP�. In this case, we can analytically obtain the
SRO solution and determine the transition line, examining
the linear stability of the SRO solution. This is done as fol-
lows. The insertion of ��t�=��t�ei�t+i	�t� into Eq. �4� leads to
the equations of motion for ��t� and 	�t� as

�̇ = � − �3 + h cos 	 , �19�

	̇ = − � −
h sin 	

�
. �20�

Since these equations are autonomous, possible attractor is a
fixed point or a limit cycle. From these equations, we obtain

FIG. 6. Chaos and SRO-3 trajectories observed for �=0.3. �a�
The SRC trajectory for �=0.5 and h=0.545 over 400T. The attrac-
tor is statistically symmetric around the origin. �b� The SBC trajec-
tory for �=0.5 and h=0.5415. The figure shows the coexistence of
two chaotic attractors corresponding to �+ �solid curve� and �−

�dotted curve�. The trajectory �+ is shown in �c�. �d� The SRO-3
trajectory for �=0.5 and h=0.52. There exist three state points �1,
�2, and �3 for the same phase 
�t� of the external force.
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��̇ − �� − �3��2 + �2�	̇ + ��2 = h2. �21�

The fixed point solution �0�h ,�� and 	0�h ,�� of Eqs.
�19� and �20� is determined by

h2 = f��0
2�, f��� � ���2 + �1 − ��2� , �22�

h sin 	0 = − �0� . �23�

This solution represents the limit cycle of ��t� with the pe-
riod T same as the external force, having the phase lag
�−	0� in comparison with the phase of the external force.
Since this motion has the symmetry ��t�=−��t+T /2�, it be-
longs to SRO-1. The f��0

2� is a cubic function of �0
2 and

provides either one or three fixed point solutions for �
�1/�3=0.577 35. . . and one fixed point for ��1/�3.

When the above fixed point in a rotating coordinate sys-
tem is unstable, a limit cycle oscillation comes into exis-
tence. Its frequency �� and the external frequency � are
generally incommensurate. This means that the limit cycle
solution in the rotating system corresponds to a quasiperiodic
oscillation of ��t�. In this way, for �=0 possible oscillations
are SRO-1 and QP. The transition point between SRO-1 and
QP can be determined by the linear stability analysis of
SRO-1 as shown in Appendix A. The resulting phase dia-
gram is shown in Fig. 10. There are two types of instability
of SRO-1 leading to the onset of QP of ��t�, i.e., the Hopf
bifurcation and the saddle-node bifurcation. As h is de-
creased from sufficiently large h, for

� � �c �
�5

4
= 0.559 01 . . . , �24�

the stable and unstable SRO-1 fixed points collide and dis-
appear at h=hSN

�1� �saddle-node bifurcation�. Here, the bifur-
cation point is given by

FIG. 7. �a� Bifurcation diagram and �b� the largest Lyapunov
exponent � vs the strength of the external field h for �=0.3 and
�=0.5. The definition of Xm is the same as in Fig. 4�a�.

FIG. 8. �a� Enlargement of the bifurcation diagram in Fig. 7. In
the SBC and SBO regions, only the phase points belonging to �+

are drawn. �b� Time average X of X�t� is obtained by X
= �NT�−1
0

NTX�t�dt , �N=104�, where X�t� is the real part of ��t� be-
longing to �+. One clearly observes the transition between SRC and
SBC.

FIG. 9. Phase diagram for �=0.3. One finds various dynamical
phases including chaos and SRO-3.
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hSN
�1���� =�2 + �1 − 3�2

3
��2 + 
1 − �1 − 3�2

3
�2� .

�25�

Particularly, we obtain hSN
�1� =� for ��1/�3. On the other

hand, for ���c, as h is decreased, the SRO-1 phase loses
its stability. Examining the linear stability of the fixed point,
one finds that this instability is the Hopf bifurcation at the
bifurcation point

hH��� =�4�2 + 1

8
. �26�

For h�hH��� a quasiperiodic motion of ��t� is observed.
The global phase diagram is shown in Fig. 10�a�. Further-

more, a detailed analysis given in Appendix A shows that
there exist regions where the bistability of two SRO-1 solu-
tions is observed in the regions hH�h�hSN

�2� for 1 /2��

��c and hSN
�1� �h�hSN

�2� for �c���1/�3 �Fig. 10�b��,
where

hSN
�2� =�2 − �1 − 3�2

3
��2 + 
1 + �1 − 3�2

3
�2� . �27�

Figures 11�a� and 11�c� display the trajectories in the XY
plane of quasiperiodic motion, respectively, below the
saddle-node and Hopf bifurcation transition points. It is
found that slightly below the saddle-node bifurcation point,
one observes an intermittent evolution of amplitude �Fig.
11�b��. The period � of � and 	 tends to diverge as h is
approached to hSN

�1�, and is evaluated as follows. As shown in
Appendix B, the slow evolution of 	 near 	=	SN, i.e., the
fixed point phase at h=hSN

�1�, for h�hSN
�1� is evaluated as

	̇�t� = − a�hSN
�1� − h� − b�	 − 	SN�2, �28�

where a and b are positive constants. The characteristic time
to escape from the region �	−	SN � ��hSN

�1� −h turns out to be
O��hSN

�1� −h�−1/2�. Since in the present system, � and 	 show a
limit cycle, its period � is estimated as

� � �hSN
�1� − h�−1/2 �29�

for h slightly below hSN
�1�. Numerical result is consistent with

the theoretical prediction �Fig. 12�. On the other hand,
slightly below the Hopf bifurcation point hH for ���c, by
making use of the reductive perturbation method �25�, the
amplitude equation for the deviation of � and 	 from the
limit cycle solution obeys the ordinary Ginzburg-Landau-
type equation

ẇ = aw − b�w�2w , �30�

�Re b�0�, where Re a�hH−h and Im a is identical to the
characteristic frequency generated by the Hopf bifurcation,
�Fig. 11�d��. A detailed numerical analysis in the QP region
far below hSN

�1� and hH, we have no clear-cut change between
QP oscillations generated by the saddle-node and Hopf bifur-
cations. When � is finite but small, SBO is observed in a
small h region. Details are given in the following section.

E. Phase diagram 5: Quasiperiodic motion for �Å0

Finally, we studied for �=0.05. For this parameter, tem-
poral evolutions of ��t� are similar to those for �=0. Figure
13 displays the numerical results for �=0.5.

For a small anisotropy value, there exists a quasiperiodic
motion as shown in Fig. 13�a�. The Poincaré plot is a closed
curve �Fig. 13�b��. Because of the neutral stability of the
trajectory in the tangential direction, the largest Lyapunov
exponent vanishes. Figure 14 shows the bifurcation diagram
and the largest Lyapunov exponent for �=0.05 and �=0.5.
From Fig. 14, one observes that the largest Lyapunov expo-
nent vanishes for the QP phase. Observing the bifurcation
diagram and Lyapunov exponent in Fig. 14, one finds that as
h is decreased, the dynamical phase changes from SRO-1 to
SBO-1 via the QP phase. It is observed that there exist a
small window structure of limit cycle oscillations in the QP
phase region. The phase diagram obtained from the
Lyapunov exponent analysis is shown in Fig. 15. We find
that there exists a SRO-3 phase in the QP phase. As seen
from Eqs. �7� and �8�, one can interpret that these limit
cycles are realized as a result of the synchronization of the
limit cycle motion for �=0 under the external periodic
forcing.

FIG. 10. �a� Phase diagram for the isotropic case ��=0�. Tran-
sition occurs at the boundary between SRO-1 and QP. Enlargement
of the region A is shown in �b�. In the region denoted by
“BISTABLE” for 1 /2���1/�3, there exist two stable SRO-1
solutions.
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IV. CONCLUDING REMARKS

In the present paper, we studied nonlinear dynamics of the
anisotropic XY spin system under its critical temperature in a
rotating external field H�t�=hei�t. In comparison with a sys-
tem in an oscillating field H�t�=h cos��t� applied in a uni-
direction, the rotating field excites the order parameter dy-
namics of both easy and noneasy axes of the system. As a
result, we found new dynamical phases, quasiperiodic oscil-

FIG. 11. QP oscillations generated via two types of bifurcations, where �a� and �c� show trajectories and �b� and �d� time evolutions of
the amplitude ��t�. �a� and �b� are figures for �=0, �=0.5, and h=0.4811, slightly below the saddle-node bifurcation point, and �c� and �d�
are for �=0, �=1.0, and h=0.75, slightly below the Hopf bifurcation point.

FIG. 12. Numerical results of the dependence of the period of a
limit cycle � on �hSN

�1� −h� near saddle-node bifurcation point for �

=0 and �=0.46. Line in the figure corresponds to �hSN
�1� −h�−1/2.

FIG. 13. �a� Quasiperiodic trajectory and �b� Poincaré plot of
��nT� �n=1,2 , . . . ,10 000� for �=0.05, �=0.5, and h=0.40.
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lation and chaos, which have not been reported so far in
connection with dynamic phase transitions.

In Sec. III, we studied the mean-field dynamics by ne-
glecting the spatial inhomogeneity of the order parameter.
We observed both limit-cycle oscillations with multiple
times of the period T of the applied field and chaotic oscil-
lations. These complicated oscillations are observed inside
the SBO-1 region in the intermediate range of � value. We
also observed quasiperiodic oscillation for small � value.
These phenomena do not exist in a system in a linearly po-
larized oscillating field and are characteristic of the system in
a rotating field. Furthermore, we found that there exist two

types of chaotic oscillations. Under the change of the inten-
sity of the applied field, two symmetry-broken chaotic attrac-
tors merge and we observe one symmetric chaotic attractor.
The application of external rotating periodic force on the
anisotropic XY spin system was found to produce effects in
contrast to that for the linearly polarized oscillating periodic
force.
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APPENDIX A: DERIVATION OF THE SRO-1–QP
TRANSITION LINE FOR THE ISOTROPIC CASE „�=0…

In the isotropic case ��=0�, the fixed point solution of
Eqs. �19� and �20� can be analytically obtained. This solution
corresponds to the SRO-1 solution. Examining the linear sta-
bility analysis of this SRO-1 solution, one can analytically
determine the transition point between SRO-1 and QP.

The fixed point solutions �0 and 	0 satisfy Eqs. �22� and
�23�. Particularly, �0 is determined by the crossing point of
f��2� and h2, where f��2� is the cubic function of �2 defined
in Eq. �22� �Fig. 16�. Let the values of � giving maximum
and minimum values of f��2� be �±���2±�1−3�2� /3. For
small perturbations ��=�−�0, �	=	−	0 around the fixed
point, we obtain the linearized equations of motion for ��
and �	. Setting ���e�t, �	�e�t, we get �2+��+�=0,
where �=−2+4�0

2, �=3�0
4−4�0

2+1+�2. The characteristic
exponents �=1−2�0

2±��0
4−�2 are complex for �0

2�� and
real for �0

2
�. In order that Re � is negative, both ��0 and
��0 must be satisfied. The condition ��0 holds for �0

2

�1/2. The Hopf bifurcation occurs when � changes its sign
from positive to negative, keeping � positive. The insertion
of �0

2=1/2 into Eq. �22� yields the Hopf bifurcation point hH
given in Eq. �26�.

On the other hand, the condition ��0 is satisfied if �0
��+ for �−

2 �1/2 and if �0��− or �0��+ for �−
2 �1/2. As

shown in Figs. 16�a�–16�c�, there occurs a saddle-node bifur-
cation at �0=�+, namely stable and unstable fixed points col-
lide at �0=�+. The insertion of �0=�+ into Eq. �22� yields the
saddle-node bifurcation point hSN

�1� given in Eq. �25�. In the
case that the sign of � changes at �0=�−, the saddle-node
bifurcation also occurs at this point �Figs. 16�b� and 16�c��.
For �0=�−, the bifurcation point of h is given by hSN

�2� �Eq.
�27��.

Henceforth, we will discuss two types of instability of the
fixed point depending on �. For ��1/2, the function f has
the form as shown in Fig. 16�a�. In this case, we obtain �
��−

2 �1/2��+
2, and the fixed point is stable only when �0

��+ is satisfied. As h is decreased, the stable fixed point
disappears at h=hSN

�1�, where the saddle-node bifurcation oc-
curs. A limit cycle oscillation of � and 	 is observed for h
�hSN

�1�. Since its frequency and � are generally incommen-

FIG. 14. �a� Bifurcation diagram and �b� the largest Lyapunov
exponent � for �=0.05 and �=0.5. One observes a window struc-
ture in the QP region.

FIG. 15. Phase diagram for �=0.05. There exist quasiperiodicity
regions denoted by “QP.” Furthermore, in the inner part of that
region, the SRO-3 region is observed. Narrow window structure
regions in QP are not shown in the figure.
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surate, the variable ��t� shows a quasiperiodic oscillation.
For 1 /2����c, the function f has the form as shown in

Fig. 16�b�. In this case, we get 1 /2����−
2 ��+

2. The sys-
tem shows the saddle-node bifurcation at �0=�+. In addition,
for 1 /�2��0��− satisfying the conditions �0

2�1/2 and ei-
ther �0��− or �0��+, i.e., in the region hH�h�hSN

�2�, the
system shows the bistability. However, even if h is increased
from 0, no hysteresis is observed since the root with �0

��+ first comes into exist at h=hSN
�1�. For �c���1/�3, the

function f has the form as shown in Fig. 16�c�. In the region
hSN

�1� �h�hSN
�2�, the system shows the bistability. As h is in-

creased from 0, a fixed point appears at h=hH��hSN
�1�� and the

hysteresis is observed. Furthermore, for ��1/�3, the func-
tion f��2� is a monotonous function of �2, and the Hopf
bifurcation occurs at h=hH and the SRO-1 solution becomes
unstable �Fig. 16�d��.

In this way, the transition line between SRO-1 and QP can
be analytically determined for �=0. The resulting phase dia-
gram in the �-h plane is shown in Fig. 10. We compared the
transition line with that obtained by the numerical simulation
between SRO-1 and QP and found a good agreement.

APPENDIX B: PHASE DYNAMICS NEAR THE
SADDLE-NODE BIFURCATION POINT FOR THE

ISOTROPIC CASE „�=0…

Since the time evolutions of � and 	 are slow near the
saddle-node bifurcation point h=hSN

�1�, one can neglect the �̇2

and 	̇2 terms in Eq. �21� and obtains

− 2�� − �3��̇ + 2�2�	̇ + f��2� = h2, �B1�

where f�������2+ �1−��2�. In the following, we also ne-

glect the 	̈ term.
By defining �*�−h sin 	 /�, from Eq. �20� we obtain

��	,	̇� = −
h sin 	

	̇ + �
� �*
1 −

	̇

�
� . �B2�

Its time derivative is given by

�̇ � −
h cos 	

�
	̇ . �B3�

We thus obtain

f��2� � f��*
2� −

2�*
2

�
��2 + �1 − �*

2��1 − 3�*
2��	̇ . �B4�

The insertion of these into Eq. �B1� yields

	̇ =
1

g�	,h��h2 − f
 h2

�2 sin2 	�� , �B5�

where

FIG. 16. Schematic figures of
the function f��2� relevant to the
determination of the SRO-1 solu-
tion for �a� ��1/2, �b� 1/2��
��c, �c� �c���1/�3, and �d�
��1/�3. The solid and dotted
lines, respectively, correspond to
stable and unstable fixed points.
Symbols “R” �“C”� implies that
the characteristic exponents � of
the linearized perturbation equa-
tions for �� and �	 are real
�complex�.
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g�	,h� =
1 − �*

2

�

−

h2 sin 2	

�
+ 2�*

2�− 1 + 3�*
2�� . �B6�

Equation �B5� determines the slow evolution of the phase 	
around �SN and 	SN, the fixed point amplitude and phase at
h=hSN

�1�.
If h is slightly above hSN

�1�, the equation

h2 = f
 h2

�2 sin2 	� �B7�

has a linearly stable steady solution 	0. Expanding f around
	=	0 and retaining the first order terms with respect to the
deviation �	�	−	0, we obtain

�	̇ =
1

g�	0,h��− f�
 h2

�2 sin2 	0�h2 sin�2	0�
�2 ��	 .

�B8�

Here we have replaced g�	 ,h� by g�	0 ,h�. This equation
shows that for h�hSN

�1� the fixed point is linearly stable since
f��0 and sin�2	0� /g�	0 ,h�=�2 / �2h2�2�0

2−1���0 since
we are concerning with the saddle-node bifurcation, i.e., �0

2

�1/2.
On the other hand, for h�hSN

�1�, the stable fixed point dis-
appears and the system exhibits a limit cycle solution, which
is the onset of the quasiperiodic oscillation of ��t�. For h

slightly below hSN
�1�, the time evolution of 	 near 	=	SN, the

fixed point value at h=hSN
�1�, is slow. In this case, by consid-

ering Eq. �B5� near h=hSN
�1� and 	=	SN, the slowness of the

time evolution of 	 is estimated as

	̇ = − a�hSN
�1� − h� − b�	 − 	SN�2, �B9�

where in terms of gSN�g�	h
SN
�1� ,hSN

�1��, we have defined

a =
2hSN

�1�

gSN
��0� , �B10�

b =
�1 − 3�2

�4gSN
�hSN

�1��4 sin2�2	SN���0� . �B11�

This equation is integrated to yield

	�t� =�a

b
�hSN

�1� − h�tan�� − �ab�hSN
�1� − h�t� + 	SN,

�B12�

where

� = arctan
 	�0� − 	SN

��a/b��hSN
�1� − h�

� . �B13�

One finds that the characteristic time to escape from the re-
gion �	−	SN � =O��hSN

�1� −h� is O��hSN
�1� −h�−1/2�.
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