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Reduction of frustration was the driving force in an approach to social balance as it was recently considered
by Antal et al. �T. Antal, P. L. Krapivsky, and S. Redner, Phys. Rev. E 72, 036121 �2005��. We generalize their
triad dynamics to k-cycle dynamics for arbitrary integer k. We derive the phase structure, determine the
stationary solutions, and calculate the time it takes to reach a frozen state. The main difference in the phase
structure as a function of k is related to k being even or odd. As a second generalization we dilute the all-to-all
coupling as considered by Antal et al. to a random network with connection probability w�1. Interestingly,
this model can be mapped to a satisfiability problem of computer science. The phase of social balance in our
original interpretation then becomes the phase of satisfaction of all logical clauses in the satisfiability problem.
In common to the cases we study, the ideal solution without any frustration always exists, but the question
actually is as to whether this solution can be found by means of a local stochastic algorithm within a finite time.
The answer depends on the choice of parameters. After establishing the mapping between the two classes of
models, we generalize the social-balance problem to a diluted network topology for which the satisfiability
problem is usually studied. On the other hand, in connection with the satisfiability problem we generalize the
random local algorithm to a p-random local algorithm, including a parameter p that corresponds to the
propensity parameter in the social balance problem. The qualitative effect of the inclusion of this parameter is
a bias towards the optimal solution and a reduction of the needed simulation time.
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I. INTRODUCTION

Recently Antal et al. �1� proposed a triad dynamics to
model the approach of social balance. An essential ingredient
in the algorithm is the reduction of frustration in the follow-
ing sense. We assign a value of +1 or −1 to an edge �or link�
in the all-to-all topology if it connects two individuals who
are friends or enemies, respectively. The sign ±1 of a link we
call also its spin. If the product of links along the boundary
of a triad is negative, the triad is called frustrated �or imbal-
anced�, otherwise it is called balanced �or unfrustrated�. The
state of the network is called balanced if all triads are bal-
anced. If the balanced state is achieved by all links being
positive the state is called “paradise,” as in Antal et al. �1�.
The algorithm depends on a parameter p� �0,1� called pro-
pensity which determines the tendency of the system to re-
duce frustration via flipping a negative link to a positive one
with probability p or via flipping a positive link to a negative
with probability 1− p. For an all-to-all topology Antal et al.
predict a transition from imbalanced stationary states for p
�1/2 to balanced stationary states for p�1/2. Here the
dynamics is motivated by social applications so that the no-
tion of frustration from physics goes along with frustration in
the psychological sense.

In the first part of this paper �Sec. II� we generalize the
triad dynamics to k-cycle dynamics with arbitrary integer k.
In the context of social balance theory, Cartwright and
Harary �2� introduced the notion of balance describing a bal-

anced state with all k cycles being balanced and k not re-
stricted to three. We first study this model on fully connected
networks �Sec. III�. For given fixed and integer k�3 in the
updating rules, we derive the differential equations of the
time evolution due to the local dynamics �Sec. III A� and
predict the stationary densities of k cycles, k arbitrary inte-
ger, containing j�k negative links �Sec. III B�. As long as k
is odd �Sec. III B 1� in the updating dynamics, the results are
only quantitatively different from the case of k=3 considered
in �1�. An odd cycle of length 3, however, is not an allowed
loop in a bipartite graph, for which links may only exist
between different types of vertices so that the length of a
loop of minimal size in a bipartite graph is 4. In addition, it
should be noticed that a 4-cycle with four negative links �that
is four individuals each of which dislikes two others� is bal-
anced and not frustrated, although it may be called the “hell”
�in contrast to the “paradise”�, so it does not need to be
updated in order to reduce its frustration. �To call the hell
with four negative links “balanced” is not specific for the
notion of frustration in physics; also in social balance theory
it is the product over links in the loop which matters and
which decides about balance or frustration �3�.� This differ-
ence is essential as compared to the triad dynamics, in which
a triad of three unfriendly links is always updated. It has
important implications on the phase structure as we shall
show. For even values of k and larger than 4, again there are
only quantitative differences in the phase structure as com-
pared to k=4 �Sec. III B 2�.

Beyond the social context, the notion of frustration is fa-
miliar from the physics of spin glasses. It is the degree of
frustration in spin glasses that determines the qualitative fea-
tures of the energy landscape. A high �low� degree of frus-
tration corresponds to many �few� local minima in the energy
landscape. In terms of energy landscape it was speculated by
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Sasai and Wolynes �4� that it is the low degree of frustration
in a genetic network which is responsible for the few stable
cell states in the high-dimensional space of states.

Calculational tools from spin-glass theory like the replica
method �5� turned out to be quite useful in connection with
generic optimization problems �as they occur, for example,
in computer science� whenever there is a map between the
spin-glass Hamiltonian and a cost function. The goal in find-
ing the ground state energy of the Hamiltonian translates to
the minimization of the costs. A particular class of optimiza-
tion problems refers to satisfiability problems. More specifi-
cally one has a system of B Boolean variables and Q logical
constraints �clauses� between them. In this case, minimizing
the costs means minimizing the number of violated con-
straints. In case of the existence of a nonviolating configura-
tion the problem is said to be satisfiable, it has a zero ground
state energy in the Hamiltonian language. Here it is obvious
that computer algorithms designed to find the optimal solu-
tion have to reduce the frustration down to a minimal value.

The algorithms we have to deal with belong to the so-
called incomplete algorithms �6–8� characterized by some
kind of Monte Carlo dynamics that tries to find the solution
via stochastic local moves in configuration space, starting
from a random initial configuration. It either finds the solu-
tion “fast” or never �this will be made more precise below�.
Among the satisfiability problems there is a special class of
models �so-called k -SAT �kS� problems �9–11��, for which
actually no frustration-free solution exists if the density of
clauses imposed on the system exceeds a certain threshold.
In this case the unsatisfiability is not a feature of the algo-
rithm but intrinsic to the problem. However, there is a special
case of these problems �so-called k-XOR-SAT �kXS� prob-
lems� �7,8,11,12� which are always solvable by some global
algorithm. The challenge here is to find the solution by some
kind of Monte Carlo dynamics, a local stochastic algorithm
within a finite time, scaling at most algebraically with the
system size. The algorithm is very similar to the one used for
solving the kS problem, where actually no solution may ex-
ist.

Now it can be easily shown �10–12� that the satisfiability
problem kS �and also the subclass kXS� can be mapped onto
a k-spin model that is a spin glass. The kS problem is a real
spin glass in the sense that it may not be possible to reduce
the degree of frustration to zero, while such a frustration-free
solution always exists for the kXS problem. Moreover, as we
shall show in the second part of this paper, the kXS problem
can be mapped to both the k-spin model and the kXS prob-
lem. In particular, the three-spin model can be mapped to the
triad dynamics of Antal et al. �1� if we choose the propensity
parameter p=1/3. Therefore, in the context of the satisfiabil-
ity problems, we will generalize the algorithm to include an
additional parameter p that has the meaning of the propensity
parameter in the social context. As we shall show, a choice of
p�1/3 accelerates the finding of the solution, since it pro-
vides a bias towards the solution. Furthermore, for the kS
problem, and similarly for the kXS problem, the phase struc-
ture is usually studied as a function of the dilution of the
network, parametrized by �, the ratio of the total number of
clauses to the total number of links. The reason is that the
interesting changes in the static or dynamic features of the

problem solution appear at certain threshold parameters in
the dilution, while the all-to-all case is not of particular in-
terest there.

Therefore, as a second generalization, we have to gener-
alize the k-cycle dynamics from its all-to-all topology to the
topology of a diluted network. This generalization is anyway
natural from the social interpretation. Either two individuals
may not know each other at all �this is very likely in case of
a large population size� or they neither like nor dislike each
other, but are indifferent as emphasized in �2� as an argument
for the postulated absence of links. We then discuss the phase
structure of the 3XS problem as a function of the dilution �,
and the propensity parameter p. The main results are addi-
tional absorbing states in the k-cycle dynamics if considered
on a diluted topology, and the finding of solutions for p
�1/3 in cases which looked unsolvable before for p=1/3.
We remark that we do not generalize the k-cycle dynamics to
a true spin glass, for which one may no longer expect a
frustration-free solution to exist.

II. MODEL FOR SOCIAL BALANCE

We represent individuals as vertices �or nodes� of a graph
and a relationship between two individuals as a link �or
edge� that connects the corresponding vertices. Moreover, to
a link �i , j� between two nodes i and j we assign a binary
spin variable si,j = ±1, with si,j =1 if the individuals i and j
are friends, and si,j =−1 if i and j are enemies. We consider
the standard notion of social balance extended to cycles of
order k �2,13�. In particular a cycle of order k �or a k cycle�
is defined as a closed path between k distinct nodes i1,i2,. . .,
ik of the network, where the path is performed along the links
of the network �i1 , i2�,�i2 , i3�,. . .,�ik−1 , ik�,�ik , i1�. Given a
value of k we have k+1 different types T0,T1,. . .,Tj,. . .,Tk of
cycles of order k containing 0,1,…,j ,k negative links, re-
spectively. A cycle of order k in the network is considered as
balanced if the product of the signs of links along the cycle
equals 1, otherwise the cycle is considered as imbalanced or
frustrated. Accordingly, the network is considered as bal-
anced if each k cycle of the network is balanced.

We consider our social network as a dynamical system.
We perform a local unconstrained dynamics obtained by a
natural generalization of the local triads dynamics, recently
proposed by Antal et al. �1�. We first fix a value of k. Next, at
each update we choose at random a k cycle Tj. If this k cycle
Tj is balanced �j is even� nothing happens. If Tj is imbal-
anced �j is odd� we change one of its links as follows: if j
�k, then Tj→Tj−1 occurs with probability p, while Tj
→Tj+1 occurs with probability 1− p; if j=k, then Tj→Tj−1
happens with probability 1. During one update, the positive
�negative� link which we flip to take a negative �positive�
sign is chosen at random between all the possible positive
�negative� links belonging to the k cycle Tj. One unit of time
is defined to have passed if the number of updates equals L,
where L is the total number of links of the network. In Fig. 1
we show a simple scheme that illustrates the dynamical rules
in the case of k=4�A� and k=5�B�. It is evident from the
figure that for even values of k the system remains the same
if we simultaneously flip all the spins si,j→−si,j ∀ �i , j� and
make the transformation p→1− p. The same is not true for
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odd values of k. The reason is that a k cycle with only “un-
friendly” links is balanced for even values of k, while it is
imbalanced for odd values of k. The presence of this sym-
metry property for even values of k is responsible for very
different features in the phase structure as compared to odd
values of k. This will be studied in detail in the following
sections.

As in �1�, for odd values of k, we shall distinguish be-
tween stationary states in the infinite volume limit and in the
finite volume. In the infinite volume limit, the stationary
states can be either balanced �for p�1/2� or frustrated �for
p�1/2� since it is not possible to reach the paradise in a
finite time. They are predicted as solutions of mean field
equations. In the finite volume, such as in numerical simula-
tions, fluctuations about their stationary values do not die out
in the phase for p�1/2 so that some frustration remains,
while for p�1/2 frozen states are always reached in the
form of the paradise. �Other balanced states with a finite
amount of negative links are in principle available, but are
quite unlikely to be realized during the finite simulation time.
They are exponentially suppressed due to their small weight
in configuration space.� We calculate the time it takes to
reach a frozen state at and above the phase transition �Sec.
III C 1�. For even values of k we have only two types of
stationary frozen states, “paradise” and “hell” with all links
being positive and negative, respectively. In this case the
time to reach the frozen states at the transition can be calcu-
lated in two ways. The first possibility applies for both even
and odd values of k and is based on calculating the time it
takes until a fluctuation is of the same order in size as the
average density of unfriendly links. The second one, appli-
cable to the case of even values of k, can be obtained by
mapping the social system to a Markov process known as the
Wright-Fisher model for diploid organisms �14�, for which
the decay time to one of the final configurations �all “posi-
tive” or all “negative” genes� increases quadratically in the
size N of the system �Sec. III C 2�.

III. COMPLETE GRAPHS

We first consider the case of fully connected networks.
Later we extend the main results to the case of diluted net-
works in Sec. IV. In a complete graph every individual has a
relationship with everyone else. Let N be the number of
nodes of this complete graph. The total number of links of
the network is then given by L= � N

2
�, while the total number

of k cycles is given by M = � N
k

� with M = � N
k

� the binomial
coefficient. Moreover we define Mj as the number of k cycles
containing j negative links, and mj =Mj /M the correspond-

ing density of k cycles of type Tj. The total number of posi-
tive links L+ is then related to the number of k cycles accord-
ing to

L+ =

�
i=0

k

�k − i�Mi

�N − 2�!/��N − k�!�k − 2�!�
. �1�

A similar relation holds for the total number of negative links
L−,

L− =

�
i=0

k

iMi

�N − 2�!/��N − k�!�k − 2�!�
. �2�

In particular, in Eqs. �1� and �2� the numerators give the total
number of positive and negative links in all k cycles, respec-
tively, while the same denominator results from the fact that
one link belongs to � N−2

k−2
�= �N−2�! / ��N−k�!�k−2�!� different

k cycles. Furthermore, the density of positive links is �
=L+ /L=1−�i=0

k imi, while the density of negative links is 1
−�.

A. Evolution equations

In view of deriving the mean field equations for the un-
constrained dynamics, introduced in the former Sec. II, we
need to define the quantity Mj

+ as the average number of k
cycles of type Tj which are attached to a positive link. This
number is given by

Mj
+ =

�k − j�Mj

L+ ,

while similarly

Mj
− =

jMj

L−

counts the average number of k cycles of type Tj attached to
a negative link. In term of densities we can easily write

mj
+ =

�k − j�mj

�
i=0

k

�k − i�mi

�3�

and

mj
− =

jmj

�
i=0

k

imi

. �4�

Now let �+ be the probability that a link flips its sign from
positive to negative in one update event and �− the probabil-
ity that a negative link changes its sign to +1 in one update
event. We can express these probabilities in terms of mj
according to

FIG. 1. Dynamical rules in case of k=4 �A� and k=5 �B�. The
cycles containing an odd number of “unfriendly” links are consid-
ered as imbalanced and evolve into balanced ones. Full and dashed
lines represent “friendly” and “unfriendly” links, respectively.

SOCIAL BALANCE AS A SATISFIABILITY PROBLEM OF… PHYSICAL REVIEW E 75, 026106 �2007�

026106-3



�+ = �1 − p� �
i=1

�k−1�/2

m2i−1 �5�

and

�− = p �
i=1

�k−1�/2

m2i−1 + mk, �6�

valid for the case of odd k. For even values of k, these prob-
abilities read

�+ = �1 − p��
i=1

k/2

m2i−1 �7�

and

�− = p�
i=1

k/2

m2i−1. �8�

Since each update changes �N−2�! / ��N−k�!�k−2�!� cycles,
and the number of updates in one time step is equal to L
update events, the rate equations in the mean field approxi-
mation can be written as

�
d

dt
m0 = �−m1

− − �+m0
+

d

dt
m1 = �+m0

+ + �−m2
− + − �−m1

− − �+m1
+

]

d

dt
mj = �+mj−1

+ + �−mj+1
− + − �−mj

− − �+mj
+

]

d

dt
mk−1 = �+mk−2

+ + �−mk
− + − �−mk−1

− − �+mk−1
+

d

dt
mk = �−mk−1

− − �−mk
−.

� �9�

We remark that the only difference between the cases of odd
and even values of k comes from Eqs. �5� and �6�, and Eqs.
�7� and �8�, respectively. This difference is the main reason
why the two cases of odd and even values of k lead to com-
pletely different behavior and why we treat them separately
in the following Sec. III B.

B. Stationary states

Next let us derive the stationary states from the rate equa-
tions �9� that give a proper description of the unconstrained
dynamics of k cycles in a complete graph. Imposing the sta-
tionary condition d

dtmj =0, ∀ 0� j�k, we easily obtain

mj−1
+ = mj

−, ∀ 1 � j � k . �10�

Then, forming products of the former quantities appearing in
Eq. �10�, we have

mj−1
+ mj+1

− = mj
+mj

−, ∀ 1 � j � k

and, using the definitions of Eqs. �3� and �4�, we finally
obtain

�k − j + 1��j + 1�mj−1mj+1 = �k − j�j�mj�2, �11�

valid ∀ 1� j�k. Moreover the normalization condition
�imi=1 should be satisfied. Furthermore, in the case of sta-
tionarity, the density of friendships should be fixed, so that
we should impose �+=�−.

1. Case of odd values of k

In the case of odd values of k, the condition for having a
fixed density of friendships reads

mk = �1 − 2p� �
i=1

�k−1�/2

m2i−1, �12�

where we used Eqs. �5� and �6�. In principle the k equations
of Eq. �11� plus the normalization condition and the fixed
friendship relation �12� determine the stationary solution. For
k=3 Antal et al. �1� found

mj = �3

j
	��

3−j�1 − ��� j, ∀ 0 � j � 3, �13�

where

�� = 
1/��3�1 − 2p� + 1� , if p � 1/2

1, if p � 1/2
� �14�

is the stationary density of friendly links. In the same way
we can also solve the case k=5 exactly with the solution

mj = �5

j
	��

5−j�1 − ��� j, ∀ 0 � j � 5, �15�

where

�� = 
�5�1 − 2p��1 +�1 +
1

5�1 − 2p�
	 + 1�−1

�16�

for p�1/2, while ��=1 for p�1/2.
In Fig. 2 we plot the densities mj given by Eq. �15� and

the stationary density of friendly links ��, given by Eq. �16�
as a function of p. Moreover, we verified the validity of the
solution performing several numerical simulations on a com-
plete graph with N=64 nodes �full dots in the top panel�. We
compute numerically the average density of positive links
after 103 time steps, where the average is done over 102

different realizations of the system. At the beginning of each
realization we select at random the values of the signs of the
links, where each of them has the same probability to be
positive or negative, so that �0=0.5. The numerical results
perfectly reproduce our analytical predictions.

As one can easily see, both solutions �13� and �15� are just
binomial distributions. This means that the densities of a
cycle of order k=3 or a cycle of order k=5 with j negative
links are simply given by the probability of finding these
densities on a complete graph in which each link is set equal
to 1 with probability �� or equal to −1 with probability 1
−��. �As already noticed in �1�, this result may come as a
surprise, because three-cycle or here the five-cycle dynamics
seem to be biased towards the reduction of frustration; on the
other hand it is a bias for individual triads without any con-
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straint of the type that the frustration of the whole “society”
should get reduced.�

For odd values of k	5, a stationary solution always ex-
ists. This solution becomes harder to find as k increases,
because the maximal order of the polynomials involved in-
creases with k �for k=3 we have polynomials of first order,
for k=5 polynomials of second order, for k=7 of third order,
and so on�. So it becomes impossible to find the solution
analytically as the maximal order of solvable equations is
reached. Nevertheless, we can give an approximate solution
using a self-consistent approach as we shall outline in the
following. We suppose that the general solution for the sta-
tionary densities is of the form

mj = �k

j
	��

k−j�1 − ��� j, ∀ 0 � j � k , �17�

Eq. �17� is an appropriate ansatz as we can directly see from
the definition of the density of friendly links ��=1
−�i=0

k imi=1− �1−���, where the last term comes out as mean
value of the binomial distribution. �Actually such self-
consistency condition is satisfied by any distribution of the
mjs with mean value equal to 1−��.� Moreover, the ansatz
for the stationary solution in the form of Eq. �17� has the
following features: first it is valid for the special cases k=3
and k=5, and second, it is numerically supported. In Fig. 3
we show some results obtained by numerical simulations. We
plot the densities mj for different values of k �k=7 �A�, k
=9 �B�, k=11 �C�, and k=21 �D�� and different values of p
�p=0 �black circles�, p=0.3 �red squares�, p=0.44 �green
diamonds�, and p=0.49 �blue crosses��. We performed 50

different realizations of a system of N=64 vertices, where
the densities are extrapolated from 106 samples �k cycles� at
each realization and after 5
102 time steps of the simula-
tions �so that we have reached the stationary state�. The ini-
tial values of the signs are chosen to be friendly or unfriendly
with the same probability ��0=0.5�. The full lines are given
by Eq. �17� for which the right value of �� is given by the
average stationary density of friendly links and the average is
performed over all simulations. Furthermore, we numerically
check whether Eq. �17� holds, with the same �� if we mea-
sure the densities of cycles also of order k��k and, more-
over, whether it holds during the time while using the time
dependent density of friendly links ��t� instead of the station-
ary one ��. Since all these checks are positive, we may say
that if at some time the distribution of friendly links �and
consequently of unfriendly links� is uncorrelated, it will stay
so forever.

Let us assume that the ansatz �17� is valid, we then evalu-
ate the unknown value of �� self-consistently by imposing
the condition that the density of friendly links is fixed at the
stationary state

�+ = �− ⇔ �1 − 2p� �
i=1

�k−1�/2

m2i−1 = mk.

In particular we can write

�
i=1

�k−1�/2

m2i−1 + mk = �
i=1

�k+1�/2

m2i−1 = � , �18�

and so

FIG. 2. �Color online� Exact stationary densities mj for the
cycles of order k=5 from Eq. �15� �middle and bottom panels, for k
cycles with an even and odd number of negative links, respectively�
and stationary density of friendly links �� from Eq. �16� �top panel�,
both as a function of the dynamical parameter p. Numerical results
are also reported in the top panel for a system with N=64 vertices.
Each value �full dot� is obtained by averaging the density of
friendly links reached after 103 time steps over 102 different real-
izations with random initial conditions ��0=0.5�.

FIG. 3. �Color online� Stationary densities mj for the k cycles
with j negative links and different values of k �k=7 �A�, k=9 �B�,
k=11 �C�, and k=21 �D��, and for different values of p �p=0 �black
circles�, p=0.3 �red squares�, p=0.44 �green diamonds�, and p
=0.49 �blue crosses��. The numerical results �symbols� represent the
histograms extrapolated from 106 samples and over 50 different
realizations of the network. In particular the initial values of the
spins are equally likely at each realization �so that �0=0.5�, the
distributions are sampled after 5
102 time steps and the system
size is always N=64. The prediction of Eq. �17� is plotted as a full
line and the value of �� used is taken from the simulations as the
average value of the stationary density of positive links.
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mk = �1 − 2p��� − mk�

from which

�� = 1 − 
 ��1 − 2p�
2�1 − p� �1/k

, �19�

for p�1/2, while ��=1 for p�1/2. In particular we notice
that Eq. �19� goes to zero as k→� for p�1/2, because 0
���1. This means that in the limit of large k the stationary
density of friendly links takes the typical shape of a step
function centered at p=1/2, with ��=0 for p�1/2 and ��

=1 for p	1/2. This is exactly the result we find for the case
of even values of k �see Sec. III B 2�, and it is easily ex-
plained since in the limit of large k the distinction between
the cases of odd and even values of k should become irrel-
evant.

Furthermore, it should be noticed that � defined in Eq.
�18� is nothing else than a sum of all odd terms of a binomial
distribution. For large values of k we should expect that the
sum of the odd terms is equal to the sum of the even terms of
the distribution, so that

� = �
i=1

�k+1�/2

m2j−1 �
1

2
� �

i=0

�k−1�/2

m2j ,

because of the normalization. In Fig. 4 we plot the quantity
�1−���k obtained by numerical simulations for different val-
ues of k �k=3 �black circles�, k=5 �red squares�, k=7 �blue
diamonds�, k=9 �violet triangles�, k=11 �orange crosses�� as
a function of p. Each point represents the average value of
the density of positive links �after 103 time steps� over 102

different realizations. The system size in our simulations is
N=64, while, at the beginning of each realization, the links
have the same probability to have positive or negative spin
��0=0.5�. From Eq. �19� we expect that the numerical results
collapse on the same curve ��1−2p� / �2−2p�, depending on
the parameter �. Imposing �=1/2 �dashed line� we obtain an
excellent fit for all values of p. Only for small values of p the
fit is less good than for intermediate and large values of p,
which is explained by the plot in the inset of Fig. 4. There
Eq. �18� is shown as function of p for k=3 �black dotted line�
and for k=5 �red full line�. The values of mj are taken di-
rectly from the binomial distribution of Eq. �17� with values
of �� known exactly from Eqs. �14� and �16� for k=3 and
k=5, respectively. We can see how well the approximation
�=1/2 works already for k=3 and how it improves for k
=5, with the only exception for small values of p where �
	1/2. Furthermore, we see that ��1/2 for p�1/2, but in
this range the dependence on � of Eq. �19� becomes weaker
since the factor ��1−2p� tends to zero anyway.

2. Case of even values of k

The stability of a k cycle with all negative links in the
case of even k �see Fig. 1� has far reaching implications on
the global behavior of the model. Actually the elementary
dynamics is now symmetric. Only the value of p gives a
preferential direction �towards a completely friendly or un-
friendly cycle� to the basic processes. With odd k, for p
�1/2 the tendency of the dynamics to reach the state with a
minor number of positive links in the elementary processes
�without completely unfriendly cycles� is overbalanced by
the process Tk→Tk−1 which happens with probability 1, so
that in the thermodynamical limit the system ends up in an
active steady state with a finite average density of negative
links due to the competition between the basic processes.
Instead, for even k, nothing prevents the system from reach-
ing the “hell,” that is a state of only negative links, because
here a completely negative cycle is stable. Only for p=1/2
we expect to find a nonfrozen fluctuating final state, since in
this case the elementary dynamical processes are fully sym-
metric. Imposing the stationary conditions on the system we
do not get detailed information about the final state. As we
can see from Eqs. �7� and �8�, for p�1/2 the only possibility
to have �+=�− is the trivial solution for which both prob-
abilities are equal to zero, so that the system must reach a
frozen configuration, while for p=1/2, �+ and �− are always
equal, in this case we expect the system to reach immediately
an active steady state, cf. Eq. �20� below. �However, in con-
trast to odd values of k, due to the different time dependence
on the size of the system, we shall observe frozen states in a
finite volume, either heaven or hell, also in case of p=1/2.�
In order to describe more precisely the final configuration of
this active steady state, it is instructive to consider the mean
field equation for the density of positive links. For generic
even value of k, it is easy to see that the number of positive
links increases in updates of type T2j−1→T2�j−1� with prob-
ability p, whereas it decreases in updates of type T2j−1
→T2j with probability 1− p, so that the mean field equation
that governs the behavior of the density of friendly links is
given by

FIG. 4. �Color online� Numerical results �symbols� and approxi-
mate solution �dashed line� for the function �1−���k, depending on
the stationary density of positive links �� and the parameter k �k
=3 �black circles�, k=5 �red squares�, k=7 �blue diamonds�, k=9
�violet triangles�, k=11 �orange crosses��, as a function of the dy-
namical parameter p. The theoretical result, plotted here as a dashed
line, is given by Eq. �19� for �=1/2. This prediction is in good
agreement with the numerical results obtained by averaging the
density of friendly links after 103 time steps over 102 different
realizations. The system size is N=64. Each simulation starts with
random initial conditions ��0=0.5�. Moreover, as we can see from
the inset, the value of � calculated for k=3 �red full line� and for
k=5 �black dotted line� is very close to 1/2 for an extended range
of p.
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d�

dt
= �2p − 1���1 − ���

i=1

k/2 � k

2i − 1
	�k−2i�1 − ��2�i−1�. �20�

For p�1/2 we have only two stationary states, ��=0 and
��=1 �the other roots of the steady state equation are com-
plex�. It is easily understood that for p�1/2 the stable con-
figuration is ��=0, while for p	1/2 it is ��=1. In contrast,
for p=1/2 we have ��t�=const at any time, so that ��=��t
=0�=�0. These results are confirmed by numerical simula-
tions. Moreover, the convergence to the thermodynamical
limit is quite fast, as it can be seen in Fig. 5, where we plot
the density of friendly links �� as a function of p for the
system sizes N �N=8 �dotted line�, N=16 �dashed line�, and
N=32 �full line�� and for k=4. Each curve is obtained from
averages over 103 different realizations of the dynamical sys-
tem. In all simulations the links get initially assigned the
values ±1 with equal probability, so that �0=0.5.

C. Frozen configurations

When all k cycles of the network are balanced we say that
the network itself is balanced. In particular, in the case of our
unconstrained dynamics we can say that if the network is
balanced it has reached a frozen configuration. The configu-
ration is frozen in the sense that no dynamics is left since the
system cannot escape a balanced configuration. Furthermore,
it was proven �2� that if a complete graph is balanced for a
fixed odd value of k, then it is balanced for any choice of k
and that the only possible balanced configurations are given
by bipartitions of the network in two subgroups �or
“cliques”�, where all the individuals belonging to the same
subgroup are friends while every couple of individuals be-
longing to different subgroups are enemies �this result is also
known as structure theorem �3��. In the case of even values
of k the latter result is still valid if all the individuals of one
subgroup are enemies, while two individuals belonging to
different subgroups are friends. It should be noticed that one

of the two cliques may be empty and therefore the configu-
ration of the paradise �where all individuals are friends� is
also included in this result, as well as the hell with all indi-
viduals being enemies for the case of even values of k. In the
following we will combine our former results about the sta-
tionary states �Sec. III B� with the notion of frozen configu-
rations in order to predict the probability of finding a particu-
lar balanced configuration and the time needed for freezing
our unconstrained dynamical process. For clarity we analyze
the cases of odd and even values of k separately, again.

1. Freezing time for odd values of k

p�1/2: Let 0�N1�N be the size of one of the two
cliques. Therefore the other clique will be of size N−N1. In
such a frozen configuration the total number of positive �L+�
and negative �L−� links are related to N1 and N by

L+ =
N1�N1 − 1�

2
+

�N − N1��N − N1 − 1�
2

�21�

and

L− = N1�N − N1� , �22�

respectively. As we have seen in the former Sec. III B 1, for
odd values of k and p�1/2, all k cycles are uncorrelated
during the unconstrained dynamical evolution, if we start
from an initially uncorrelated configuration. In these cases,
we can consider our system as a random process in which the
values of the spins are chosen at random with a certain prob-
ability. In particular, the probability of a link to be positive is
given by �, the density of positive links �while 1−� is the
probability for a link to be negative�. The probability of
reaching a frozen configuration, characterized by two cliques
of N1 nodes and N−N1 nodes, is then given by

P��,N1� = � N

N1
	�N�N−1�/2−N1�N−N1��1 − ��N1�N−N1�. �23�

The binomial coefficient � N
N1

� in Eq. �23� counts the total
number of possible bipartitions into cliques with N1 and N
−N1 nodes �i.e., the total number of different ways for choos-
ing N1 nodes out of N�, and each of these bipartitions is
considered as equally likely because of the randomness of
the process. We should also remark that in Eq. �23� we omit
the time dependence of �, although the density of positive
links � follows the following master equation:

d�

dt
= �1 − ��k + �2p − 1� �

i=1

�k−1�/2 � k

2i − 1
	�2i−1�1 − ��k−2i+1.

�24�

Equation �24� follows in analogy to Eq. �20� with the only
difference of k being odd. Equation �23� shows that the prob-
ability of having a frozen configuration with cliques of N1
and N−N1 nodes is extremely small, because the number of
the other equiprobable configurations with the same number
of negative and positive links is equal to � L

L− �� � N
N1

�, where
L− should satisfy Eq. �22�. This allows us to ignore the tran-
sient time to reach the stationary state �we expect that the

FIG. 5. Behavior of the stationary density of friendly links �� as
a function of p for three �small� values of N �N=8 �dotted line�, 16
�dashed line�, and 32 �full line�� and for k=4. The values of the
initial configuration are randomly chosen to be ±1 with density of
friendly links �0=0.5. The curves are obtained from averages over
103 different realizations.
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system goes to the stationary state exponentially fast for any
k, as shown in �1� for k=3� and consider the probability for
obtaining a frozen configurations as

P���� = �
N1=0

N

P���,N1� . �25�

This probability provides a good estimate for the order of
magnitude in time 
 that is needed to reach a frozen configu-
ration, because 
�1/ P����. Unfortunately this estimate re-
veals that the time needed for freezing the system becomes
very large already for small sizes N �i.e., 
 increases almost
exponentially as a function of L�N2�. This means that it is
practically impossible to verify this estimate in numerical
simulations.

p=1/2: At the transition, for the dynamical parameter p
=1/2 we can follow the same procedure as used by Antal et
al. �1�. The procedure is based on calculating the time it
takes until a fluctuation in the number of negative links
reaches the same order of magnitude as the average number
of negative links. In this case the systems happens to reach
the frozen configuration of the paradise due to a fluctuation.
The number of unfriendly links L−�A�t� can be written in
the canonical form �15�

A�t� = La�t� + �L��t� , �26�

where a�t� is the deterministic part and ��t� is a stochastic
variable such that ���=0. Let us consider the elementary
processes

A →�
A − 1, rate Mk

A − 1, rate p �
i=1

�k−1�/2

M2i−1

A + 1, rate �1 − p� �
i=1

�k−1�/2

M2i−1
� �27�

and therefore

A2 →�
A2 − 2A + 1, rate Mk

A2 − 2A + 1, rate p �
i=1

�k−1�/2

M2i−1

A2 + 2A + 1, rate �1 − p� �
i=1

�k−1�/2

M2i−1

.� �28�

We then obtain the following equations for the mean values
of A and A2:

d�A�
dt

= − �Mk� + �1 − 2p� �
i=1

�k−1�/2

�M2i−1�

and

d�A2�
dt

= ��1 − 2A�Mk� + p��1 − 2A� �
i=1

�k−1�/2

M2i−1�
+ �1 − 2p���1 + 2A� �

i=1

�k+1�/2

M2i−1� .

For p=1/2 we find

d�A�
dt

= − �Mk� �29�

and

d�A2�
dt

= �Mk� + �
i=1

�k−1�/2

�M2i−1� − 2�AMk� .

Since it is �A��a and �Mk��ak, we get from Eq. �29�

da

dt
� − ak, �30�

from which

a�t� � t−1/�k−1�. �31�

On the other hand, considering that d�A�2 /dt=2�A�d�A� /dt
and by definition �= �A2�− �A�2= ��2�, we have

d�

dt
= �Mk� + �

i=1

�k−1�/2

�M2i−1� − 2��AMk� − �A��Mk�� . �32�

Moreover, we can write

�AMk� − �A��Mk� = ��La + �L��Mk� − La�Mk� = �L��Mk� .

It is easy to see that ��Mk����Ak�= ���La+�L��k�, so that

��Mk� � ���Lkak + kLk−1/2ak−1� + ¯ + Lk/2�k��

� kLk−1/2ak−1��2� + O���3�� . �33�

Dividing Eq. �32� by Eq. �30� and using Eq. �33� we get

d�

da
= − 
2kak−1� − �

i=1

�k+1�/2 � k

2i − 1
	a2i−1�1 − a�k−2i+1� . �34�

Here we have taken into account that

�Mj� � �k

j
	aj�1 − a�k−j . �35�

It is straightforward to find the solution of Eq. �34� as

��a� = Ca2k +
�k

a
+ ¯ +

�0

ak−2 ,

with C and � j suitable constants. From Eq. �31�, for t→� we
have

� � a−�k−2� � t�k−2�/�k−1�.

For ����, we finally obtain

� � t�k−2�/�2�k−1��.

In general, the system will reach the frozen state of the para-
dise when the fluctuations of the number of negative links
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become of the same order as its mean value. �Note that in
this case the mean field approach is no longer valid.� Then,
in order of finding the freezing time 
 we have just to set
equal the two terms on the right hand side of Eq. �26�.

La�
� � �L��
� . �36�

Since L�N2, we get a power-law behavior


 � N� �37�

with exponent � as a function of k according to

� = 2
k − 1

k
. �38�

It is worth noticing that in the limit k→� we obtain �=2,
which is the same result as in the case of even values of k as
we shall see soon. The analytical results of this subsection
are well confirmed by simulations, cf. Fig. 6. There we study
numerically the freezing time 
 as a function of the system
size N for different odd values of k �k=3 �black circles�, k
=5 �red squares�, k=7 �blue diamonds�, k=9 �violet tri-
angles�, and k=15 �orange crosses��. The freezing time is
measured until all links have positive sign and paradise is
reached. Other frozen configurations are too unlikely to be
realized. Each point stands for the average value over a dif-
ferent number of realizations of the dynamical system �100
realizations for sizes N�64, 50 realizations for 64�N

�256, and 10 realizations for N	256�, where the initial
configuration is always chosen as an antagonistic society �all
the links being negative so that �0=0� to reduce the statisti-
cal error. The standard deviations around the averages have
sizes comparable to the size of the symbols. The full lines
stand for power laws with exponents given by Eq. �38�. They
perfectly fit with the numerical measurements.

p	1/2: For p	1/2 the freezing time 
 scales as


 � ln N . �39�

We skip the derivation since it would be the same as in the
paper of Antal et al. �1�. It should be noticed that for p
	1/2 the paradise is reached the faster the larger k. For
simplicity let p=1 and imagine that the system is at the clos-
est configuration to the paradise, for which only one link in
the system has negative spin. This link belongs to R= � N−2

k−2
�

different k cycles. At each update event we select one k cycle
at random out of M = � N

k
� total k cycles. This way we have to

wait a number of update events E�M /R until the paradise is
reached, which leads to a freezing time 
�E /L, with L the
total number of links independent on k, so that


 �
1

k�k − 1�
. �40�

For values of 1 /2� p�1 the k dependence of 
 should be
weaker than the one in Eq. �40�, but anyway 
 should be a
decreasing function of k. The inset of Fig. 6 shows the nu-
merical results obtained for p=3/4 as a function of the size
of the system N. The freezing time 
 is measured for differ-
ent values of k. We plot the average value over 103 different
realizations with initial condition �0=0.

2. Freezing time for even values of k

p=1/2: In the case of even values of k and p=1/2 the
master equation for the density of positive links �Eq. �20��
reads as d� /dt=0. Therefore the density of friendly links �
should be constant during time for an infinite large system.
In finite-size systems the dynamics is subjected to non-
negligible fluctuations. This allows to understand the scaling
features of the freezing time 
 with the system size. The
order of the fluctuations is �L because the process is com-
pletely random as we have seen for the case of odd values of
k and p�1/2. Differently from the latter case, for even val-
ues of k and p=1/2 the system has no preferred tendency to
go to a fixed point that would be determined by p because
d� /dt=0. In common with Eq. �24� we can view the dynami-
cal system as a Markov chain, here without bias due to p,
with discrete steps in time and state space, for which the
transition probability for passing from a state with L−�t−1�
negative at time t−1 to a state with L−�t� negative links at
time t is given by

P�L−�t��L−�t − 1��

= � L

L−�t�
	�L − L−�t − 1�

L
	L−L−�t��L−�t − 1�

L
	L−�t�

. �41�

Therefore the probability of having L−�t� negative links at
time t is just a binomial distribution where the probability of

FIG. 6. �Color online� Numerical results �full dots� at p=1/2 for
the freezing time 
 as a function of the system size N and for
various k �k=3 �black circles�, k=5 �red squares�, k=7 �blue dia-
monds�, k=9 �violet triangles�, and k=15 �orange crosses��. Each
point is given by the average value over several realizations �100
realizations for sizes N�64, 50 realizations for 64�N�256, and
10 realizations for N	256�. Moreover, as initial configuration of
each realization the links are chosen all negative ��0=0, antagonis-
tic society� in order to reduce the statistical error �the standard
deviation is comparable with the symbol size� caused by the small
number of realizations at larger sizes of the system. The full lines
have slope 2�k−1� /k as expected from Eq. �38�. The inset shows
the numerical results for the freezing time 
, for different values of
k �the same as in the main plot�, as a function of the system size N
and for p=3/4. Each point of the inset is given by the average over
103 different realizations with initial antagonistic society.
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having one negative link is given by
L−�t−1�

L , the density of
negative links at time t−1. This includes both the random-
ness of the displacement of negative links and the absence of
a particular fixed point dependent on p. The Markov process,
with transition probability given by Eq. �41�, is known under
the name of the Wright-Fisher model �14� from the context
of biology. The Wright-Fisher model is a simple stochastic
model for the reproduction of diploid organisms �“diploid”
means that each organism has two genes, here named as “�”
and “�”�, it was proposed independently by Fisher and
Wright at the beginning of the 1930s �14�. The population
size of genes in an organism is fixed and equal to L /2 so that
the total number of genes is L. Each organism lives only for
one generation and dies after the offsprings are made. Each
offspring receives two genes, each one selected with prob-
ability 1 /2 out of the two genes of a parent of which two are
randomly selected from the population of the former genera-
tion. Now let us assume that there is a random initial con-
figuration of positive and negative genes with a slight surplus
of negative genes. The offspring generation selects its genes
randomly from this pool and provides the pool for the next
offspring generation. Since the pools get never refreshed by a
new random configuration, the initial surplus of negative
links gets amplified in each offspring generation until the
whole population of genes is “negative.” Actually the solu-
tion of the Wright-Fisher model is quite simple. The process
always converges to a final state with L−=0 �L+=L� or L−

=L �L+=0�, corresponding to our heaven and �hell� solutions
for even values of k. Repeating many times the simulations
and starting always from the same density of positive links
�0, the fraction of times one ends up in “heaven” in all these
trials is just determined by �0 and in “hell” by 1−�0, so that
the number of negative links L− averaged over different trials
equals �1−�0�L. Furthermore, on average, the number of
negative links decays exponentially fast to one of the two
extremal values

�L−�t�� � L
e−t/L

1 − e−t/L�
with typical decay time


 � L � N2. �42�

This result is perfectly reproduced by the numerical data
plotted in Fig. 7. The main plot shows the average time
needed to reach a balanced configuration as a function of the
size of the system N and for different values of k �k=4 �black
circles�, k=6 �red squares�, k=8 �blue diamonds�, and k
=12 �violet crosses��. The averages are performed over dif-
ferent numbers of realizations depending on the size N �1000
realizations for sizes N�128, 500 realizations for 128�N
�384 and 50 realizations for N=384 and N=512 cand 10
realizations for N=1024�. The dashed line in Fig. 7 has, in
the log-log plane, a slope equal to 2, all numerical data fit
very well with this line. Furthermore it should be noticed that
there is no k dependence of the freezing time 
, as it is
described by Eq. �41�. This is reflected by the fact that 
 is
the same for all the values of k considered in the numerical
measurements. Nevertheless, there is a difference between

our model and the Wright-Fisher model that should be no-
ticed. During the evolution of our model there is the possi-
bility that the system freezes in a configuration different
from the paradise �L−=0� or the hell �L−=L�. The probability
of this event is still given by Eq. �23�, with �=L+�N1� /L as
the stationary condition �L+�N1� is given by Eq. �21��. In this
way Eq. �23� gives us P�N1�, the non-normalized probability
for the system to freeze in a balanced configuration with two
cliques of N1 and N−N1 nodes, respectively. It is straightfor-
ward to see that P�N1�=1 for N1=0 or for N1=N, so that the
paradise has a nonvanishing probability to be a frozen con-
figuration. Differently for any other value of 0�N1�N,
P�N1� decreases to zero faster than 1/N. This means that for
values of N large enough it is appropriate to forget about the
intermediate frozen configurations and to consider the fea-
tures of our model as being very well approximated by those
of the Wright-Fisher model. In the inset �B� of Fig. 7 the
function P�N1� is plotted for different values of N �N=6 �full
line�, N=8 �dashed line�, and N=10 �dotted line�� with N1 a
continuous variable for clarity of the figure �we approximate
the factorial with Stirling’s formula�. Obviously P�N1� goes
to zero for 0�N1�N as N increases, already for reasonably
small values of N.

FIG. 7. �Color online� Numerical results for the freezing time 

as a function of the system size N and for various even values of k
�k=4 �black circles�, k=6 �red squares�, k=8 �blue diamonds�, and
k=12 �violet crosses�� and for p=1/2. Each point is given by the
average value over several realizations �100 realizations for sizes
N�64, 50 realizations for 64�N�256, and 10 realizations for
N	256�. Moreover, at the beginning of each realization the links
are chosen to be positive or negative with the same probability
��0=0.5�. The dashed line has, in the log-log plane, slope 2 as
expected in Eq. �42�. The inset �A� shows the numerical results for
the freezing time 
, for different values of k �the same as in the
main plot�, as a function of the system size N and for p=3/4. Each
point of the inset is given by the average over 103 different realiza-
tions with random initial conditions. The full lines are all propor-
tional to ln N as expected. The inset �B� shows the not-normalized
probability P�N1� as a function of the ratio N1 /N and for different
values of the system size N �N=6 �full line�, N=8 �dashed line�, and
N=10 �dotted line��. As one can see, P�N1� is extremely small for
values of 0�N1�N already for N=10.
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The dependence 
�N2 can also be obtained using the
same procedure as the one in Sec. III C 1 for the case odd
values of k and p=1/2. In particular for even values of k we
can rewrite Eq. �27� according to

A → �A − 1, rate p�
i=1

k/2

M2i−1

A + 1, rate �1 − p��
i=1

k/2

M2i−1
� �43�

and therefore Eq. �28� according to

A2 → �A2 − 2A + 1, rate p�
i=1

k/2

M2i−1

A2 + 2A + 1, rate �1 − p��
i=1

k/2

M2i−1

. � �44�

For p=1/2 we have

d�A�
dt

= 0 �45�

and

d�A2�
dt

= �
i=1

k/2

�M2i−1� .

Equation �45� tells us that a��A�=const, so that we have

� � �t ,

if we recall Eq. �35�. As in the previous case, for determining
the freezing time we impose the condition that the average
value is of the same order as the fluctuations �Eq. �36��, and,
for L�N2, we obtain again Eq. �42�.

p�1/2: For even values of k and for p�1/2 the time 

needed for reaching a frozen configuration scales as 

� ln N. In the inset of Fig. 7 numerical estimates of 
 for p
=3/4 and different values of k demonstrate this dependence
on the size N of the system. Each point is obtained from
averaging over 103 different simulations with the same initial
conditions �0=0.5. Again, as in the case of k odd and p
	1/2, 
 is a decreasing function of k and the same argument
used for obtaining Eq. �40� can be applied here, too.

IV. DILUTED NETWORKS

In this section we extend the former results, valid in the
case of fully connected networks, to diluted networks. Real
networks, apart from very small ones, cannot be represented
by complete graphs. The situation in which all individuals
know each other is in practice very unlikely. As mentioned in
the introduction, links may be also missing, because indi-
viduals neither like nor dislike each other but are just indif-
ferent with respect to each other. In the following we analyze
the features of dynamical systems, still following the uncon-
strained k-cycle dynamics, but living on topologies given by
diluted networks.

For diluted networks there is an interesting connection to
another set of problems usually considered in connection

with computer science. It leads to a new interpretation of the
social balance problem in terms of a so-called k-SAT �kS�
problem �SAT stands for satisfiability� �9–11�. In this type
of problem a formula F consists of Q logical clauses
�Cq�q=1,. . .,Q which are defined over a set of B Boolean vari-
ables �xi=0,1�i=1,. . .,B which can take two possible values 0
=FALSE or 1=TRUE. Every clause contains k randomly cho-
sen Boolean variables that are connected by logical OR op-
erations �∨�. They appear negated with a certain probability.
In the formula F, all clauses are connected via logical AND

operations �∧�

F = ∧
q=1

Q

Cq,

so that all clauses Cq should be simultaneously satisfied in
order to satisfy the formula F. A particular formulation of the
kS problem is the k-XOR-SAT �kXS� problem �7,8,11,12�,
in which each clause Cq is a parity check of the kind

Cq = xi1
q + xi2

q + ¯ + xik
q mod2, �46�

where q=1, . . . ,Q and i1 , . . . , ik� �1, . . . ,B�. Parity check is
understood in the sense that Cq is TRUE if the total number of
true variables which define the clause is odd, while otherwise
the clause Cq is FALSE. It is straightforward to map the kXS
problem to our former model for the case of odd values of k.
Actually, each clause Cq corresponds to a k cycle �Q�M�
and each variable xv to a link �i , j�. Furthermore, �B�L�
with the correspondence si,j =1 for xv=1, while si,j =−1 for
xv=0. For the case of even values of k, one can use the same
mapping but consider as clause Cq in Eq. �46� its negation
Cq. In this way, when the number of satisfied variables xi

q is
odd the clause Cq is unsatisfied for odd values of k, but
satisfied for even values of k.

Moreover, a typical algorithm for finding a solution of the
kS problems is the so-called random-walk SAT �RWS�. The
procedure is the following �7,8�: select one unsatisfied clause
Cq randomly, next invert one randomly chosen variable of its
k variables xi*

q ; repeat this procedure until no unsatisfied
clauses are left in the problem. Each update is counted as
1/B units of time. As one can easily see, this algorithm is
very similar to our unconstrained dynamics apart from two
aspects. First, in our unconstrained dynamics we use the dy-
namical propensity parameter p, which is absent in the RWS.
Second, in our unconstrained dynamics we count also the
choice of a balanced k cycle as update event, although it does
not change the system at all. Because of this reason, the
literal application of the original algorithm of unconstrained
dynamics is computationally very expensive if it is applied to
diluted networks. Apart from the parameter p, we can there-
fore use the same RWS algorithm for our unconstrained dy-
namics of k cycles in the diluted case. This algorithm is more
reasonable because it selects at each update event only im-
balanced k cycles which are actually the only ones that
should be updated. In case of an all-to-all topology there are
so many triads that a preordering according to the property
of being balanced or not is too time consuming so that in this
case our former version is more appropriate. In order to
count the time as in our original framework of the uncon-
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strained dynamics, we should impose that, at the nth update
event, the time increases as

tn = tn−1 +
1

L

�

�u
�n−1� . �47�

Here �=M /L stands for the ratio of the total number of k
cycles of the system �i.e., total number of clauses� to the total
number of links �i.e., total number of variables�. The param-
eter � is called the “dilution” parameter, it can take all
possible values in the interval �0, � L

k
� /L�. �u

�n−1�

=�i=1
�k+1�/2M2i−1 /L is the ratio of the total number of imbal-

anced �or “unsatisfied”� k cycles over the total number of
links, in particular �u

�n−1� is computed before an instant of
time at which the nth update event is implemented. There-
fore the ratio � /�u

�n−1� gives us the inverse of the probability
for finding an imbalanced k cycle, out of all, balanced or
imbalanced, k cycles, at the nth update event. This is a good
approximation to the time defined in the original uncon-
strained dynamics. It should be noticed that this algorithm
works faster in units of this computational time, but the
simulation time should be counted in the same units as de-
fined for the unconstrained dynamics introduced in Sec. II.

The usual performance of the RWS is fully determined by
the dilution parameter �. For ���d the RWS always finds a
solution of the kS problem within a time that scales linearly
with the number of variables L. In particular for the kXS
problem �d=1/k. For �d����c the RWS is still able to
find a solution for the kS problem, but the time needed to
find the solution grows exponentially with the number of
variables L. For the case of the 3XS problem �c�0.918. �d
is the value of the dilution parameter for which we have the
“dynamical” transition, depending on the dynamics of the
algorithm, while �c represents the transition between the
SAT and the UNSAT regions: for values of ���c the RWS
is no longer able to find any solution for the kS problem, and
in fact no such solution with zero frustration exists for the kS
problem �while there still exists a solution for the kXS prob-
lem, but it can no longer be found by the RWS algorithm�.
Furthermore, there is a third critical threshold �s, with �d
��s��c. For values of ���s all solutions of the kS prob-
lem found by the RWS are located in a large cluster of solu-
tions and the averaged and normalized Hamming distance
inside this cluster is �d��1/2. For �	�s the solution space
splits into a number of small clusters �that grows exponen-
tially with the number of variables L�, for which the aver-
aged and normalized Hamming distance inside each cluster
is �d��0.14, while the averaged and normalized Hamming
distance between two solutions lying in different clusters is
still �d��1/2 �12�. For the special case of the 3XS problem
�s was found to be �s�0.818.

In order to connect the problems of social balance on
diluted networks to the kXS problem on a diluted system we
shall first translate the parameters into each other. We need to
calculate the ratio �=M /L of the total number of k cycles of
the network to the total number of links L as a function of w
�Sec. IV A�. Next we consider the standard RWS applied to
the kXS problem taking care on the right way of computing
the time as it is given by the rule �47� and the introduction of

the dynamical parameter p �Sec. IV B�. In particular we fo-
cus on the “dynamical” transition at �d �Sec. IV B 1� and the
transition in solution space concerning the clustering proper-
ties of the solutions at �s �Sec. IV B 2�. The dynamical pa-
rameter p, formerly called the propensity parameter, leads to
a critical value pc above which it is always possible to find a
solution within a time that grows at most linearly with the
system size. Here we only summarize our results �Sec.
IV B 3� without going into detail. We also comment on the
validity range of the mean field approximation and translate
the phase structure as a function of � back into the phase
structure as a function of w.

A. Ratio � for random networks

Let us first consider Erdös-Rényi networks �16� as a di-
luted version of the all-to-all topology that we studied be-
fore. An Erdös-Rényi network, or a random network, is a
network in which each of the � N

2
� different pairs of nodes is

connected with probability w. The average number of links is
simply �L�=w� N

2
�. The average number of cycles of order k is

given �M�=wk� N
k

�, so that the average ratio ��� can be esti-
mated as

��� � wk−12Nk−2

k!
. �48�

In Fig. 8 we plot the numerical results obtained for the ratio
� as a function of the probability w, in the particular case of
cycles of order k=3. The reported results, from bottom to

FIG. 8. Numerical results �full dots� for the ratio �=M /L be-
tween the total number of cycles M of order k=3 and the total
number of links L as a function of the probability w for different
sizes of Erdös-Rényi networks. In particular the numerical results
refer to different network size N: from bottom to top N=16, 32, 48,
64, 96, 128, 192, and 256. Each point is given by the average over
103 network realizations. The full lines are the predicted values
given by Eq. �48�, while the dotted lines denote the critical values
�d=1/3, �s=0.818, and �c=0.918 as described in detail in the text.
In particular the numerical values of the probability w for which
these three critical values of � are realized are denoted by wd �open
circles�, ws �open squares�, and wc �gray squares�, respectively, they
are plotted in the inset, where the full lines are extrapolated by Eq.
�48� as wi=�3�i /N, i=d ,s ,c. The two upper curves for ws and wc

almost coincide.
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top, have been obtained for values of N=16, 32, 48, 64, 96,
128, 192, and 256. Each point is given by the average over
103 different network realizations. In particular these numeri-
cal results fit very well with the expectations �full lines� of
Eq. �48�, especially for large values of N and/or small values
of w. Furthermore the critical values �d=1/3, �s=0.818, and
�c=0.918 �dotted lines� are used for extrapolating the nu-
merical results to wd �open circles�, ws �open squares�, and
wc �gray squares�, respectively �see the inset of Fig. 8�. wi,
i=d ,s ,c are the values of the probabilities which correspond
to the ratios �i, i=d ,s ,c, respectively. As expected, they fol-
low the rule wi=�3�i /N, i=d ,s ,c predicted by Eq. �48�, for
k=3.

According to the isomorphism traced between the kXS
problem and the social balance for k cycles, from now on it
is natural to use the following pairs of words synonymously:
variable and link, k clause and k cycle, value and sign �or
spin�, false and negative �or unfriendly�, true and positive �or
friendly�, satisfied and balanced �or unfrustrated�, unsatisfied
and imbalanced �or frustrated�.

B. p-random-walk SAT

So far we have established the connection between the
kXS problem and the social balance for k cycles, proposed in
this paper. In particular we have determined how the dilution
parameter � is related to the parameter w parametrizing �di-
luted� random networks. In this section we extend the known
results for the standard RWS of �7,8� to the p-random-walk
SAT �pRWS� algorithm, that is the RWS algorithm extended
by the dynamical parameter p that played the role of a pro-
pensity parameter in connection with the social balance
problem. The steps of the pRWS are as follows:

1. Select randomly a frustrated clause between all
frustrated clauses.

2. Instead of randomly inverting the value of anyone of
its k variables, as for an update in the case of the RWS, apply
the following procedure:

�i� if the clause contains both true and false variables,
select a random numer r between 0 and 1. If r� p choose
randomly one variable out of the false ones belonging to the
clause and flip it. Go then to step 3;

�ii� if the clause contains both true and false variables
and r� p choose randomly one out of the true variables and
flip it to the false value, go then to step 3;

�iii� if the clause contains only false values �k should
be odd�, select with probability 1 one of its false variables,
randomly chosen between all the false variables belonging to
the clause, and flip it to the true value.

3. Go back to point 1 until no unsatisfied clauses remain
in the problem.

The update rules of point 2 are the same used in the case
of k cycle dynamics and illustrated in Fig. 1 for the cases k
=4 �A� and k=5 �B�. For the special case of the 3XS prob-
lem, the standard RWS algorithm and the pRWS algorithm
coincide for the dynamical parameter p=1/3.

1. Dynamical transition at �d

The freezing time 
, that is the time 
 needed for finding
a solution of the problem, abruptly changes at the dynamical
critical point �d=1/k. Figure 9 reports the numerical esti-
mate of the freezing time 
 as a function of the dilution
parameter � and for different values of the dynamical param-
eter p �p=0 �circles�, p=1/3 �squares�, p=1/2 �diamonds�,
and p=1 �crosses��. As one can easily see, for p=1/3 and
p=0, 
 drastically changes around �d, increasing abruptly for
values of �	�d. For p=1/2 and for p=1 this drastic change
is not observed. This is understandable from the fact that
both values of p provide a bias towards paradise, while p
=1/3 corresponds to a random selection of one of the three
links of a triad as in the original RWS and p=0 would favor
the approach to the hell if it were a balanced state. The
simulations are performed over a system with L=103 vari-
ables. Moreover, each point stands for the average over 102

different networks and 102 different realizations per network
of the dynamics on such topologies. At the beginning of each
simulation the variables take the values 1 or 0 with the same
probability. The inset shows the relation between the time 
*

calculated using the standard RWS and the time 
 calculated
according to Eq. �47�. The almost linear relation �the dashed
line has a slope equal to 1� between 
* and 
 means that there
is no qualitative change between the two different ways of
counting the time.

Following the same argument as in �7�, we can specify for
the update event at time t the variation of the number of
unsatisfied clauses Mt

�u� as

FIG. 9. Time 
 for reaching a solution for a system of L
=1000 variables as a function of the ratio � and for different values
of the dynamical parameter p �p=0 �circles�, p=1/3 �squares�, p
=1/2 �diamonds�, and p=1 �crosses��. The pRWS performed for
p=1/3 shows a critical behavior around �s=1/3: for values of �
��s, 
 grows almost linearly with �, while it jumps to an expo-
nential growth with � for �	�s. The same is qualitatively true for
p=0, but the time 
 needed for reaching a solution increases more
slowly with respect to the case p=1/3 for �	�s. For p=1/2 and
p=1 there seems to be no drastic increment of 
 for �	�s. More-
over, the inset shows the dependence of 
*, the freezing time as
calculated in the standard RWS �7,8�, on the freezing time 
 calcu-
lated according to Eq. �47�. The almost linear dependence of 
* on

 �the dashed line has slope 1� explains that there is no qualitative
change if we describe the dynamical features of the system in terms
of 
 or 
* as time used by the simulations.
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�Mt
�u� = − �k�u�t� + 1� + k�s�t� = k� − 2k�u�t� − 1,

with �u the ratio of unsatisfied clauses over L, because, by
flipping one variable of an unsatisfied clause, all the other
unsatisfied clauses which share the same variable become
satisfied, while all the satisfied clauses containing that vari-
able become unsatisfied. In the thermodynamic limit L→�,
one can use Mt

�u�=L�u�t�. Moreover, the amount of time of
one update event is given by Eq. �47� so that we can write

�̇u�t� =
�u�t�

�
�k� − 2k�u�t� − 1� . �49�

Equation �49� has as stationary state �or a plateau� at

�u =
k� − 1

2k
. �50�

Therefore when the ratio � �that is the ratio of the number of
clauses over the number of variables� exceeds the critical
“dynamical” value

�d =
1

k
, �51�

the possibility of finding a solution for the problem drasti-
cally changes. This result was already found in �7,8�. While
for values of ���d we can always find a solution because
the plateau of Eq. �50� is always smaller or equal to zero, for
�	�d the solution is reachable only if the system performs a
fluctuation large enough to reach zero from the nonzero pla-
teau of Eq. �50�. In Fig. 10 we report some numerical simu-
lations for �u as a function of time for different values of p
��A� p=0, �B� p=1/3, �C� p=1/2, �D� p=1�, and for differ-
ent values of the dilution parameter � ��=0.3 �black, bot-
tom�, �=0.5 �red, middle�, �=0.85 �blue, top��. The numeri-

cal values �full lines� are compared with the numerical
integration of Eq. �49� �dashed lines�. They fit very well
apart from large values of t, for �=0.85 and for p=1/2 or
p=1. The initial configuration in all cases is that of an an-
tagonistic society �xi=0, ∀ i=1, . . . ,L�, while the number of
variables is L=104.

2. Clustering of solutions at �s

In order to study the transition in the clustering structure
of solutions at �s, we numerically determine the Hamming
distance between different solutions of the same problem,
starting from different random initial conditions on the same
network. More precisely, given a problem of L variables and
M clauses, we find T solutions �xi

r�i=1,. . .,L
r=1,. . .,T of the given prob-

lem. This means that we start T times from a random initial
configuration and at each time we perform a pRWS until we
end up with a solution. We then compute the distance be-
tween these T solutions as normalized Hamming distance
�normalized over the total number of mutual possible
distances�

�d� =
1

LT�T − 1� �
r,s=1

T

�
i=1

L

�xi
r − xi

s� . �52�

The numerical results for L=20 are reported in Fig. 11. We
average the distance over T=102 trials and over 102 different
problems �i.e., network topologies� for each value of �. As

FIG. 10. �Color online� Time behavior of the ratio �u of unsat-
isfied clauses for different values of p ��A� p=0, �B� p=1/3, �C�
p=1/2, �D� p=1� and for different values of the dilution parameter
� ��=0.3 �black, bottom�, �=0.5 �red, middle�, �=0.85 �blue,
top��. Numerical results of simulations �full lines� are compared
with the numerical integration of Eq. �49� �dashed lines� leading to
a very good fit in all cases, except for �=0.85 and for p=1/2 and
p=1. The initial configuration in all the cases is the one of an
antagonistic society �xi=0, ∀ i=1, . . . ,L�, while the number of vari-
ables is L=104.

FIG. 11. Normalized Hamming distance �d� �Eq. �52�� between
solutions as a function of the ratio � and different values of the
dynamical parameter p �p=0 �circles�, p=1/3 �squares�, p=1/2
�diamonds�, and p=1 �crosses��. For the standard RWS �p=1/3� the
distance drops down around the critical point �s. Different values of
p perform not-really-random walks and lead to effective values of
�s smaller than the former one. The inset shows the dependence of
�d� on the dynamical parameter p. As it is shown for different
values of � ��=0.3 �full line�, �=0.5 �dotted line�, and �=0.85
�dashed line�� the peak of the distance between solutions is for a
pRWS which is really random, that is for p=1/3. All the points
here, in the main plot as well as in the inset, are obtained for a
system of L=20 variables. Each point is obtained averaging over
102 different networks and on each of these networks the average
distance is calculated over 102 solutions. At the beginning of each
simulation the value of one variable is chosen to be 1 or 0 with
equal probability.
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expected for p=1/3 �squares� the distance between solutions
drops down around �s �actually it drops down before �s
because of the small number of variables�. For different val-
ues of p �p=0 �circles�, p=1/2 �diamonds�, and p=1
�crosses��, the pRWS is less random and �d� drops down
before �s �or at least before the point at which the case of
p=1/3 drops down�. In particular, if we plot �as in the inset�
the distance �d� as a function of p and for different values of
� ��=0.3 �full line�, �=0.5 �dotted line�, and �=0.85
�dashed line�� we see a clear peak in the distance �d� around
p=1/3. This suggests that a completely random, unbiased
RWS always explores a larger region in phase space, it leads
to a larger variety of solutions as expected.

3. Further thresholds in �

Differently from the general kS problem, the kXS prob-
lem is known to be always solvable �8� and the solution
corresponds to one of the balanced configurations as de-
scribed in Sec. III C for the all-to-all topology. Nevertheless,
the challenge here is whether the solutions can be found by a
local random algorithm like RWS. In the application of the
RWS it can happen that the algorithm is not able to find one
of these solutions in a “finite” time, so that the problem is
called “unsatisfied.” The notion is made more precise in �12�.
For practical reasons the way of estimating the critical point
�c that separates the SAT from the UNSAT region is related
to the so-called algorithmic complexity of the RWS. A pre-
scription for identifying this threshold was given by �7,8,17�.
Here we do not go into any detail, but summarize the results
we obtained for studying the analogous question in the vi-
cinity of �d. In general the ability of the algorithm for finding
the solution depends on �, p, L, and the waiting time tw. As
it turned out in our simulations, a choice of p�1/3 in the
pRWS can strongly improve the performance of the RWS
due to the tendency of increasing �p�1/3� or decreasing the
number �p	1/3� of negative links. In particular, as we have
seen in the former sections, for p�1/2 the pRWS ap-
proaches the configuration of the paradise for the largest
value of �= � L

k
� /L��c and in a time that scales as 
�L�, so

that there is no UNSAT region at all. If the bias goes in the
wrong direction, the performance gets worse, but remains
better than in the unbiased case of p�1/3.

As a further “threshold” in the dilution parameter we con-
sider the value of �, here called �m, above which the mean
field approximation applies that we used for deriving the
results in the all-to-all topology. By construction the “topol-
ogy” of a kS problem is completely random �for this reason
it is sometimes called explicitly the Random k-SAT prob-
lem�. Each of the L variables can appear in one of the �L
clauses with probability v= 1

L + 1
L−1 + ¯ + 1

L−k . In particular
for L�k one can simply write v� k

L . Then the probability Pr
that one variable belongs to r clauses can be described by the
Poisson distribution

Pr =
��k�r

r!
e−�k, �53�

with mean value �r�=�k and variance �r=��k. Pr is plotted
in Fig. 12, where the numerical results �symbols, r=0 �black

circles�, r=1 �red squares�, r=2 �blue diamonds�, and r�3
�violet crosses�� are compared to the analytical expectations
�lines, r=0 �black full line�, r=1 �red dotted line�, r=2 �blue
dashed line�, and r�3 �violet dotted-dashed line��.

If we start from an antagonistic society �all variables
false� the minimum value of the dilution �min needed to
reach the paradise �if p�1/2� is that all variables belong to
at least one clause. This means that P0�1/L, from which

�min =
ln L

k
. �54�

As we have shown in a comparison of the numerically mea-
sured values to the theoretical mean field predictions for the
stationary density �t��� of true variables, �min of Eq. �54�
provides already a good estimate for the onset of the mean
field regime. Moreover, it should be noticed from Fig. 13 that
for �	�min almost all variables belong to at least three
clauses. This fact allows the pRWS to explore a larger part
of configuration space. Let us assume that one variable be-
longs to less than three clauses: an eventual update event that
flips this variable �so that the one triad becomes balanced�
can never increase the number of unsatisfied clauses by frus-
trating other clauses it belongs to. This reminds us to the
situation in an energy landscape in which an algorithm gets
stuck in a local minimum when it never accepts a change in
the “wrong” direction, i.e., towards higher energy.

4. Effect of the dilution in an Erdös-Rényi network

Let us briefly translate the results we obtained so far for
diluted networks as a function of the dilution parameter �, to
diluted �social� Erdös-Rényi networks, for which the dilution
is parametrized by w, the probability for a randomly chosen
pair of nodes to be connected. Here we made the connection
explicit only for the case of k=3. The mean field description
and the results about the phase structure remain valid down

FIG. 12. �Color online� Probability pr that one variable belongs
to r clauses as function of the dilution parameter �. The symbols
stand for numerical results obtained over 103 different realizations
for L=128 variables �r=0 �black circles�, r=1 �red squares�, r=2
�blue diamonds�, and r�3 �violet crosses��. The lines stand for
analytical predictions of Eq. �53� �r=0 �black full line�, r=1 �red
dotted line�, r=2 �blue dashed line�, and r�3 �violet dotted-dashed
line��.
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to a certain degree of dilution, characterized by wm. This
threshold for the validity of the mean field description prac-
tically coincides with the criterion whether a single link be-
longs to at least three triads �for w	wm� or not �w�wm�. If
it does so, an update event can increase the number of frus-
trated triads. For w�wm, or more precisely w�wd�wm it
becomes easier to realize frozen configurations different
from the paradise. Isolated links do not get updated at all and
isolated triads can freeze to a “�”-“�” configuration. The
time to reach such a frozen configuration �in general differ-
ent from the paradise� grows then only linearly in the system
size. Also the solution space, characterized by the average
Hamming distance between solutions, has different features
below and above another threshold, called ws with wd�ws
�wm. Therefore one of the main differences between the
all-to-all and the sufficiently diluted topology are the frozen
configurations. For the all-to-all case we observed the para-
dise above pc for odd and even values of k and the hell for
even values of k below pc, because the probability to find a
two-clique-frozen configuration �different from paradise or
hell� was calculated to be negligibly small. For larger dilu-
tion, also other balanced configurations were numerically
found, as mentioned above, and the time passed in the nu-
merical simulations for finding these solutions followed the
theoretical predictions.

V. SUMMARY AND CONCLUSIONS

In the first part of this paper we generalized the triad
dynamics of Antal et al. to a k-cycle dynamics �1�. Here we
had to distinguish the cases of even values of k and odd
values of k. For all values of integer k there is again a critical
threshold at pc=1/2 in the propensity parameter. For odd k
and p� pc the paradise can never be reached in the thermo-

dynamic limit of infinite system size �as predicted by the
mean field equations which we solved exactly for k=5 and
approximately for k	5�. In the finite volume, in principle
one could reach a balanced state made out of two cliques �a
special case of this configuration is the “paradise” when one
clique is empty�. However, the probability for reaching such
type of frozen state decreases exponentially with the system
size so that in practice the fluctuations never die out in the
numerical simulations. For p	1/2 the convergence time to
reach the paradise grows logarithmically with the system
size. At p=1/2 paradise is reached within a time that follows
a power law in the size N, where we determined the k de-
pendence of the exponent. In particular, the densities of k
cycles with j negative links, here evolved according to the
rules of the k-cycle dynamics, could be equally well obtained
from a random dynamics in which each link is set equal to 1
with probability �� or equal to −1 with probability 1−��.
This feature was already observed by Antal et al. for k=3
�1�. It means that the individual updating rules which seem to
be “socially” motivated in locally reducing the social ten-
sions by changing links to friendly ones, end up with random
distributions of friendly links. The reason is a missing con-
straint of the type that the overall number of frustrated k
cycles should not increase in an update event. Such a con-
strained dynamics was studied by Antal et al. in �1�, but not
in this paper.

For even values of k, the only stable solutions are
“heaven” �i.e., paradise� and “hell” for p	1/2 and p�1/2,
respectively, and the time to reach these frozen configura-
tions grows logarithmically with N. At pc=1/2 other realiza-
tions of the frozen configurations are possible, in principle.
However, they have negligible probability as compared to
heaven and hell. Here the time to reach these configurations
increases quadratically in N, independently of k. This result
was obtained in two ways: either from the criterion to reach
the stable state when a large enough fluctuation drops the
system into this state �so we had to calculate how long one
has to wait for such a big fluctuation�. Alternatively, the re-
sult could be read off from a mapping to a Markov process
for diploid organisms, ending up in a genetic pool of either
all “�” genes or all “�” genes. The difference in the pos-
sible stable states of diploid organisms and ours consists in
two-clique stable solutions that are admissible for the even
k-cycle dynamics, in principle, however, such clique states
have such a low probability of being realized that the differ-
ence is irrelevant.

The difference in the exponent at pc and the stable con-
figurations above and below pc between the even and odd
k-cycle dynamics was due to the fact that “hell,” a state with
all links negative as in an antagonistic society, is a balanced
state for even k, not only by the frustration criterion of physi-
cists, but also according to the criterion of social scientists
�2�.

As a second natural generalization of the social balance
dynamics of Antal et al. we considered a diluted network.
Here we found a mapping of the k-cycle social balance dy-
namics of networks to a k-XOR-SAT �kXS� problem, that is
a typical satisfiability problem in optimization tasks. We also
traced a mapping between the social dynamical rules and the
Random-Walk SAT �RWS� algorithm, that is one approach

FIG. 13. Difference ��m���− �t���� between �t��� the theoretical
prediction for the stationary density of friendly variables �Eq. �14��
and the numerically measured value �m���, as a function of the
dilution parameter �. �m��� is obtained as the average of the density
of friendly links �registered after a waiting time T=200.0, so that is
effectively stationary� over 50 different problems and 50 different
pRWS for each problem. The results displayed here are obtained for
L=128 �open symbols� and L=256 �gray filled symbols� and for
different values of p �p=0 �circles�, p=1/3 �squares�, p=1/2 �dia-
monds�, p=1 �triangles��. The initial conditions are those of an
antagonistic society. The dashed lines are proportional to e−3�.
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for solving this problem in a random local way. As we have
shown, the diluted version of the three-cycle social dynamics
with propensity parameter p=1/3 corresponds to a 3XS
problem solved by the RWS algorithm in its standard form
�as used in �7,8��.

The kXS problem is always solvable like the k-cycle so-
cial balance, for which a two-clique solution always exists
due to the structure theorem of �2�, containing as a special
solution the so-called paradise. The common challenge, how-
ever, is to find this solution by a local stochastic algorithm.
The driving force, shared by both sets of problems, is the
reduction of frustration. The meaning of frustration depends
on the context: for the k-cycle dynamics it is meant in a
social sense as a reduction of social tension, for the kXS
problem it corresponds to violated clauses. The mathematical
criterion is the same. The local stochastic algorithm works in
a certain parameter range, but outside this range it fails. The
paradise is never reached for a propensity parameter p
�1/2, independently of k. Similarly, the solution of the kXS
problem is never found if the dilution parameter is larger
than �c, and the RWS algorithm needs an exponentially long
time already for �	�d, with �d��c.

We generalized the RWS algorithm, usually chosen for
solving the kSAT �kS� problem as well as the kXS problem,
to include a parameter p that formerly played the role of the
propensity parameter in the social dynamics �pRWS�. The
effect of this parameter is a bias towards the solution so that
�d, the threshold between a linear and an exponential time

for solving the problem, becomes a function of p. Problems
for which the pRWS algorithm needed exponentially long
for p=1/3, now become solvable within a time that grows
less than logarithmically in the system size for p	1/2 and
less than powerlike in the system size for p=1/2. Along with
the bias goes an exploration of solution space that has on
average a smaller Hamming distance between different solu-
tions than in the case of the 1

3RWS algorithm that was for-
merly considered �7,8�.

It would be interesting to generalize the social dynamics
to a true spin glass with variables assigned to both nodes and
links and to allow for a finite degree of frustration even in
the optimal solution.

Our paper has illustrated that the reduction of frustration
may be the driving force in common to a number of dynami-
cal systems. So far we were concerned about “artificial” sys-
tems like social systems and satisfiability problems. Next one
may search for natural networks whose evolution was deter-
mined by the goal of reducing the frustration, not necessarily
to zero degree, but to a low degree at least.

ACKNOWLEDGMENTS

It is a pleasure to thank Martin Weigt for drawing our
attention to random k -SAT problems in computer science
and for useful discussions during his visit at the International
Center for Transdisciplinary Studies at the International Uni-
versity Bremen.

�1� T. Antal, P. L. Krapivsky, and S. Redner, Phys. Rev. E 72,
036121 �2005�.

�2� D. Cartwright and F. Harary, Psychol. Rev. 63, 277 �1956�; F.
Harary, R. Z. Norman, and D. Cartwright, Structural Models:
An Introduction to the Theory of Directed Graphs �John Wiley
& Sons, New York, 1965�.

�3� F. Harary, Mich. Math. J. 2, 143 �1953–54�; F. S. Roberts,
Electronic Notes in Discrete Mathematics �ENDM� 2, 94
�1999�, http://www.elsevier.nl/locate/endm; N. P. Hummon and
P. Doreian, Soc. Networks 25, 17 �2003�.

�4� M. Sasai and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A.
100, 2374 �2003�.

�5� M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory
and Beyond �World Scientific, Singapore, 1987�.

�6� M. R. Garey and D. S. Johnson, Computer and Intractability:
A Guide to the Theory of NP-Completeness �Freeman, San
Francisco, 1979�.

�7� W. Barthel, A. K. Hartmann, and M. Weigt, Phys. Rev. E 67,
066104 �2003�.

�8� G. Semerjian and R. Monasson, Phys. Rev. E 67, 066103
�2003�.

�9� S. Cook, in Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing �Association for Computing Machinery,
New York, 1971�, p. 151; J. M. Crawford and L. D. Auton, in
Proceedings of the 11th National Conference on Artificial In-
telligence (AAAI-93) �AAAI Press, Menlo Park, California,
1993�, p. 21; B. Selman and S. Kirkpatrick, Science 264, 1297

�1994�.
�10� R. Monasson and R. Zecchina, Phys. Rev. Lett. 76, 3881

�1996�; R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman,
and L. Troyansky, Nature �London� 400, 133 �1999�; G.
Biroli, R. Monasson, and M. Weigt, Eur. Phys. J. B 14, 551
�2000�; M. Mézard, G. Parisi, and R. Zecchina, Science 297,
812 �2002�; M. Mezard, T. Mora, and R. Zecchina, Phys. Rev.
Lett. 94, 197205 �2005�; A. Braunstein, M. Mezard, and R.
Zecchina, Random Struct. Algorithms 27, 201 �2005�.

�11� F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Phys. Rev. E
63, 026702 �2001�; M. Mézard, F. Ricci-Tersenghi, and R.
Zecchina, J. Stat. Phys. 111, 505 �2003�.

�12� S. Cocco, O. Dubois, J. Mandler, and R. Monasson, Phys. Rev.
Lett. 90, 047205 �2003�.

�13� F. Heider, Psychol. Rev. 51, 358 �1944�; F. Heider, J. Psychol.
21, 107 �1946�; F. Heider, The Psychology of Interpersonal
Relations �John Wiley & Sons, New York, 1958�; S. Wasser-
man and K. Faust, Social Network Analysis: Methods and Ap-
plications �Cambridge University Press, New York, 1994�.

�14� S. Wright, Genetics 16, 97 �1931�; R. A. Fisher, The Genetical
Theory of Natural Selection �Clarendon Press, Oxford, 1930�.

�15� N. G. Van Kampen, Stochastic Processes in Physics and
Chemistry �North-Holland, Amsterdam, 2005�.

�16� P. Erdös and A. Rényi, Acta Math. Acad. Sci. Hung. 5, 17
�1960�; 12, 261 �1961�.

�17� U. Scöning, Algorithmica 32, 615 �2002�.

SOCIAL BALANCE AS A SATISFIABILITY PROBLEM OF… PHYSICAL REVIEW E 75, 026106 �2007�

026106-17


