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We derive an exact expression for the magnetization and the zero-field susceptibility of the Ising model on
a random graph with degree distribution P�k��k−� and with a boundary consisting of leaves, that is, vertices
whose degree is 1. The system has no magnetization at any finite temperature, and the susceptibility diverges
below a certain temperature Ts depending on the exponent �. In particular, Ts reaches infinity for ��4. These
results are completely different from those of the case having no boundary, indicating the nontrivial roles of the
leaves in the networks.
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I. INTRODUCTION

Recently, complex networks have been studied as models
to describe topologically complex real-world systems �1,2�.
So-called scale-free �SF� networks have been found in social
systems, in protein interaction networks, in the internet, and
in the worldwide web �3�. In a SF network the degree distri-
bution P�k�, where degree k is the number of edges con-
nected to a vertex, has a power-law decay P�k��k−�. In real
networks, the exponent � is usually in the range 2���3
�4�. Various processes taking place on SF networks, e.g.,
network failure and spread of infections, have been studied
to demonstrate that the behaviors on SF networks are far
from those on periodic lattices due to the existence of hubs,
that is, vertices having extremely high degree. Among them,
the cooperative behaviors and dynamics of the interacting
systems on such networks are of great interest �5–21�. So far,
the Ising model on SF networks has been investigated by
both analytical �5–11� and numerical methods �12–17� to
show that the critical behavior strongly depends on the ex-
ponent �.

In analyzing networks, it has been frequently assumed
that the cyclic paths can be ignored and the structure is re-
garded as treelike. On a treelike structure their cooperative
behavior critically depends on the number of leaves, that is,
vertices whose degree is 1. For example, the Ising model on
the Cayley tree and that on the Bethe lattice show different
critical behavior. The ferromagnetic Ising model on the Be-
the lattice has a transition temperature Tc �22� while that on
the Cayley tree has no magnetization at any finite tempera-
ture �23�. The aim of the present work is to investigate this
difference between the following two treelike structures on
SF networks: �i� a Cayley-tree-like structure where the depth
is finite and the tree is bounded by leaves, and �ii� a Bethe-
lattice-like structure where the depth is infinite and there is
no boundary. Dorogovtsev et al. �8� showed that the ferro-
magnetic Ising model on a SF network with the Bethe-
lattice-like structure remains in the ferromagnetic phase at
any finite temperature for ��3, while a phase transition ex-
ists at a finite temperature Tc for ��3, and its critical expo-

nents vary depending on the exponent �. On the other hand,
an analysis of a SF network with the Cayley-tree-like struc-
ture is still missing.

In this paper, we demonstrate the effect of leaf spins on a
SF network. We show that the cooperative behaviors of the
ferromagnetic Ising model on a SF network with a Cayley-
tree-like structure differ entirely from those with a Bethe-
lattice-like structure. We generalize the method by Stošić et
al. �24� to derive the exact representations for the magneti-
zation and the zero-field susceptibility. We show that the sys-
tem has no magnetization at any finite temperature even if
the exponent � is small, and the susceptibility diverges be-
low a certain temperature Ts which depends on �. In particu-
lar, Ts reaches infinity and the susceptibility is divergent for
any finite temperature ��4.

II. THE CONSTRUCTION OF THE SF CAYLEY TREE

The SF network with a Cayley-tree-like structure can be
derived from the configuration model �25�. The configuration
model allows one to sample graphs with a given degree se-
quence which will tend to the degree distribution P�k��k−�

�k�3� for large N. Correlation between degrees of vertices
in such a graph is absent. Now we choose a vertex randomly
as the root, select its first nearest neighbors, and say that
these vertices are on the first shell. We repeat the process to
create further the rth shell by adding the rth nearest neigh-
bors connecting to each vertex on the �r−1�th shell �Fig. 1�.

Now we cut the branches emerging from the vertices on
the nth shell to extract a subgraph, where the vertices on the
nth shell reduce to the leaves. The resulting subgraph is a
tree, since the whole graph has a locally treelike structure.
We call this graph a SF Cayley tree with radius n. If we take
the radius n as infinity and ignore the leaf spins on the
boundary, the SF Cayley tree reduces to the model Dorogovt-
sev et al. �8� analyzed, which we call a SF Bethe lattice. We
append the indices to the vertices as follows. We denote �i�
the root by i�0= �i0=1�, �ii� the vertices on the first shell by

i�1= �i�0 , i1�= �i0 , i1� where the number of index i1 is equal to

the number of branches emerging from the root i�0, �iii� the

vertices on the second shell by i�2= �i�1 , i2�= �i0 , i1 , i2� where

the number of index i2 with given i�1 is equal to the number
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of branches emerging from the vertex i�1, and so on. The
index of each vertex on the mth shell �1�m�n� is given by

i�m= �i0 , i1 , i2 , . . . , im�. The average number of vertices on the
mth shell is ��k�k−1�� / �k��m−1�k�. Here �¯� means the aver-
age with P�k�, e.g., �k�=�kP�k�.

Now we consider a ferromagnetic Ising spin system on a
SF Cayley tree with radius n. The Hamiltonian is

H = − J�
�ij�

SiSj − h�
i

Si, �1�

where J ��0� is the ferromagnetic interaction, h is the exter-
nal magnetic field, and Si �=±1� is the Ising spin variable on
the vertex i. The first sum is over all edges of the graph, and
the second one is over all vertices.

III. THE DERIVATION OF THE RECURSION RELATIONS

Stošić et al. derived the exact expression for the magne-
tization and the zero-field susceptibility of the Ising model
on the regular Cayley tree with arbitrary radius n by using
the recursion relations between the partition functions with
two consecutive radii �24�. We generalize their method to
obtain the magnetization and the susceptibility on the SF
Cayley tree with radius n. At first we consider the subtree

whose root is the vertex i�m. Note that, when the root vertex is

i�k, the radius of the subtree is n−k. We denote its partition
function, restricted by fixing the root spin into up and down,

by Z+�i�m� and Z−�i�m�, respectively. The recursion relations for
the partial partition functions of any two consecutive sub-
trees are expressed as

Z±�i�m−1� = y±1 �
i�m

C�i�m−1�

�x±1Z+�i�m� + x	1Z−�i�m�� , �2�

where x=exp�
J�, y=exp�
h�, and 
=1/T, T being the tem-

perature. Here �
i�m

C�i�m−1�
��

i�m

C�i�m−1�
� means that the product �the

sum� is over all vertices satisfying i�m�C�i�m−1�, where

C�a�� = 	i�m
i�m = �a� ,im�� . �3�

The strategy by Stošić et al. is �i� finding the recursion rela-
tions for the field derivatives of the partition functions, �ii�
taking the limit h→0, and �iii� then performing the iterations
to reach the thermodynamic limit. The recursion relations for
the field derivatives of the partition functions are

Zh
±�i�m−1� = ± y±1 �

i�m

C�i�m−1�

�x±1Z+�i�m� + x	1Z−�i�m��

+ y±1 �
i�m

C�i�m−1�

�x±1Zh
+�i�m� + x	1Zh

−�i�m��

�� �
j�m��i�m�

C�i�m−1�

�x±1Z+�j�m� + x	1Z−�j�m��

= Z±�i�m−1��±1 + �

i�m

C�i�m−1�
x±1Zh

+�i�m� + x	1Zh
−�i�m�

x±1Z+�i�m� + x	1Z−�i�m�



�4�

and

Zhh
± �i�m−1� = Zh

±�i�m−1��±1 + �
i�m

C�i�m−1�
x±1Zh

+�i�m� + x	1Zh
−�i�m�

x±1Z+�i�m� + x	1Z−�i�m�



− Z±�i�m−1� �
i�m

C�i�m−1� � x±1Zh
+�i�m� + x	1Zh

−�i�m�

x±1Z+�i�m� + x	1Z−�i�m�

2

+ Z±�i�m−1� �
i�m

C�i�m−1� � x±1Zhh
+ �i�m� + x	1Zhh

− �i�m�

x±1Z+�i�m� + x	1Z−�i�m�

 ,

�5�

where

Zh
±�i�m� =

�Z±�i�m�
��
h�

, Zhh
± �i�m� =

�2Z±�i�m�
��
h�2 . �6�

For a leaf spin, Z±�i�n�=y±1, Zh
±�i�n�= ±y±1, and Zhh

± �i�n�=y±1.
Thus, when we take the limit h→0, the following

relations are satisfied at any radius n: Z+�i�m�=Z−�i�m�,
Zh

+�i�m�=−Zh
−�i�m�, and Zhh

+ �i�m�=Zhh
− �i�m�. For the zero-field

case, it is sufficient to calculate the following recursion rela-
tions:

A�i�m−1� = 1 + t �
i�m

C�i�m−1�

A�i�m� , �7�

B�i�m−1� = �
i�m

C�i�m−1�

B�i�m� + �1 − t2� �
i�m

C�i�m−1�

A�i�m�2, �8�

and

FIG. 1. Example of a SF Cayley tree with radius n=3. We cut
branches emerging from the vertices on the third shell �dotted
lines�; thus the degree of the vertices on the third shell is 1.
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N�i�m−1� = 1 + �
i�m

C�i�m−1�

N�i�m� , �9�

where

A�i�m� =
Zh

+�i�m�

Z+�i�m�
, �10�

B�i�m� =
Zhh

+ �i�m�

Z+�i�m�
− �Zh

+�i�m�

Z+�i�m�

2

, �11�

and t=tanh�
J�. Here N�i�m� is the number of vertices of the

subtree whose root vertex is i�m. Finally we can obtain the
total magnetization mn

± and the susceptibility �n of the tree as

mn
±= ± �A�i�0�� / �N�i�0�� and �n=
�B�i�0�� / �N�i�0��, respectively.

IV. RESULTS

Detailed calculations are given in the Appendix. From the

recursion relations �7�–�9�, �A�i�0��, �B�i�0��, and �N�i�0�� are
evaluated as

�A�i�0�� = 1 + ct

ntn − 1


t − 1
, �12�

�B�i�0��
c�1 − t2�

=

2t2 + 
t2 − �t2 − 1

�
t − 1�2�
t2 − 1�

n − 1


 − 1

+
2
n−1t��t − 
2t − 
t + 
�

�
t − 1�2�t − 1�
tn − 1

t − 1

+
�� − 
�
nt2

�
t − 1�2�
 − 1�
�
t2�n − 1


t2 − 1

+
�
2 − ���t + 1�
n−1t2

�
 − 1��t − 1��
t2 − 1�
t2n − 1

t2 − 1
, �13�

�N�i�0�� = 1 + c

n − 1


 − 1
, �14�

where

c = �k�, 
 =
�k�k − 1��

�k�
, � =

�k2�k − 1��
�k�

. �15�

Consequently, the magnetization mn
+ and the susceptibility �n

of the Ising model on the SF Cayley tree with radius n have
the following expressions:

mn
+ = �1 + ct


ntn − 1


t − 1

��1 + c


n − 1


 − 1

 , �16�

�n = �
2t2 + 
t2 − �t2 − 1

�
t − 1�2�
t2 − 1�

n − 1


 − 1

+
2
n−1t��t − 
2t − 
t + 
�

�
t − 1�2�t − 1�
tn − 1

t − 1

+
�� − 
�
nt2

�
t − 1�2�
 − 1�
�
t2�n − 1


t2 − 1

+
�
2 − ���t + 1�
n−1t2

�
 − 1��t − 1��
t2 − 1�
t2n − 1

t2 − 1



�
c�1 − t2�

kBT ��1 + c

n − 1


 − 1

 . �17�

These results indicate that interacting systems on SF net-
works with the two treelike structures show entirely different
behaviors from each other in the thermodynamic limit
�Table I�.

In the limit n→�, the magnetization of the SF Cayley
tree becomes zero at any finite temperature in contrast to the
SF Bethe lattice. The finite SF Cayley tree, however, has an
extremely slow decay of magnetic ordering with increasing

TABLE I. Magnetization and susceptibility of the Ising model on tree like structures with radius
n→�.

Regular tree
Bethe-lattice-like structure
Regular Bethe lattice �22�

Cayley-tree-like structure
Regular Cayley tree �24�

P�k�=��k−z� m=0 for T�Tc m=0 at any T��0�
m�0 for T�Tc �→� below Ts

where tanh�J /Tc�=1/ �z−1� where tanh2�J /Ts�=1/ �z−1�

SF treelike network SF Bethe lattice �8� SF Cayley tree �this work�

P�k��k−� ��3 ��4

m=0 for T�Tc m=0 at any finite T

m�0 for T�Tc �→� below Ts

where tanh�J /Tc�=
�k�

�k�k−1��
where tanh2�J /Ts�=

�k�

�k�k−1��
��3 ��4

m�0 at any finite T m=0 at any finite T

�→� at any finite T
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system size, and has nonzero magnetization at low tempera-
ture even if at macroscopic size in the same way as the
regular Cayley tree �26� �Fig. 2�.

From Eq. �17�, we find the temperature at which � di-
verges: �i� for ��4, � diverges below Ts, where Ts is deter-
mined by tanh2�J /Ts�= �k� / �k�k−1��, in a similar way as in
the regular Cayley tree �27�; �ii� for ��4, � diverges at any
finite temperature due to the divergence of �.

Note that our expressions are not restricted within a
power-law degree distribution. If we consider the case P�k�
=��k−3�, our expressions recover those for the regular
Cayley tree �24�. On the other hand, by substituting
c=
= �k� and �= �k2� into Eqs. �16� and �17�, these expres-
sions become the magnetization and the zero-field suscepti-
bility of the Ising model on the Galton-Watson process hav-
ing a given distribution P�k�.

V. SUMMARY

We have derived exact representations for the magnetiza-
tion and zero-field susceptibility of the Ising model on a SF
Cayley tree to show that the interacting system has quite
different behavior depending on whether the networks are
bounded by leaves or not. The Ising model on the SF Cayley
tree has no magnetization at any finite temperature, and the
susceptibility diverges below a certain temperature Ts de-
pending on the exponent �. The temperature Ts is given by
tanh2�J /Ts�= �k� / �k�k−1�� for ��4, while Ts reaches infin-
ity for ��4. Thus the susceptibility is divergent at any tem-
perature for ��4.

In this paper, we replaced the vertices on the nth shell
with leaves. We expect that the leaves affect the cooperative
behavior on real SF networks, although there are not as many
leaves as in our network model. In particular, some effects of
leaves may appear in the dynamics of interacting systems.
For the regular Cayley tree, it is known that the ferromag-
netic Ising model has glassy behavior �28,29�. So far, it has
become clear that hubs give surprising effects on networks
while leaves have had less attention. Our results indicate the
possibility that the competition of hubs and leaves leads to a
variety of behaviors of interacting systems on SF networks.
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APPENDIX: THE CALCULATION OF THE RECURSION
RELATIONS

First, we calculate �A�i�0�� and �N�i�0�� from Eqs. �7� and

�9�. Starting from the leaves, we obtain recursively A�i�n�=1,

A�i�n−1�=1+ t�
i�n

C�i�n−1�
1, . . ., and

A�i�0� = 1 + t �
i�1

C�i�0�

1 + t2 �
i�1

C�i�0�

�
i�2

C�i�1�

1 + ¯ + tn �
i�1

C�i�0�

¯ �
i�n

C�i�n−1�

1.

�A1�

Now we take the average. ��
i�1

C�i�0�
1� is equal to the mean

number of vertices on the first shell �k��c, ��
i�1

C�i�0�
�

i�2

C�i�1�
1� is

equal to the mean number of vertices on the second shell

��k�k−1�� / �k���k��
c ,¯, and ��
i�1

C�i�0�
¯�

i�n

C�i�n−1�
1� is the

mean number of leaves 
n−1c. Thus we obtain

�A�i�0�� = 1 + ct + c
t2 + ¯ + c
n−1tn = 1 +

ntn − 1


t − 1
ct .

�A2�

Similarly, we find

�N�i�0�� = 1 +

n − 1


 − 1
c . �A3�

Second, we calculate �B�i�0�� from Eq. �8�. Starting from

the leaves, we obtain recursively B�i�n�=0, B�i�n−1�

= �1− t2��
i�n

C�i�n−1�
A�i�n�2, B�i�n−2�= �1− t2��

i�n−1

C�i�n−2�
�

i�n

C�i�n−1�
A�i�n�2

+ �1− t2��
i�n−1

C�i�n−2�
A�i�n−1�2 , . . ., and

FIG. 2. Magnetization �a� and zero-field susceptibility �b� of the Ising model on a finite SF Cayley tree with radius n=10, 50, and 100.
The degree distribution is P�k��k−� with �=2.7. The maximum degree is 40.
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B�i�0� = �1 − t2��
k=0

n−1

�
i�1

C�i�0�

¯ �
i�k+1

C�i�k�

A�i�k+1�2, �A4�

where

A�i�k+1�2 = �1 + t �
i�k+2

C�i�k+1�

1 + ¯ + tn−k−1 �
i�k+2

C�i�k+1�

¯ �
i�n

C�i�n−1�

1
2

.

�A5�

We first calculate �A�i�k+1�2�. In calculation of the average of
terms appearing in expanding the right-hand side of Eq.
�A5�, one should be careful in treating the average values

such as ��
i�q+1

C�i�q�
�

j�q+1

C�j�q�
1�. If i�q is equal to j�q, this average re-

duces to ��k2�k−1�P�k�� / �k�= ��k2�k−1��� / �k���, other-
wise this average reduces to 
2. For example, one finds the
average

� �
i�k+2

C�i�k+1�

�
j�k+2

C�j�k+1�

¯ �
i�k+p+1

C�i�k+p�

�
j�k+p+1

C�j�k+p�

1�
=

1


 − 1
��� − 
�
2p−1 + �
2 − ��
p−1� � f�p� .

�A6�

Now we can express �A�i�n−l�2� in terms of f�p� as

�A�i�n−l�2� =��1 + t �
i�n−l+1

C�i�n−l�

1 + ¯ + tl �
i�n−l+1

C�i�n−l�

¯ �
i�n

C�i�n−1�

1
�1 + t �
j�n−l+1

C�j�n−l�

1 + ¯ + tl �
j�n−l+1

C�j�n−l�

¯ �
j�n

C�j�n−1�

1
�
= 1 + t
 + t2
2 + t3
3 + ¯ + tl
l + t
 + t2f�1� + t3f�1�
 + t4f�1�
2 + ¯ + tl+1f�1�
l−1 + ¯ + tl
l + tl+1f�1�
l−1

+ tl+2f�2�
l−2 + ¯ + t2l f�l� =

2t2 + 
t2 − �t2 − 1

�
t − 1�2�
t2 − 1�
+

2t��t − 
2t − 
t + 
�
�
t − 1�2�t − 1�

�
t�l +
�� − 
�
t2

�
t − 1�2�
 − 1�
�
2t2�l

+
�
2 − ���t + 1�t2

�
 − 1��t − 1��
t2 − 1�
�
t2�l. �A7�

Last, we consider the average of B�i�0�,

�B�i�0�� = �1 − t2��
k=0

n−1� �
i�1

C�i�0�

¯ �
i�k+1

C�i�k� ��A�i�k+1�2�

= �1 − t2�c�
k=0

n−1


k�A�i�k+1�2� . �A8�

Thus substituting Eq. �A7� into Eq. �A8�, we get the final expression of �Bn�i�0��, i.e., Eq. �13�.
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