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Barabasi has shown that the priority-based scheduling rules in single-stage queuing systems �QS� generate
fat tail behavior for the task waiting time distributions �WTD�. These fat tails are induced by the waiting times
of very low priority tasks that stay unserved almost forever as the task priority indices are “frozen in time” �i.e.,
a task priority is assigned once for all to each incoming task�. Here, we study the new dynamic behavior
expected when the priority of each incoming task is time-dependent �i.e., “aging mechanisms” are allowed�.
For two classes of models, namely a population-type model with an age structure and a QS with deadlines
assigned to the incoming tasks, which is operated under the “earliest-deadline-first” policy, we are able to
extract analytically some relevant characteristics of the task waiting time distribution. As the aging mechanism
ultimately assigns high priority to any long waiting tasks, fat tails in the WTD cannot find their origin in the
scheduling rule alone, thus showing a fundamental difference between our approach and Barabasi’s class of
models.
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I. INTRODUCTION

In recent contributions Barabasi �1� and Vázquez et al.
�2,3� propose a simplified model of the human activity dy-
namics. These authors view the human activity as a decision-
based queueing system �QS� in which tasks to be executed
arrive �randomly� and accumulate before a server S—here S
stands for the processing action of the human operator. The
time required to process a task �i.e., the service time� is gen-
erally drawn from a probability distribution. In addition to
the usual features inherent to any QS, each incoming task is
endowed with a priority index �PI� expressing the urgency to
process the job. In this setting, �1–3� study the dynamics
arising when the service policy is not restricted to the usual
first-come-first-served �FCFS� rule but follows scheduling
policies based on PI’s. Under such priority-based scheduling
rules, it is shown that the timing of the tasks follows fat tail
probability distributions �i.e., the activity of the server exhib-
its bursts separated by long idle periods�. This “burst” char-
acter has to be contrasted with the ubiquitous Poisson behav-
ior, which arises when tasks are executed according to FCFS
or to purely random order scheduling rules. In this general
context, we shall distinguish between two types of dynamics:

�i� Service policies based on fixed �i.e., frozen in time�
priority indices. This case, which is considered in �1–3�, as-
sumes that the value a of the PI is fixed once for all. There-
fore, very low priority jobs are likely to never be served. To
circumvent this difficulty �1–3�, introduce an ad-hoc random
mechanism 0� p�1 in terms of which the limit p→1 cor-
responds to a deterministic scheduling strictly based on the
PI’s while in the other limit p→0 the purely random sched-
uling is working. In this setting, the waiting time distribution
�WTD� of the tasks before service exhibits asymptotically a
fat tail behavior. The main point of Barabasi’s contribution is
to show that PI-based scheduling rules alone can generate
fat tails in the WTD of unprocessed jobs.

�ii� Service policies based on time-dependent priority in-
dices. Here the priority index is time-dependent. This typi-
cally models situations in which the urgency to process a
task increases with time and a�t� will hence be represented
by increasing time functions. Clearly, scheduling rules based
on such time-dependent PI do offer new specific dynamical
features. They are directly relevant in several contexts, such
as the following

�a� Flexible manufacturing systems with limited resources.
Here a single server is conceived to process different types of
jobs but only a single type can be produced at a given time t
�i.e., this is the limited resource constraint�. The basic prob-
lem is therefore to schedule, in real time, the production for
matching the random demand arrivals for each type of item.
This can be optimally achieved by using time-dependent pri-
ority indices �Gittins’ indices�, which specify in real time the
type of production to be engaged �4�. Problems of this type
belong to a wider class referred to as the multi-armed bandit
problems in operations research.

�b� Tasks with deadlines. This situation can be idealized
by a queueing system in which each incoming item has a
deadline before which it definitely must be processed �5–7�.
In this case, to be discussed later in the present paper, we can
explicitly derive the lead-time profile of the waiting jobs
obtained under several scheduling rules, including the �opti-
mal� time-dependent priority rule known as the earliest-
deadline-first policy.

�c� Waiting time-dependent feedback queueing systems. In
queueing networks, priority indices based on the waiting
times can be used to schedule the routing through the net-
work. For networks with loops, such scheduling policies are
able to generate generically stable oscillations of the popula-
tions contained in the waiting room of the queues �8�.

In the context of QS, the waiting time probability distri-
bution �WTD� �i.e., the time the tasks spend in the queue
before being processed� is a central quantity characterizing
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the dynamics. It strongly depends on the arrival and service
stochastic processes—in particular to the distributions of the
inter-arrival and service time intervals. The first moments of
these distributions enable us to define the traffic load �ª �

�

�0 �i.e., the ratio between the mean service time 1
� and the

mean arrival time 1
� � and clearly the stability of elementary

QS is ensured when 0���1. Focusing on the WTD �1–3�
emphasized that heavy tails in the WTD can have several
origins, three of which are listed below:

�i� The heavy traffic load of the server, which induces
large “bursty” fluctuations in both the WTD and the busy
period �BP� of the QS. For QS with feedback control driving
the dynamics to heavy traffic loads, this allows us to generate
self-organized critical �SOC� dynamics �9�, and the resulting
fat tails distribution exhibits a power-law decay with expo-
nent −3/2.

�ii� The presence of fat tails in the service time distribu-
tion produces fat tails of the WTD, a property that here is
independent of the scheduling rule �10�. For completeness,
we summarize these recent results in Appendix A.

�iii� Priority index scheduling rules as discussed in �1–3�.
This paper focuses on case �iii�, but contrary to �1–3�, we

shall consider here the dynamics in the presence of age-
dependent priority indices. As might have been expected,
these aging mechanisms generate new behaviors that will be
explicitly discussed for two classes of models.

II. SCHEDULING BASED ON TIME-DEPENDENT
PRIORITY INDICES

The most naive approach to discuss the dynamics of QS
with scheduling based on time-dependent priority indices is
to think of a population model in which the members suffer
aging mechanisms that ultimately will kill them. Hence, we
may consider the population of a city in which members are
either born in the city or immigrate into it at a certain age
and finally die in the city. Assuming that the death probabil-
ity depends on each individual age, the study of the age
structure of the population exhibits some of the salient fea-
tures of our original QS. This is the class of models to be
discussed in Sec. II A. Later in Sec. II B, we shall return to
the original model of Barabási and consider a simple QS in
which each task waiting to be processed carries a deadline
�playing the role of a PI�, and as time flows these deadlines
steadily reduce—this implies a time dependence of the PI. At
each given time, the scheduling of the tasks follows the
“earliest-deadline-first” �EDF� policy, and given a queue
length configuration, we shall discuss the lead-time �lead
time is deadline - current time� profile of the tasks waiting to
be served.

A. Task population dynamics with time-dependent priority
indices

Consider a population of tasks waiting to be processed by
S and satisfying the following assumptions:

�i� An inflow of new tasks steadily enters into the queue-
ing system. Each task is endowed with a priority index �PI�
a, which indicates its degree of urgency to be processed. In

general, the tasks are heterogenous as the PI are different.
During the time interval �t , t+�t�, the number of incoming
jobs exhibiting an initial PI in the interval �a ,a+�a� is ex-
pressed by G�a , t��t�a.

�ii� Contrary to the situations discussed in �1�, an “aging”
mechanism affects directly the urgency to process a given
task. In other words, the priority index a is not frozen in
time, but a=a�t� monotonically increases with time t. For an
infinitesimal time increase �t, in the simplest case we shall
have a�t+�t�=a�t�+�t. Here we slightly generalize this
and allow inhomogeneous aging rates p�a��0 such that
a�t+�t�=a�t�+ p�a��t.

�iii� The scheduling rule depends on the PI of the tasks in
the queue, and we will focus on the natural policy “process
the highest PI first.”

�iv� At time t, M�a , t� counts the number of waiting tasks
with priority index a. Hence M�a , t��a is the number with PI
��a ,a+�a� from which it follows that the total workload
facing the human server S at time t is given by

L�t� = �
0

	

M�a,t�da . �1�

�v� In the time interval �t , t+�t�, the server S processes
tasks with an a-dependent rate ��a��t. Typically ��a� could
be a monotonically increasing function of a. The service rate
��a� depending explicitly on the PI a plays, therefore, an
effective role of service discipline.

The previous elementary hypotheses imply

M„a + p�a��t,t + �t…�a � M�a,t��a − ��a�M�a,t��a�t

+ G�a,t��t�a .

Dividing by �a�t, we obtain, in the limits �a→0 and
�t→0, the linear equation

�

�t
M�a,t� + p�a�

�

�a
M�a,t� + ��a�M�a,t� = G�a,t� . �2�

It is worthwhile to remark that the dynamics given by Eq. �2�
is closely related to the famous McKendrick’s age structured
population dynamics �11�.

Assuming stationarity for the incoming flow of tasks �i.e.,
G�a , t�=Gs�a��, from the linearity of Eq. �2� we obtain its
stationary solution,

M�a� = 
�a��C + �
0

a Gs�z�
p�z�
�z�

dz� , �3�

where


�z� = exp	− �z ��y�
p�y�

dy
 , �4�

with an integration constant C�	 still to be determined.
Assume that the PI attached to the incoming jobs does not
exceed a limiting value T, namely
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G�a,t� = I�a � T�Ĝ�a,t� ⇒ Gs�a� = I�a � T�Ĝs�a� ,

�5�

where I�a�T� is the indicator function. In other words, Eq.
�5� indicates that the newcoming jobs do not exhibit arbi-
trarily high PI’s.

This enables us to define

��T� ª �
0

	 Gs�z�
p�z�
�z�

dz = �
0

T Ĝs�z�
p�z�
�z�

dz �6�

and Eq. �3� reads

M�a� = �
�a��C + �
0

a Ĝs�z�
p�z�
�z�

dz� if a � T


�a��C + ��T�� if a � T .
� �7�

The asymptotic behavior of M�a� for a→	 depends only on

�a� �the square bracket terms are bounded by constants�
and therefore Eqs. �4� and �7� imply

M�a� � 
�a� � �e
−k
q

aq when
��a�
p�a�

 kaq−1 with q � 0,

1

ak when
��a�
p�a�


k

a
.

�8�

Equation �8� exhibits the following alternatives:
�a� For q�0 in Eq. �8�, the integral 0

	M�z�dz does not
exist. In this case, an ever-growing population of tasks accu-
mulates in front of the server and the queueing process is
exploding.

�b� For q�0, a stationary regime exists and in this case
the constant C�	 in Eq. �7� can be determined by solving

�
0

	

Gs�z�dz = �
0

	

M�z���z�dz , �9�

which expresses a global balance between the stationary in-
coming and outgoing flows of tasks.

�c� For q=0, which implies that
��a�

p�a� 
k
a , Eq. �8� produces

a power law with exponent k for the distribution M�a�, the
number of waiting tasks with PI a in the system. For T�	
and a→	, the fat tail of M�a� takes into account the long
waiting tasks, i.e., those having waited more than a−T inside
the system before being served. In the limiting case, for
which ��a�=�=const and p�a�=a �i.e., aging directly pro-
portional to time�, which leads to q=0 in Eq. �8�, the density
M�a� coincides with the WTD for a→	.

This population model shares several features with
Barabási’s model, namely �a� when a stationary regime ex-

ists, the function Ĝs�a�, which here plays the role of the
initial PI distribution in �1–3�, does not affect the tail behav-
ior given by Eq. �8�; �b� the scheduling rule here is implicitly
governed by the service rate ��a�, which itself depends on
time as the PI a=a�t� are time-dependent. Note that ��a�

directly influences the asymptotic behavior of Eq. �8�. In
particular, for case �c�, the tail exponent explicitly depends
on ��a�.

Besides the similarities, we now emphasize the important
differences between the present population model and the
model discussed in �1–3�:

�a� The service is not restricted to a single task at a given
time �i.e., the service resource is not limited�. Indeed ��a�
describes an average flow of service and hence several tasks
can be processed simultaneously �in the city population
model, the service corresponds to death and several individu-
als may die simultaneously�.

�b� While the fat tail in �1–3� is entirely due to the sched-
uling rule and therefore occurs even for QS far from traffic
saturation, this is not the case in the population model. In-
deed in this last case, fat tails are due to heavy traffic loads
for which the incoming flow of tasks nearly saturates the
server capacity �this is implied by q=0 in Eq. �8��—for
lower traffic loads arising when q�0, the fat tail in Eq. �8�
disappears.

B. Stochastic dynamics: Real-time queueing dynamics

In this section, we will use the results of the real-time
queueing theory �RTQS�, pioneered in �5�, to explore situa-
tions in which the incoming jobs have a deadline—this prob-
lem was already suggested in �1�. Based on �5–7� and �12�,
let us first recall the basic hypotheses and the relevant results
of RTQS’s. Consider a general single-server QS with arrival
and service being described by independent renewal pro-
cesses with average 1

� and 1
� , respectively, and finite vari-

ances for both renewal processes. Each incoming task arrives
with a random hard time relative deadline D drawn from a
PDF G�x� with a density g�x�,

Prob�0 � D � x� = G�x� ,

with average �D�,

�D� = �
0

	

�1 − G�x��dx = �
0

	

xg�x�dx .

At a given time t, we define the lead time L by

L = D − t . �10�

Assume now that the lead time L plays the role of a priority
index and the service is delivered by using the earliest-
deadline-first �EDF� rule with preemption �i.e., the server
always processes the job with the shortest lead time L�. Pre-
emption implies that whenever an incoming job exhibits a
shorter L than the one currently in service, this incoming job
is processed before �i.e., preempts� the currently engaged
task, which postpones service. The EDF rule directly corre-
sponds to the deterministic policy �i.e., p=0,�=0 in the
original Barabási’s contribution �1��.

At a given time, one can define a probability
distribution corresponding to the lead-time profile �LTP�,
F�x�ªProb�−	 �L�x�, of the jobs waiting in the QS. The
LTP specifies the repartition of tasks having a given L at
time t. Knowing the queueing population Q at a given time,
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it is shown in �7� that for heavy traffic regimes, the LTP can,
in a first-order approximation scheme, be expressed by a
simple analytical form. Indeed, following �7�, let us define a

frontier F̂�Q��0 as the unique solution of the equation

Q

�
= �

F̂�Q�

	

�1 − G�x��dx, �x � �l, 	 � � R+� . �11�

Let now define the frontier F�Q� as

F�Q� = �F̂�Q� when Q � Q*,

��D� −
Q

�
� � l when Q � Q*,� �12�

with Q* being defined by F̂�Q*�= l, with l defined in Eq.
�11�. Two regimes can occur.

�a� Jobs served before deadline. When �D��
Q
� and there-

fore F̂�Q�=F�Q�, the LTP cumulative distribution F�x� takes
the form �see Fig. 1�

F�x� = �0 when x � F�Q� ,

1 −
�

Q��x

	

�1 − G����d�� when 0 � F�Q� � x .�
�13�

�b� Jobs served after deadline. When F�Q�= ��D�− Q
�

�
�0, the LTP cumulative distribution F�x� takes the form �see
Fig. 2�

F�x� =�
0 when x � �D� −

Q

�
� 0,

1 −
��D�

Q

l − �D� +
Q

�

�x − �D� +
Q

�
� when �D� −

Q

�
� x � l ,

1 −
�

Q	�x

	

�1 − G����d�
 when l � x .

�14�

Remark. The alternative regimes given by Eqs. �13� and
�14� can be heuristically understood by invoking the Little
law, which connects the average queue length �Q� with the
average waiting time �W� �13�,

�Q� = ��W� , �15�

a result independent of the scheduling policy. In view of Eqs.
�11� and �15�, one obviously suspects that the LTP strongly

depends on the sign of the difference �D�−
�Q�

� = �D�− �W�.
Intuitively, when �W� exceeds �D�, we expect, in the average,
that processed jobs will be delivered too late, and conversely
when �W�� �D� jobs will be processed before their deadline.

While the above heuristic arguments is strictly valid only for
the averages, �5–7� shows that in heavy traffic regimes, it
holds also for the LTP given in Eqs. �13� and �14�.

Assuming that the arriving tasks have positive deadlines,
the LTP given by Eqs. �13� and �14� imply the following. �a�
If the left-hand support of the LTP is negative, then a job
entering into service is already late �case of Eq. �14��; see
Fig. 2. �b� If the left-hand support of the LTP is positive then
a job enters into service with a positive lead time �case of Eq.
�13��; see Fig. 1. Accordingly, it is likely that the tasks will
be completed before the deadline expires. �c� The critical
value Q*=��D�, for which F�Q*�= l, corresponds to a queue
length for which customers are likely to become late. Choos-

FIG. 1. Qualitative sketch of the probability density of the lead

time profile f�x�=
dF�x�

dx when F�Q��0.

FIG. 2. Qualitative sketch of the probability density of the lead

time profile f�x�=
dF�x�

dx when F�Q��0.
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ing Q=Q*, we cannot expect lateness to disappear com-
pletely, but for Q�Q* lateness will be strongly reduced, a
behavior clearly confirmed by simulation experiments �7�
and �12�. �d� For deadline distributions G�x� with fat tails, it
follows from Eqs. �13� and �14� that the LTP also exhibits a
fat tail.

1. “First come first served” (FCFS) scheduling policies

Choosing the deadline probability density as g�x�=��x�
�i.e., zero deadline�, the EDF scheduling policy directly co-
incides with the FCFS rule. For this case we have Q*=0, and
Eq. �12� implies

F�Q� = �F̂�Q� = 0 when Q � 0,

−
Q

�
when Q � 0.

�16�

Hence the LTP density given by Eq. �13� is merely the

uniform probability density U�− Q
� ,0� ��− Q

� ,0� being its
support�. This expresses the fact that in the heavy traffic
regime �=� /��1, the waiting time behaves as
Q� � 1

�
��Q� � 1

�
� leading to a LPT linearly growing

with Q. For general G�x�, the LTP associated with a
FCFS scheduling rule will be given by the convolution
of the deadline distribution G�x� with the uniform distribu-
tion U�− Q

� ,0�. Indeed, adding the task deadlines with
the time spent in the queue, we recover the task lead
time. Therefore, in the heavy traffic regime and for
a given queue length Q, one explicitly knows the
LTP’s for both the EDF and the FCFS scheduling
policies, thus enabling us to explicitly appreciate their
respective characteristics. In particular, using Eqs. �13� and
�14�, one can conclude that for a given queue length
Q, with the FCFS scheduling rule and the associated LTP
F�x� being theconvolution of G�x� with the U�− Q

� ,0�, we
obtain

F�x� =�
0 when x � −

Q

�
,

�

Q
�

−�Q/��

x �G�� +
Q

�
��d� when −

Q

�
� x � 0,

� +
�

Q	�0

x �G�� +
Q

�
� − G����d�
 when x � 0,

� �17�

where the constant � is given by

� =
�

Q
�

−�Q/��

0 �G�� +
Q

�
��d� .

Equation �17� allows us to emphasize the following features:
�i� When the left-hand support of the deadline distribution

G�x� is larger than Q
� , the left boundary of the support of F�x�

is larger than 0 and therefore the jobs experience no delay
when entering into service.

�ii� If the left-hand support of G�x� is smaller than Q
� , then

it may happen that the LTP exhibits a negative left-hand
support under the FCFS policy and a positive left-hand sup-
port under the EDF scheduling rule. Hence in this last situ-
ation, the FCFS policy would deliver tasks late while the
EDF tasks will be processed in due time. This fact explicitly
confirms the intuition that EDF is indeed an efficient policy.
It has been shown that the EDF scheduling rule is optimal for
minimizing the number of jobs processed after the deadline
�14�.

�iii� If G�x� exhibits a fat tail for x→	, that will also be
the case for the LTP regardless of the scheduling rule used.
This can be directly verified from Eq. �17� by studying the

LTP density f�x�=
dF�x�

dx for x→	. We have

f�x� =
�

Q
�G�x +

Q

�
� − G�x�� for x → 	 ,

which for G�x��1−x−q and for Q
� �const implies that

f�x� � x−�q+1� for x → 	 . �18�

Hence, the LTP inherits the fat tail property of G�x� even
when using the optimal EDF scheduling rule—a fully ex-
plicit illustration involving the Pareto probability distribution
is given in Appendix B.

The results obtained for the LTP enable us to get
asymptotic properties of the waiting time distribution
�WTD�. Indeed, assume a heavy traffic regime with the EDF
scheduling policy. Assume further that for a given queue
length, some jobs are served too late �i.e., the left boundary
of the LTP is negative�. As under the EDF rule the more
urgent jobs are always served first, the waiting times of the
last jobs in the queue necessarily exceed their deadlines.
Therefore, when the deadline distribution exhibits a fat tail,
so will the WTD distribution. Note that while the EDF policy
decreases, compared with the FCFS rule, the number of jobs
served after their deadline, it cannot get rid of the fat tail of
the WTD, which is due to the fat tail of G�x�. This result is
fundamentally different from the situation that is valid for
the frozen in time PI models discussed in �1–3�, where the
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fat tail behavior does not depend on G�x� itself. This can be
heuristically understood as, in �1–3�, the fat tail is mainly
due to the low priority jobs, which, as no aging mechanism
occurs, are likely to never be served. Note that in �1–3�,
stable queueing models �i.e., those for which the traffic �
�1� and fat tails of the WTD disappear under a FCFS sched-
uling rule. Indeed without priority scheduling, the WTD al-
ways follows an exponential asymptotic decaying behavior.
In the presence of time-dependent PI, all tasks do finally
acquire a high priority and this aging mechanism precludes
the formation of a fat tail solely due to the scheduling rule.
Accordingly, in the presence of aging PI, the appearance of
WTD with fat tails is due to G�x�.

2. Some remarks about human resources and work organization

The results for the LTP derived in the preceding section
can be directly measured on actual queueing systems �QS�.
Consider the queue content of a single-stage QS. Assume
that at a given time, Q is the observed queue content, and at
this instant take a snapshot of the lead time associated with
each waiting item and construct the associated LTP �i.e., the
histogram of the observed lead times�. In heavy traffic re-
gimes �i.e., typically 0.95���1 leading to stationary aver-
age queue lengths �

1−� � and under the EDF scheduling policy,
the LTP will approximately be given by Eqs. �13� and �14�.
Actual simulation experiments are reported in �5–7� and
�12�, where an excellent agreement between measured data
and theory is observed.

From the human activity viewpoint, the explicit expres-
sions of the LTP obtained both for the FIFO and EDS poli-
cies show clearly that organizing the work scheduling is ex-
tremely important. As an illustration, consider a situation in
which the deadline distribution G�x� follows an exponential
law:

G�x� = 1 − e−�x ⇒ �D� =
1

�
. �19�

For this situation, we compare two different organization
policies.

a. EDF scheduling policy. Introducing Eq. �19� into Eq.

�11�, we obtain F̂�Q�= −1
� log� �Q

�
� and with l=0 we have Q*

= �

� . This enables us to write Eq. �12� as

F�Q� = �
− 1

�
log��Q

�
� when Q �

�

�
,

1

�
−

Q

�
when Q �

�

�
.� �20�

When F�Q��0 �i.e., the upper line in Eq. �20��, Eq. �13�
implies

F�x� = �0 when x � F�Q� ,

1 −
�

�Q
e−�x when x � F�Q�

�21�

and when F�Q��0 �i.e., the lower line in Eq. �20��, Eq. �14�
yields

F�x� =�
0 when x � F�Q� ,

1 −
�

�Q
�1 − �x� when F�Q� � x � 0,

1 −
�

�Q
e−�x when 0 � x .

�22�

b. FIFO scheduling policy. With G�x� given by Eq. �19�,
the result given in Eq. �17� reads

F�x�

=�
0 when x � −

Q

�
,

1 +
�x

Q
−

�

�Q
�1 − e−��x+ Q

� �� when −
Q

�
� x � 0,

1 −
��1 − e− �Q

� �
�Q

e−�x when x � 0.
�

�23�

Comparing Eqs. �21� and �23�, we conclude that in a heavy
traffic regime, for a given work load Q, the use of EDF
enables us to process tasks in due time with a high probabil-
ity while the naive FIFO policy generates large delays. Spe-
cifically, when Q�

�

� , the EDF policy guarantees that most
jobs enter into service before the deadline �see Eq. �20�� and
will therefore be served before deadline, with a high prob-
ability. On the contrary, the FIFO policy result given in Eq.
�23� �i.e., obtained for x=0 in the last line of Eq. �23�� shows
that a proportion of 1− ���1−e−�Q/�� /�Q� jobs enter the ser-
vice with delays and will therefore be late.

As far as human resources are concerned, this simple
model enables us to quantify the importance of adopting per-
formant scheduling policies to respond to the “burnout”-
generating challenge: deliver more in less time with fewer
resources. Along the same lines, one of the key rules to avoid
burnout is to learn to say no to new incoming tasks if the
queue length exceeds a threshold. In our modeling frame-
work, the critical threshold does depend closely on the level
Q*, above which lately served tasks �and hence complaints�
are unavoidable.

III. CONCLUSION AND SUMMARY

There are several possibilities to discuss analytically the
scheduling of tasks in QS with time-dependent priority indi-
ces and to infer the existence of fat tails for the asymptotic
behavior of the resulting WTD. In this paper, we propose two
distinct models in which an explicit analysis can be devel-
oped. Our first model is directly inspired by the study of age
classes in population dynamics for which the mortality rate
increases with the age of the individuals. In this context,
identifying the service of the QS with the death of an indi-
vidual, this dynamics is closely related to the scheduling
based on PI, the indices here being the age of the individuals,
and the immigration with different ages plays the role of
incoming tasks with different priorities. For this class of dy-
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namics, it is straightforward to show that fat tails of the
WTD can develop on the onset of stability of the population
model. As in the original Barabási model, the tail behavior of
the WTD does not depend on the nature of the PI but only on
the scheduling rule �corresponding in the population model
to the mortality rate�. In our second modeling ansatz, which
is closer to Barabási’s original idea, we consider a classic QS
in which the scheduling rule is based on the deadlines at-
tached to each incoming task. As time flows, the deadlines
reduce and hence the waiting tasks acquire a higher priority
to be processed. In the heavy traffic limit, i.e., for regimes
where the law of large numbers dominates, it is possible to
derive analytically the lead-time profile �lead time equals
deadline minus the time elapsed in queueing� of the waiting
tasks and from this to get information on the asymptotic
behavior of the associated WTD. In this case, and contrary to
the conclusions made in �1–3�, the scheduling rule alone can-
not generate fat tails in the WTD. Fat tail in �1–3� are due to
low-priority jobs that are likely to never be served. This pos-
sibility disappears if time-dependent PI are introduced as,
due to aging, initially low priority tasks do acquire, with
time, high priorities and hence will not stay unprocessed for-
ever. This precludes the formation of fat tails in the WTD.
We finally observe that, in this second class of models, the
only possibility to generate fat tails is to feed the QS with
task deadlines drawn from a fat tail distribution.
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APPENDIX A: WAITING TIME DISTRIBUTIONS FOR QS
WITH FAT TAIL SERVICE TIMES

Let us reproduce here a result recently obtained by �10�.
Theorem 1. Assume that the �random� service time in an

M /G /1 QS is drawn from a PDF with a regularly varying
tail at infinity with index �� �−1,−2� �regularly varying with
index �� �−1,−2�⇒ fat tail with index �� �−1,−2��. For
this range of asymptotic behaviors of the PDF, the first mo-
ment � of the service exists. Assume further that the service
is delivered according to a random order discipline. Then the
waiting time distribution WROS exhibits a fat tail with index
�1−��� �−1,0� and, more precisely, we can write

Prob�WROS � x�  C
�

1 − �

h��,��
���2 − ��

x1−�L�x� , �A1�

where ��1 is the traffic intensity, � is the average service
time, L�x� is a slowly varying function, and

h��,��: = �
0

1

f�u,�,��du ,

with

f�u,�,��: =
�

1 − �
� �u

1 − �
��−1

�1 − u�1/�1−��

+ �1 +
�u

1 − �
��

�1 − u��1/�1−���−1.

The fat tail behavior given in Eq. �A1� is therefore entirely
inherited from the fat tail behavior of the service and is not
affected by any reduction of the traffic intensity �. Note also
that a change of the scheduling rule cannot get rid of this fat
tail behavior. This point can be explicitly observed in
�13,15�, where it is shown that for the previous M /G /1 QS
with a random order service �ROS� service discipline, one
can prove that

Prob�WROS � x�  h��,��Prob�WFCFS � x� for x → 	 ,

�A2�

from which we directly observe that the fat tail in the
asymptotic behavior is not altered by a change of the sched-
uling rule.

Note finally that for the M /M /1 QS �i.e., exponential
service distributions and hence no fat tail�, �16� shows that
the random order service scheduling rule yield

Prob�WROS � x�  C�x−5/6e−�x−�x1/3
for x → 	 ,

�A3�

with

C��� = 22/33−1/2
5/6�17/12 1 + �1/2

�1 − �1/2�3 exp	1 + �1/2

1 − �1/2
 ,

� = ��−1/2 − 1�2 and � = 3�


2
�2/3

�−1/6,

which has to be compared with the FCFS scheduling disci-
pline, which for the same M /M /1 QS reads �13�

Prob�WFCFS � x� =
1

�
�1 − ��e−�1/���1−��x. �A4�

While the detailed behaviors given by Eqs. �A3� and �A4�
clearly differ, they both share, in accord with �1�, an expo-
nential decay.

APPENDIX B: DEADLINE DRAWN FROM PARETO
DISTRIBUTION

Here, we focus on

G�x� = �0 when x � B ,

1 − �B

x
���−1�

when x � B, � � 1, � �B1�

which has no moment of order ��−1. For ��2, we have
�D�=� �−1

�−2
�B. Using Eq. �12� with l=B, which implies Q*

= �B
�−2 , we have
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F�Q� = �F̂ = B� B�

Q�� − 2��
�1/��−2��

when Q �
�B

� − 2
,

�� − 1

� − 2
�B −

Q

�
when Q �

�B

� − 2
.�
�B2�

Using Eqs. �13� and �14�, the LTP distribution reads

Q �
�B

� − 2
⇒ F�x�

=�
0 when x � F�Q� ,

1 −
�

Q
�� − 1

� − 2
B − x� when F�Q� � x � B ,

1 −
B�

Q�� − 2�
�B

x
��−2

when x � B , �
�B3�

Q �
�B

� − 2
⇒ F�x�

= �0 when x � F�Q� ,

1 −
B�

Q�� − 2�
�B

x
��−2

when x � F�Q� . � �B4�

Equations �B3� and �B4� exhibit a fat tail with power �−2.
Note that Eq. �B4� implies that for ��2 and for Q

� �
B

��−2� ,

the EDF scheduling policy part of the tasks enters into the
service before the due date expired. Finally, note also that for
��2, no moments exist for the deadline distribution, hence
the theory �7� cannot be applied directly. We conjecture that
for these regimes, no scheduling rule will be able to deliver
tasks in due time.
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