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Flow due to a commercially available vibrating quartz fork is studied in gaseous helium, He I and He II,
over a wide range of temperatures and pressures. On increasing the driving force applied to the fork, the drag
changes in character from laminar �characterized by a linear drive vs velocity dependence� to turbulent �char-
acterized by a quadratic drive vs velocity dependence�. We characterize this transition by a critical Reynolds
number Recr

� =Ucr� /�, where Ucr is the critical velocity, � stands for the kinematic viscosity, �=�2� /� is the
viscous penetration depth, and � is the angular frequency of oscillations. We have experimentally verified that
the corresponding scaling Ucr���� holds in a classical viscous fluid over two decades of �.
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The vibrating quartz tuning fork �Fig. 1� represents an
easy to use, robust, cheap, and widely available tool to gen-
erate and probe an important class of flows—oscillating
boundary layer flows, especially under cryogenic conditions
�1�. Commercially produced piezoelectric forks—frequency
standards �215=32 768 Hz� for watches—are supplied by
various producers �2� in a cylindrical vacuum-tight metal can
that for fluid dynamical applications has to be entirely or
partly removed. In this work, we use them to study one par-
ticular feature of an oscillating boundary layer flow—its
transition from the laminar to the turbulent drag regime.

The bare fork, its typical surface roughness, and the elec-
trical scheme used for measurements are shown in Fig. 1.
The fork is excited with an ac voltage UD=U0 cos��t�,
where � is the angular frequency of oscillations. The observ-
able quantity is a current owing to the piezoelectric effect
I=aU measured by the SR 830 lock-in amplifier, which is
proportional to the derivative of the fork deflection, i.e., its
velocity U. For calibration, one needs to find the proportion-
ality constant a. We use the vacuum measurements of the
linewidth �� obtained by slowly sweeping the drive fre-
quency across the resonance at liquid-nitrogen ��78 K� or
liquid-helium ��4.2 K� temperature, at which the flow is
then probed. As explained in detail in Ref. �1�,
a2=2m�� /Re, where m is the mass of one fork’s leg and Re
denotes its equivalent electrical resistance. The driving force
per one leg of the fork is F=aU0 /2.

We have shown �1� that subject to a low drive, within a
laminar regime, the resonance frequency f0 of the fork of
density �f and full width of the Lorentzian absorption curve
�f at half height �see an example of typical absorption and
dispersion curves in the inset of Fig. 2� depend on the fluid
density � and dynamic viscosity � as
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Here V=L3L2L1 is the volume of one fork’s leg of length L1
and rectangular cross section L3L2, S=2�L3+L2�L1. Equa-

tions �1� and �2� ignore the vacuum linewidth �at low tem-
perature typically �fvac�0.05 Hz��f �1–10 Hz� and ac-
count fairly well for the behavior of the vibrating fork in
fluids with known � and � if �, B, and C are determined as
fitting parameters �3�.

The main result which we present here is our experimen-
tal observation of the transition from the laminar drag regime
�characterized by the driving force F�U, where U is the
peak velocity of the fork; f0	const; �f 	const; in accord
with Eqs. �1� and �2�� to the turbulent drag regime �charac-
terized by F�U2� in an oscillatory boundary layer flow �4�.

The vibrating fork is an ideal tool for our investigations in
that the same fork can be used in a rich variety of classical
and quantum working fluids. Here we use 4He, offering three
remarkable fluids of interest, primarily due to their extremely
low values of kinematic viscosity, �=� /�, lowest of all
known substances. Cryogenic helium gas in addition to its
very low viscosity also allows an unprecedented flexibility,
as its fluid properties can be easily tuned over many orders of
magnitude by varying the temperature and/or pressure. Nor-
mal liquid helium �He I� is a Navier-Stokes fluid having nor-
mal boiling point at 4.2 K and existing �along the saturated
vapor line, SVP� down to T
�2.17 K, below which it be-
comes superfluid and is usually referred to as He II. Proper-
ties of 4He are well known �5,6� and are easily tuneable by
adjusting temperature and pressure in situ in the same pres-
sure cell.

With cryogenic working fluids, such as He I or He II, care
must be taken in order to prevent the extremely sensitive
fork �typically Q�105–106 in vacuum at low temperature�
from gathering solid particles of air or other contaminants.
We therefore start measurement cycles with liquid helium
under high pressure in the cell, so that for any subsequent
measurement the amount of fluid in the pressure cell is either
kept constant or decreases.

Our experimental protocol is based on recording families
of resonant curves in various working fluids �i.e., in helium
at various temperature and pressure� over six orders of mag-
nitude of the drive—for such a wide dynamical range we
need an additional attenuator and a step-up transformer. As
shown in Fig. 2, on increasing the drive the Lorentzian shape
of the absorption becomes distorted and the point of maxi-
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mum response fmax shifts towards lower frequency �7�.
In a steady classical flow past a submerged object, transi-

tion from laminar to turbulent drag occurs at some critical
value of Reynolds number Recr=Ucr� /�, where Ucr denotes
the critical flow velocity and � is a characteristic size of the
object �8�. In a viscous flow due to an oscillating submerged
body of the angular frequency of oscillation �=2	f a new
important length scale �=�2� /�=�2� /�� of the viscous
penetration depth emerges. If ��� and, additionally, the
Reynolds number U� /� is small, then the flow at any given
instant can be regarded as steady—as if the body were mov-
ing uniformly with its instantaneous velocity. If, on the other
hand, ��� and the amplitude of motion U /���, then the
Reynolds number need not be small in order to neglect the
nonlinear term in the Navier-Stokes equation. In a thin layer
near the surface of the body the flow is rotational but in the
rest of the fluid it is potential �9�.

We suggest that in this case the transition from laminar to
turbulent drag ought to be characterized by a critical Rey-

nolds number based on the penetration depth:

Recr
� = Ucr�/� . �3�

It immediately follows that the critical velocity ought to
scale as Ucr����.

For full description of oscillatory flows, besides the Rey-
nolds number one needs to define an additional dimension-
less number such as the Strouhal number St=U� /� �9�,
where �=2	 /� is a characteristic time. Note that if one as-
sumes that the characteristic length scale is the penetration
depth, Reynolds and Strouhal numbers become equal �except
for a numerical constant of 	�. Consequently, the crossover
from the laminar to turbulent drag can be described by the
Reynolds number Recr

� alone.
Note that with our quartz tuning fork oscillating at about

32 kHz �despite covering six orders of magnitude of F re-
sulting in five orders of magnitude of U� we always operate
in the limit U /��20 
m� � 	400 
m���4.3 
m. The
velocity when the amplitude of oscillation would reach the
thickness of the fork’s leg would be U
80 m/s and cannot
be reached in practice—the fork mechanically breaks at ve-
locities of order of a few m/s �10�.

In most cases, however, the attainable velocity of the fork
is high enough to comfortably observe the transition from
laminar to turbulent drag regime �see Fig. 3�. It is clearly
marked as a change in the velocity vs drive slope as well as
by the onset of increase in observed �f or an onset of de-
crease of fmax. Experimentally, we define the critical velocity
Ucr as a crosspoint of fitted linear and square-root velocity vs

FIG. 1. The micrograph of the quartz tuning fork with the detail
of its surface showing the typical surface roughness and the princi-
pal electrical circuitry used for measurements.

FIG. 2. �Color online� Left: The in-phase resonant response of
the driven quartz fork vs applied frequency measured for various
drive voltage levels �in mVrms� as indicated. The solid curves are
Lorentzian fits to the data. The inset shows both absorption and
dispersion curves for the drive level of 290 mVrms.

FIG. 3. �Color online� Transition from laminar to turbulent drag
regime as detected by the vibrating quartz fork A2 in He I at 4.2 K
and 18.6 bars ���, in He II at SVP at 1.37 K���, 1.61 K ���,
2.06 K ���, and in gaseous helium at 78 K and 10.05 bars���. For
conversion of measured electrical quantities UD and I to F and U,
see �1�. The insets show the width �f of the in-phase resonance
response �top� and the frequency of maximum response fmax �bot-
tom� vs measured current, both being constant in a linear regime.
Increase of �f and decrease of fmax indicate an onset of the turbu-
lent drag regime.
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driving force dependence, neglecting the data points where
rounding in the vicinity of Ucr takes place.

The universal crossover behavior is even better displayed
in a nondimensional way in Fig. 4, where we plot the veloc-
ity dependence of the classical drag factor defined as CD
=2F /�AU2, where A=L1L2 is the projected area of the fork’s
leg. As a numerical example, for the fork A1 �see Fig. 4�
CD=1±0.2 over two decades of � and more than a decade of
�, as measured in classical fluids He I and He gas at various
applied pressures.

Our data obtained in classical viscous fluids �covering two
orders of magnitude of � and thus demonstrating the useful-
ness of cryogenic helium for laboratory fluid dynamical re-
search� displayed in Fig. 5 verify the scaling Ucr���� in the
limit ��� �11�. In order to stress that our results do not
depend on the particular fork, we show our results obtained
with two nominally identical forks A1 and A2 and with a
bigger fork B1 �2�. The critical value of Recr

� is about 5 �12�
and varies slightly from fork to fork �within about 20%�, but
the scaling for each individual fork holds. Thus for oscilla-
tory flow due to a vibrating object, in the limit U /�� � ��,
the characteristic length scale is not the size of the object, but
the viscous penetration depth.

To better appreciate our experimental results, it is instruc-
tive to consider an analytically tractable example of a vis-
cous flow due to an oscillating hydrodynamically smooth
sphere. In a laminar regime, the drag force acting upon a
sphere of radius R is given �9�, Flam=
U=6	�R�1+R /��U.
For the turbulent drag regime we adopt Fturb=�U2

=CD�	R2U2 /2. Assuming that the transition occurs when
these forces become equal in a limit of high frequency
�R��� we arrive at

Ucr =



�
	

6�2

CD

��� 
 21��� . �4�

Here we assumed that for a smooth sphere CD
0.4. In He I
at the saturated vapor curve just above the superfluid transi-

tion this would give a critical velocity of about 1.3 m/s,
about four times higher than we observe for the oscillating
fork. It seems therefore that for submerged oscillating bodies
of arbitrary shape �such as, e.g., quartz fork� Eq. �4� gener-
ally holds, with appropriate numerical values of 
 and �.
Here we assume that ���. The expression for Flam suggests
that there ought to be a crossover from a regime where ���
to ���. It is an interesting question if such a crossover is
always present in boundary layer flows due to bodies of vari-
ous forms.

The example of a sphere is certainly too simple to account
for any details within the crossover region, such as instability
against Taylor-Görtler vortices �13�. We have chosen this
simplest example of a sphere having in mind that the flow
over the tip of the fork is inherently three dimensional. Tak-
ing into account the surface roughness �see Fig. 1� and the
fact that the tip of the fork’s leg is partly ground off by the
manufacturer to adjust the desired room-temperature fre-
quency, it is hardly possible to accurately describe the flow
analytically or even numerically. It seems, nevertheless, that
the underlying physics of a crossover from laminar to turbu-
lent drag regime is captured and such a comparison is useful.

We have extended our measurements and analysis to a
quantum fluid—He II. One might expect a very different be-
havior here, as it is well known that He II displays the two-
fluid phenomena and circulation in its superfluid component
is quantized. It is remarkable therefore that in He II we ob-
serve similar drive dependencies as in He I and He gas. In
particular, no appreciable change in the measured quantities
is observed when crossing T
 �see Figs. 3 and 4�. On de-
creasing the temperature of He II along the saturated vapor

FIG. 4. �Color online� The drag factor CD plotted vs the peak
velocity U of the fork. Measurements in helium gas, in normal
liquid He I as well as in superfluid He II close to the transition
temperature, are shown at conditions as indicated. The dotted line is
included to appreciate an expected CD�1/U behavior in laminar
regime.

FIG. 5. �Color online� The critical velocity at which transition
from laminar to turbulent drag occurs for three different forks A1,
A2, and B1 �2� in classical fluids �data points obtained using He I in
the temperature range 2.2�T�4.2 K and He gas at 78 K at ambi-
ent and elevated pressure up to 30 bars� plotted vs ���. The solid
lines represent the best linear fit that includes the �0,0� point �top�.
This scaling is confirmed by comparison with the thick solid line in
the logarithmic plot �bottom�; the fitted power laws for the three
forks yield 0.48±0.04.
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curve further, however, the crossover becomes gradually
sharper and across the transition region the drag coefficient
displays additional pronounced features. We observe neither
irregularities nor any hysteretic phenomena down to about
1.3 K, although we have especially searched for them. Such
features have been commonly observed with oscillating
wires �14�, spheres �15�, or grids �16�, but in most cases at
lower temperatures. Due to space restriction, we postpone a
detailed account and analysis of He II measurements to a
later publication; here we restrict ourselves to merely stating
their main features.

To conclude, we have experimentally confirmed that a
critical velocity for the crossover from laminar to turbulent
drag regime in a viscous flow due to an oscillating quartz
fork in the limit U /�� � �� scales as Ucr���� over at

least two decades of kinematic viscosity. Taking into account
the geometrical shape of the tip of the fork’s leg and its
surface roughness, this result strongly suggests that for such
an oscillatory flow the characteristic length scale is not the
size of the object, but the viscous penetration depth
�=�2� /�.
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