PHYSICAL REVIEW E 75, 021917 (2007)
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Collective behaviors of biological swarms have attracted significant interest in recent years, but much
attention and efforts have been focused on constant speed models in which all agents are assumed to move with
the same constant speed. One limitation of the constant speed assumption without attraction function is that
global convergence is quite difficult or even practically impossible to achieve if the speed is relatively fast. In
this paper, we propose an adaptive velocity model in which each agent not only adjusts its moving direction but
also adjusts its speed according to the degree of direction consensus among its local neighbors. One important
feature of the adaptive velocity model is that the speeds of all agents are adaptively tuned to the same
maximum constant speed after a short transient process. The adaptive velocity strategy can greatly enhance the
global convergence probability, and thus provides a powerful mechanism for coordinated motion in biological

and technological multiagent systems.
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I. INTRODUCTION

The emergence of biological swarm is a beauty and won-
der in nature [1]. It is common to see huge herds of animals,
flocks of birds, or schools of fish moving as if they were a
single living creature. Agents in these swarms usually do not
share any global information and they often travel in the
absence of any leaders or external stimuli. In recent years a
variety of efforts have been devoted to modeling and explor-
ing the dynamic properties of such self-propelled systems
which can be roughly divided into three approaches: La-
grangian approach [2], Eulerian approach [3], and discrete
approach [4-13].

In 1987, Reynolds introduced three heuristic rules—
cohesion, separation, and alignment—to create the first com-
puter model of flocking [4]. Later on, Vicsek et al. proposed
a simplified model which mainly focused on emergence of
directional alignment in self-driven particle systems [5]. In
recent years, Vicsek model has been one of the frequently
investigated swarm models [6—10]. For example, effects of
noise and scaling behavior of the model were considered in
Ref. [6]. Intermittency and clustering in self-driven particles
and the onset of collective motion were studied in Refs. [7]
and [8], respectively. Stability analysis of swarms revealed
the relationship between network connectivity and stability
[9,10]. There are some other models that capture the impor-
tant rule of directional alignment. For example, Couzin et al.
showed that the alignment actions together with attraction/
repulsion functions between neighboring agents can lead to
complex patterns of swarms and revealed the existence of
major group-level behavioral transitions [11]. Effective lead-
ership was investigated in Ref. [12] which indicated that the
information owned by a few agents in a swarm can be trans-
ferred within the whole group. Self-driven many-particle
systems with general network topologies such as vectorial
network model (VNM) were investigated in Ref. [13].
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All these researches assumed that all agents in a group
move with the same constant speed (i.e., absolute value of
velocity). However, in natural swarms, agents may not only
adjust their moving directions but also adjust their speeds
according to the behaviors of their neighbors. Indeed, when
an agent finds itself in a surrounding of scattered moving
agents, it may naturally feel at a loss to follow any direction
and probably hesitates to move; in this dilemma case, it is
safe for the agent to move with a slow speed. On the other
hand, if a certain moving direction is dominant among the
neighbors of an agent, the agent may take this direction with-
out hesitation and thus moves relatively fast. A human scale
example may be the rhythmic clapping in a concert hall after
a good performance, which has been suggested to be formed
by lowering the natural clapping frequency of each indi-
vidual [14].

In this work, we propose an adaptive velocity swarm
model in which each agent adjusts its direction and speed
simultaneously according to the behaviors of its neighbors.
Direction adjustment follows the same rule used in the Vic-
sek model. To design the speed adjustment rule, we introduce
the concept of local order parameter of an agent to measure
the local degree of direction consensus among its neighbors.
At each time step, each agent moves along the average di-
rection of its neighbors with a speed which is taken as the
maximum possible speed scaled by a power-law function of
the magnitude of its local order parameter. The adaptive ve-
locity model reduces to the constant speed Vicsek model if
the power-law exponent is zero. An important feature of the
adaptive velocity model with a positive power-law exponent
is that speeds of all agents are adaptively tuned to the same
maximum constant speed after a quite short transient pro-
cess. We show that global convergence probability can be
greatly enhanced if the power-law exponent is sufficiently
large.

The paper is organized as follows. In Sec. II, we describe
in brief the constant speed Vicsek model and compare two
order parameters to measure the phase transition phenomena
of the swarm. In Sec. III, we propose the adaptive velocity
model based on the concept of local order parameter. Simu-
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lation results and discussions are given in Sec. IV. Conclu-
sions are given in the last section.

II. THE CONSTANT SPEED VICSEK MODEL

We first describe the original constant speed Vicsek model
[5]. Consider N agents, labeled from 1 through N, all moving
synchronously in a square shaped cell of linear size L with
periodic boundary conditions. Each agent moves with the
same speed v, but with different direction at different time
step. Originally, agents’ positions are randomly distributed
in the cell with randomly distributed initial directions in
[0, 277). At each time step, agent i adjusts its direction as the
average moving direction {6;(k)) of its neighbors perturbed
by a random noise A6:

0k +1)=(6,(k))g+ A6, i=12,...,N. (1)

The neighbors of agent i are defined as those agents who fall
in a circle of predefined sensing radius R that centered at the
current position of agent i. One characteristic of this homo-
geneous model is that only by local interactions it shows
phase transition through spontaneous symmetry breaking of
the rotational symmetry. Different pattern behaviors, such as
large-scale emergence, convergence and disordered disperse
motion can be observed under different parameters by simu-
lations [5]. The directional rule of local interactions together
with constant speed assumption of agents has considerable
influences [4—13].

The following order parameter has been widely adopted
to measure the phase transition phenomena of the constant
speed model from the initial zero net transport to emergence
[5,7,11,13,15,16]:

N

2 0=— | Sim|. 0=0,0=1. @
0| i=1

Here v;(k) is the velocity of agent i with the constant speed
[v:(k)| =v, and the moving direction (k) at time step k.
@, (k) is a univocal physical parameter by definition—a
scaled average momentum of the whole system. ®,=0 cor-
responds to the isotropy state of directional distribution and
emergent behavior can be observed if ®,(k)>>0.

Now suppose that different agents may have different
speeds during the evolution. Let v, be the average value of
all agents’ possible maximum speeds, that is, wvq
=(1/N)2 v;0, where v,y is the maximum possible speed of
agent i, i=1,2,...,N. In this case, it is possible that ®(k)
>0 even if the moving directions of all agents are isotropic
which corresponds to nonemergence state. Further, ®,(k)
=1 does not necessarily mean linearly coherence, unless v;,
is the same value for all agents. Thus ®,(k) may not be very
appropriate to measure the level of emergence.

Another order parameter that has been widely adopted
especially for synchronous characteristic in networked phase
oscillators is defined as [8,17]
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FIG. 1. (Color online) Illustration of local polarity ¢; of agent i.
The arrows show the moving directional vectors of neighboring
agents of agent i. For simplicity, these modular vectors are plotted
with the same starting point located in the center of a circle. (a) The
collection of agents moving scattered in the plane with no dominant
direction, the order parameter ¢;~0 for this situation. (b) The
agents with a relatively strong dominant direction, ¢;# 0 for this
situation. The polarity ¢;=1 if and only if all the agents in set I";(k)
move in the same direction.

N
1 )
O k) == S| 0=Dyk) =1. (3)
i=1

This order parameter eliminates the influence of speed, with
the expense of having no physical meaning of scaled average
momentum. For constant speed Vicsek model, it is obvious
that the two order parameters defined above are equivalent,
that is, ®, =D,

III. THE ADAPTIVE VELOCITY MODEL

In this section, we propose an adaptive velocity model in
which each agent adjusts its direction and speed simulta-
neously according to the behaviors of its neighbors. To do so,
we first define the complex-valued local order parameter of
agent i at time step (k+1) as follows:

) 1 )
&k + 1)610,-(k+1) - 2 elej(k),
ni(k + 1)_,‘er,.(k+1)

i=1,2,...,N; k=0,1,2, ..., (4)

where ¢/%/® is the unit directional vector and I';(k+1) is the
set of n;,(k+1) neighbors of agent i at time step (k+1). The
magnitude (or local polarity) ¢;(k+1) of the local order pa-
rameter measures the local degree of direction consensus
among the neighbors of agent i at time step (k+1). Clearly,
0=¢;(k+1)=1 and larger value of ¢;(k+1) implies higher
degree of local direction consensus among neighbors of
agent i (Fig. 1). The angle 6,(k+1) e[0,27) is the corre-
sponding moving direction of agent i at time step k+1,
which is the average direction of agents in the neighbor set
I'j(k+1). Computations using this vector form of expression
can also avoid some undesired directional problems men-
tioned in Ref. [9].

Denote X;(k) as the position vector of agent i on the com-
plex plane at time step k. Agent i and agent j are neighbors at
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FIG. 2. (Color online) Scaled speed coefficient c,(¢p)=@“ as a
power function of local polarity ¢. 0=c,(¢)=1. For any value of
a, c(p)=1 if ¢p=1. For a=0, c(¢p)=1. For 0<a<w, 0
<co(P)<1if 0<Pp<1. For a=x, c (¢)=0if 0<Hp<1.

time step  if and only if |X,(k)-X (k)| =R. In our adaptive
velocity model, each agent does not only adjust its moving
direction, but also adjusts its speed according to the degree
of local direction consensus among its neighbors. Specifi-
cally, the speed of agent i at time step k is its maximum
possible speed v, scaled by the power-law function ¢ (k)
with an exponent =0 (Fig. 2). The adaptive velocity model
can then be described mathematically as follows:

Xi(k+1) = X,(k) + vy X (k)e’® x A,

1 2 elﬂj(k)

¢i(k + l)eiel-(kﬂ) —
nik + l)jeFi(k+l)

i=1,2,...,N; k=0,1,2, ..., (5)

where At is the discrete time interval, and without loss of
generality we take Ar=1. v,(k)=v(X ¢*(k)e'%¥ represents
the velocity of agent i at time step k with speed |v;(k)|=v,
X (k) and direction 6;(k). Since 0=¢f(k)=1 for any
value of @=0, we have 0=|0,(k)| =v,.

The power-law exponent a=0 reflects the willingness of
each agent to move faster or slower along the average direc-
tion of its neighbors based on the local degree of direction
consensus. If @=0, then ¢{"(k)=1, the adaptive velocity
model (5) reduces to the constant speed Vicsek model and
each agent always moves with the maximum constant speed
vo without any consideration about its local polarity. How-
ever, if a>0, then an agent will move with the maximum
constant speed if and only if complete local direction con-
sensus is achieved among its neighbors. A large value of «
implies that an agent will move with a slow speed in the face
of a given value of local polarity. In the limit case we have
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lim ¢;(k)* =

a—+x

0, 0=k <1,
{ bi(k) < ©

1, ¢k)=1.

It means that each agent will not move unless complete local
direction consensus is achieved among its neighbors.

The adaptive velocity model satisfies four fundamental
characteristics of the constant speed Vicsek model: (i) no
leader, (ii) no external stimuli, (iii) only homogeneous
agents, and (iv) only local interactions. However, we will
show that the adaptive velocity model with a positive expo-
nent « induces more intensified phase transition and
symmetry-breaking from disordered to ordered state than the
constant speed model.

The two-dimensional adaptive velocity model (5) can eas-
ily be generalized to the general M-dimensional Euclidean

space case. Let X;=[x;;,x;5,...,x;;]7 be the position vector
of agent i, with X;j€R for i=1,2,...,N and j=1,2,....M
The motion direction of agent i is represented by a unitary
vector di=[dyy,dy, ... ,dy, 1T, which satisfies ||c?,|| =1,d;eR
-1=d;;=1, j=1,2,...,M for all i. Agent i and agent;j are
neighbors if and only if the Euclidean norm ||)}[(k)—)} (K|
=R. Define the scalar order parameter as

ri(k+ 1)2

> 4 (k)” (7

_r
ni(k+1) jel(k+1)

Of course, 0=r;(k+1)=1. The M dimensional adaptive ve-
locity model can be described as

Xi(k+1) = X,(k) +vo X ré(k) X di(k) X At, k=0,1,2, ...,
(®)
Ji(k+1)=( > Zi,«(k))
jelkel) jelk+1)
k=0,1,2,... . )

IV. SIMULATIONS AND DISCUSSIONS

To illustrate the effect of adaptive velocity strategy, we
consider N agents moving in the whole complex 2D plane
without boundary restrictions instead of in a rectangle of
open boundary or periodic boundary conditions [5]. The po-
sitions of N agents are initially randomly distributed on a
region of L X L rectangle with random initial directions in the
interval [0,27). Note that this rectangle does not represent
the boundary for swarm motion, but only restricts the initial
distribution of positions of agents. Recent studies have
shown that for the swarm which move in the plane instead of
in a rectangle of periodic conditions, convergence or emer-
gence is due to the connectivity between agents [9,10], in-
stead of long-range interactions [5,18].

Denote the initially distributed direction and position of

agent i as 6; and )},»(0), respectively. We compute the initial
moving direction 6,(0) and initial polarity ¢;(0) of agent i
according to the local order parameter formula
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FIG. 3. (Color online) (a) Convergence probability p as a func-
tion of the maximum speed v, for five different values of a. (b)
Convergent probability p as a function of the exponent « for five
different values of v,. All estimates are the results of averaging over
400 realizations.

1 > el

n(0) ;10

$:(0)e’%0) = i=1,2,...,N.

This means that each agent moves with adaptive velocity
strategy at the very beginning of its evolution. This begin-
ning time step is denoted as step k=0 with the corresponding
initial speed vy X ¢,(0) for agent i.

We first investigate the influence of power-law exponent
a in the adaptive velocity model on the convergence prob-
ability p which is defined as the probability that a group of N
initially randomly distributed agents will finally all move
along a global consensus direction with the same maximum
speed vg. In simulations, we take N=300, L=5, and R=2 if
without further indication. Similar results can be derived for
other values of these parameters. Figure 3(a) shows that for
any given value of «, the convergence probability p is a
decreasing function of the maximum speed v,, but it de-
creases slower for larger value of «; while Fig. 3(b) shows
that for any given value of v, the convergence probability p
is an increasing function of the exponent «, and smaller v,
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FIG. 4. (Color online) (a) The relative size S in steady state as a
function of the maximum speed v for different values of a. (b) The
relative size S in steady state as a function of the exponent « for
different values of v,. All estimates are the results of averaging over
400 realizations.

leads to higher convergence probability. Therefore, if the
constant speed v, is large enough, even though it is very
difficult or even practically impossible to achieve global con-
vergence in the original Vicsek model which corresponds to
a=0, the convergence probability may still be high for the
adaptive velocity model with a sufficiently large «. In par-
ticular, the convergence probability is very close to 1 in the
case of = for the present system parameters, even without
any leader or other global information in the adaptive veloc-
ity model.

From the perspective of complex network theory [19,20],
the swarm topology at time step k can be expressed as an
undirected graph G(k)—[V,E(k)]: an agent i is represented
by a vertex v; in graph G(k); an undirected edge between
agent i and agent j means that they are neighbors. A compo-
nent of a graph to which a vertex belongs is that set of
vertices that can be reached from it by paths running along
edges of the graph [19]. As time evolves, topology of the
graph G(k) may vary until the model evolves to a steady
state. We are interested in the relative size S of the maximal
component (i.e., largest cluster) in steady state, which is de-
fined as the ratio of the number of agents within the maximal

021917-4



ADAPTIVE VELOCITY STRATEGY FOR SWARM AGGREGATION

18

161

14t

121

10F

<T>

30

<T>

PHYSICAL REVIEW E 75, 021917 (2007)

10

FIG. 5. (Color online) (a) The transient time 7 as a function of « for different values of v. (b) The transient time 7 as a function of «
for different values of N, vy=1.0. (c) The transient time 7 as a function of « for different values of R, vy=1.0. (d) The transient time 7 as
a function of R and «, vy=1.0. All estimates are the results of averaging over 400 realizations.

component to the total number of agents in the whole group.
Clearly, 0<S=1. S=~0 means all the agents disperse away
without any apparent clusters. For >0, there exists a giant
cluster in the swarm. Global convergence is achieved if and
only if S=1. In this case, the whole graph consists of only
one component.

For any given value of «, S is understandably a decreas-
ing function of the maximum speed v,, and it decreases
much slower for larger value of « [Fig. 4(a)]; On the other
hand, for any given value of v, S is an increasing function of
the exponent a and smaller value of v, results in higher
value of S [Fig. 4(b)]. Thus, in the case of a large maximum
speed v, although it is quite difficult or even impossible to
form a giant cluster in the constant speed Vicsek model
which corresponds to a=0, it is much easier to form a giant
cluster for the adaptive velocity model if « is large enough.

Why is the convergence probability and size of the largest
cluster enhanced as the exponent « increases in the adaptive
velocity model? This may be due to the fact that the adaptive
velocity strategy with large value of « tends to hold the local
agents together to form a large cluster. Since the initial di-

rections of agents are randomly distributed, most agents are
in nearly isotropy regions at the beginning and their local
order parameters ¢= 0, which implies that most agents are
in a circumstance of neighbors with scattered moving direc-
tions and the speeds of these agents are relatively small ac-
cording to the adaptive velocity strategy with a>0. In fact,
even for moderate or relatively large polarity, i.e., 0<< ¢
<1, the speeds of these agents are still small for sufficiently
large value of a. Thus transformations of these agents’ posi-
tions are relatively indistinctive, which implies that neigh-
bors tend to be also neighbors in next time step or even after,
and communications for directional alignment actions be-
tween them continue to be held which are benefits to direc-
tional consensus.

Even though the directions of agents will reach global
consensus only under certain conditions, speeds of all agents
will always reach the same maximal value v in steady state
whether the swarm can finally converge or not. As stated
above, in the case that the local polarity of an agent is large
but less than one, the speed of the agent will still be small for
sufficiently large value of «. Thus, one may guess that the

021917-5



WEI LI AND XIAOFAN WANG

—8— =0
0 —6—a =1
08, — o2
- -o=4
074 -+ —-a=8
S ~
T N =16
\\\ A7 —0— a=64
~
e 0 ¥\ ey —#r— o =256
N
\
04r R =
& % 7
03} R - 5. g
N\ \3’
X
021 ~
01t Y e -

0 . L .
0 025 05 075 1.0 125 150 175 2.0 225 250

0 025 050 075 1.0 125 150 175 20 225 250
(b) n

FIG. 6. (Color online). (a) The global order parameter ®, as a
function of noise amplitude 7. (b) The average speed coefficient C,,
as a function of noise amplitude 7. v4=0.6. 7€[0,2.5](rad). All
estimates are the results of averaging over 200 realizations.

required time for the group to achieve steady state may be
quite long for large value of a. However, we find that the
steady state can be achieved after a quite short transient pro-
cess. Denote the transient time 7 as the required time step
that the average speed of all agents reaches 98% of maxi-
mum speed v,. We find that, generically, 7increases logarith-
mically with « (Fig. 5):

7= B+ vyloga, a=1. (10)

Figures 5(a) and 5(b) show that 7 does not distinctly de-
pend on the maximum speed v, and the density N/L?. In
both cases, we have 8=~4.0 and y= 1.4. Therefore, even for
a very high value of @=1024, most agents will move with
nearly the maximum speed in just about 18 steps. Figures
5(c) and 5(d) indicate that the coefficients 8 and vy in Eq.
(10) decrease as the sensing radius R increases. In particular,
as R approaches 6, agents in the group are approximately
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globally coupled, B approaches 1 which implies that steady
state can be achieved in almost one step.

We now briefly investigate the influence of noise via the
global order parameter ®, defined in Eq. (3) and the average
speed coefficient C, defined as

1 & 1 &
Co= I—VEI e ) = NEI & (11)

C, reflects the average ratio of all agents’ speeds compared
to the maximum speed v,. Suppose that the moving direction
of each agent is perturbed by a random number & chosen
with a uniform probability from the interval [-#, 7]. In this
case, the local order parameter is computed as follows:

. 1 . .
¢(k + l)eté'l-(k+l) — —ezg E etﬂj(k)’
' nik+1) jelk+1)

k=0,1,2, ... . (12)

We can see from Fig. 6(a) that for large noise amplitude 7
and large exponent «, the global order parameter ®, de-
creases along the same straight line. Even though the average
speed coefficient C, always equals one for =0, it decreases
to zero with a faster speed as the noise amplitude 7 increases
for larger value of >0 [Fig. 6(b)].

V. CONCLUSIONS

As a generalization of the constant speed Vicsek model,
we propose an adaptive velocity swarm model in which each
agent not only adjusts its moving direction but also adjusts
its speed based on the local degree of direction consensus
among its neighbors at every time step. We show that high
convergence probability can be achieved if each agent takes
more consideration about its local polarity.

Some difficult yet important problems about the adaptive
velocity model remain to be further investigated. For ex-
ample, under what conditions can we derive a critical value
of « such that above the value a given convergence probabil-
ity or relative size of largest cluster can be guaranteed? Even
if we can prove the existence of the critical value, how can
each agent know this value? What if different agents have
different values of a? Furthermore, stability analysis about
the linearized Vicsek’s model has been focused on the con-
nectivity of the graph during the evolution process which is
impossible to check from the initial condition [9]. Practical
stability analysis of the adaptive velocity model needs to be
explored.
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