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We apply an information-theoretic treatment of action potential time series measured with microelectrode
arrays to estimate the connectivity of mammalian neuronal cell assemblies grown in vitro. We infer connec-
tivity between two neurons via the measurement of the mutual information between their spike trains. In
addition we measure higher-point multi-information between any two spike trains, conditional on the activity
of a third cell, as a means to identify and distinguish classes of functional connectivity among three neurons.
The use of a conditional three-cell measure removes some interpretational shortcomings of the pairwise mutual
information and sheds light on the functional connectivity arrangements of any three cells. We analyze the
resultant connectivity graphs in light of other complex networks and demonstrate that, despite their ex vivo
development, the connectivity maps derived from cultured neural assemblies are similar to other biological
networks and display nontrivial structure in clustering coefficient, network diameter, and assortative mixing.
Specifically we show that these networks are weakly disassortative small-world graphs, which differ signifi-
cantly in their structure from randomized graphs with the same degree. We expect our analysis to be useful in
identifying the computational motifs of a wide variety of complex networks, derived from time series data.
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I. INTRODUCTION

Understanding and quantifying the dynamical mecha-
nisms used by the nervous system to store and process infor-
mation remains one of the greatest challenges to contempo-
rary science. At present, broad outlines of the physical
mechanisms that underpin the basic functioning of single
neurons and synapses in the brain are understood �1�. How-
ever, this detailed knowledge of individual units sheds little
light on the origin of the unmatched computational power of
mammalian nervous systems, achieved despite characteristic
operating times that are many orders of magnitude slower
than those of modern digital computers.

The computational nature of the brain lies therefore prin-
cipally in the ensemble properties of neurons, synapses, and
their emergent complex, dynamical networks. Over the last
few years the interaction structure of many complex systems
has been mapped in terms of graphs, which can in turn be
characterized using tools of statistical physics �2�. This ap-
proach has revealed broad classes of networks such as small-
world graphs �3� and scale-free networks �4�, which occur
across fields of study, from technological networks, such as
the Internet, to various biological and social systems. The
structural properties of these graphs, such as their degree
distribution or their local transitivity, moreover, have been

suggested to result from optimization constraints �5,6� or net-
work growth dynamics �6�, thus connecting graph structure
to operational definitions of function, independent of a sys-
tem’s details. These lines of research provide new quantita-
tive insights, connecting the interaction structure of a com-
plex systems to novel definitions of functions in fields where
quantitative syntheses have been lacking.

The mammalian nervous system is, arguably, simulta-
neously the most complex and fascinating of all networks.
Studies that pursue its quantitative understanding in terms of
structural, dynamical networks of simple units �neurons and
synapses� �7� are now beginning to be possible. Notwith-
standing recent reconstructions for invertebrate cells �8�,
which form relatively small numbers of connections to other
cells, measuring the structure of living networks of neurons
directly is a difficult problem due to typical huge synaptic
densities �about 108 per mm3 in cortex� and large potential
connectivity, with degree per cell of order 104 �9�. Much
more accessible are electrophysiological signals—action po-
tentials or “spikes”—generated by neurons. The electro-
physiological technology to measure these signals over hun-
dreds or even thousands of individual cells is now mature.
Other new techniques based on fluorescence of electrically
active cells can also be used to map correlated activity, and
putative connectivity �10�. Because action potentials are the
signals encoding information in the brain, the study of col-
lective network activity in terms of their time series is both
natural and important. From these types of data “networks of
information” can be inferred, revealing how signals are
shared between neurons, stored, and collectively processed.
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Here we construct networks of neurons, based on the
information-theoretic treatment of time series of action po-
tentials from cortical neuronal networks grown in vitro.
Though these systems may differ substantially from an intact
brain, they are interesting both as nontrivial starting points
for in vivo analysis and as examples of living neuronal net-
works capable of nontrivial computation �11�. For these rea-
sons neuronal networks in vitro have received much recent
attention in terms of their collective dynamical and statistical
properties �12–19�.

Below we develop a methodology based on the
information-theoretic treatment of multiple-cell spike time
series to map the structure of networks of neurons. We show
that the resulting graph displays nontrivial structure shared
by other complex networks. Our approach also identifies col-
lective functional modules consisting of groups of neurons
that enable different modes of information processing in ner-
vous systems.

The remaining of this paper is organized as follows. In
Sec. II we give details of our experimental setting and of the
electrophysiological activity recordings. We also introduce
the several information-theoretic quantities to be used subse-
quently to reconstruct a proxy connectivity network. We
show how the use of several correlation and information-
theoretic quantities taken together can lead to the identifica-
tion of specific connectivity structures, when multiple neu-
rons are considered simultaneously. In Sec. III we give the
results of these methods applied to data. Section IV analyzes
the resulting graph in light of the properties of other complex
networks. Finally we present the outlook for the methods
proposed here, particularly in determining the dynamical
evolution of networks and their collective response under
driven conditions. In addition in the Appendix we prove a
relation between definitions of information-theoretic quanti-
ties, introduced in Sec. III.

II. EXPERIMENTS AND DATA

We analyze the time series of mammalian �murine� spik-
ing cortical networks living in culture over microelectrode
arrays �20–22�. These platforms, along with other types of
neuronal culture �15,16,19�, currently allow the most exten-
sive coverage of network elecrophysiological activity, in
terms of both numbers of cells and length of recordings.
Naturally, cultured cell networks have presumably a simpler
structure than their counterparts in vivo. Nevertheless, they
are fully active neuronal networks, displaying many of the
qualitative properties of developing mammalian tissue �11�.
The topology of networks of neurons formed in vitro remains
largely uncharted, although recent work in this direction has
started to appear �8,10�.

Neuronal networks on microelectrode arrays �MEA’s� are
assemblies of mammalian nerve cells growing on fields of
noninvasive, substrate-integrated microelectrodes; see Fig. 1.
The cells remain viable for over 6 months and form sponta-
neously active networks. Tissue is dissected from mouse em-
bryos, dissociated, and then seeded on MEA’s. Neural activ-
ity takes the form of action potentials �or spikes�: short
pulses �at which we record a time stamp� occurring when a

neuronal membrane potential crosses threshold. Each chan-
nel �up to four per electrode, scanned at 40 kHz� is associ-
ated with a specific neuron via its action potential shape
�spike sorting�. Cell-electrode coupling is stable so that wave
shapes can be followed with accuracy, for many channels
and over many days at a time.

The results presented below were obtained from 5-h re-
cordings taken from three different cortical cultures, span-
ning a range of sizes, with 20, 33, and 62 recorded cells. The
three networks are mature �see, e.g., �13��, with ages in vitro
of 34, 51, and 42 days, respectively. The number of cells
recorded are a fraction �estimated roughly at 5%–10%� of all
active neurons in the culture. The total activity rates for the
network were stable over the course of the recordings. To
construct binary states �zero/one� of multiple time series we
sampled them at one-half the spike rate of the most active
cell. This gives the highest entropy per measured bit for a
temporally uncorrelated data stream.

III. INFORMATION-THEORETIC ANALYSIS OF
NEURONAL SPIKE TRAINS

Analyzing spike trains to understand how groups of neu-
rons share and process information is challenging because
neuronal time series typically display strong temporal sto-
chasticity. This is the result of both the spatial sparseness of
the collected signals of individual neurons, which receive
and send processes to many other hidden �not recorded�
cells, and of the intrinsically nonlinear and stochastic nature
of neuronal and synaptic dynamics �1�.

The noisy character of neuronal spike trains �see Fig. 2�
suggests a probabilistic description of their time series, in
terms of sequences of active spiking periods and silences
�23�, as strings of zeros and ones. This standard decomposi-
tion allows the analysis of neuronal time series as noisy
channels via information theory. In particular we can mea-
sure how the activity of one cell is informed by the state of
others and determine their relative configuration, which will

FIG. 1. A neuronal culture �right� over a microelectrode array.
The uniform grid of points shows electrodes where neuronal activ-
ity is measured. Left panels show individual neurons. White bars
are 50 �m �center-to-center distances between electrodes is
40 �m�.
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allow us to reconstruct proxy connectivity networks mapping
how information is shared, stored, and processed collectively
in these ensembles.

A. Mutual information between neurons

Mutual information provides a natural quantitative mea-
sure of the degree of statistical dependence between two sto-
chastic variables, free of assumptions about the nature of the
underlying joint distribution. As such, mutual information is
a nonlinear generalization of familiar correlation functions
�24�. In the neuronal networks under consideration here,
large mutual information between suitably defined time se-
ries of two neurons will be taken as an indication of connec-
tivity between them. Subtleties that arise with this associa-
tion will also be discussed and, at least partially, resolved
below.

We start by recalling the definition of the mutual informa-
tion between two stochastic variables X and Y:

I�X;Y� = �
x,y

p�x,y�log2� p�x,y�
p�x�p�y�

� , �1�

where p�x ,y� is the joint distribution and p�x� and p�y� are
the single-variable marginals. The mutual information is
semipositive definite and equal to zero if and only if the two
variables X and Y are statistically independent—i.e., p�x ,y�
= p�x�p�y�.

The magnitude of the mutual information between two
cells is dependent on the information content of the time
series of each cell, in terms of their Shannon entropy H�X�
and H�Y�. This becomes clear through consideration of the
relation

I�X;Y� = H�X� − H�X�Y� = H�Y� − H�Y�X� → I�X;Y�

� min�H�X�,H�Y�� . �2�

This bound, taken together with I�X ;Y��0, implies that the
normalized mutual information i�X ;Y�,

i�X;Y� =
I�X;Y�

min�H�X�,H�Y��
, �3�

is always in the range 0� i�X ;Y��1 and can be used to
measure the strength of the link between two cells. In this
spirit, more restricted measures of statistical dependence
such as cross correlation have also been used to identify
putative links between simultaneously recorded neurons
�26�.

B. Multiple cell functional arrangements

We would like to not only reconstruct a network reflecting
putative connectivity between neurons, but also to identify
how information is relayed or processed through neuronal
activity. Figure 3 distinguishes relaying and processing com-
putations for arrangements of three neurons. Sequential
chains of cells can relay information and are known to play a
part in short-term memory in the brain �9,25�. On the other
hand, neurons receive inputs from many other cells, so that
their spiking activity may behave as the �nonlinear� function
of multiple inputs. In this way individual neurons naturally
integrate activity from many sources and are able to process
information. Here we show how these two different types of
structures can be distinguished given data streams for mul-
tiple cells. Consequently we can determine which type of
functional structure is more prevalent in cortical cultures.

FIG. 2. Spike time series for the spontaneous �native� activity of
a cortical culture with 62 recorded neurons. Much of the activity
takes place as part of network-wide collective events ��a�, vertical
features�, known as network bursts. The structure of each neuron’s
spike train observed over short time scales ��b�, network burst de-
tail� shows strong stochasticity.

FIG. 3. Different connectivity arrangements of neurons have
distinct roles in short-term memory or in information processing.
These can be identified via the information-theoretic analysis of
multicell spike time series, with the former associated with R�0
and the latter R�0; see text.
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While three-cell networks are still extremely small relative to
even a single cortical column �approximately 105 neurons�,
they are complex enough to illustrate the elementary proper-
ties of network computation.

The computations performed by networks of neurons can
be analyzed via the consideration of appropriate multi-
information between groups of cells. To see this consider that
the notion of mutual information, Eq. �1�, naturally general-
izes to higher dimensions. For example, I�X1 ,X2 , . . . ,Xn� is
the mutual information between the joint distribution of n
variables p�	xi
� and the product of each single variable’s
distribution. This quantity is given explicitly for n=3, for
several examples, in Table II�b�. Similarly we will write
I�	X1 ,X2 , . . . ,Xn
 ;Y� to denote the mutual information be-
tween the joint state of n variables 	Xi
 and variable Y.

The consideration of multi-information between groups of
variables is useful because it allows us to examine connec-
tivity arrangements involving more than just pairs of ele-
ments. In particular, for an arrangement of three elements,
we consider the conditional mutual information of two of the
variables X and Y, subject to the state of a third Z �27�,

I�X;Y�Z� = �
x,y,z

p�x,y,z�log2
p�x,y�z�

p�x�z�p�y�z�
. �4�

I�X ;Y �Z� is a mutual information and as such is semipositive
definite and zero only when X and Y are independent sto-
chastic variables �each conditioned on Z�. Thus I�X ;Y �Z�
tells us whether consideration of a third variable supplies
more or less information about the nature of the correlation
between X and Y.

This property suggests consideration of the difference

R�X,Y,Z� = I�X;Y� − I�X;Y�Z� �5�

as a compact means to characterize how knowledge of Z
informs us of the state of 	X ,Y
. Although perhaps not im-
mediately obvious, this quantity is identical to that recently
proposed by Schneidman et al. �28,29� as a measure of re-
dundancy of the knowledge of Z given X and Y. In their
definition, for three variables

R�X,Y,Z� = I�X;Z� + I�Y ;Z� − I�	X,Y
;Z� . �6�

We prove in the Appendix that the two definitions are
equivalent, where we also show that R is fully symmetric
under permutations of its arguments and consequently can be
computed more parsimoniously than its definition may at
first suggest.

It is immediately clear from the definition of R that it can
be positive, negative, or zero. A positive R is equivalent to
I�X ;Y�� I�X ;Y �Z�, indicating that knowledge of Z does not
improve �and may degrade� knowledge of 	X ,Y
 correla-
tions. Conversely R�0 indicates that knowledge of Z leads
to more complete information about 	X ,Y
. Finally R=0 in-
dicates that at least one of the three variables is independent
of the others. In this sense R=0 denotes the absence of a
genuine three-variable structure. After Schneidman et al.
�28� we refer to these three situations as redundancy
�R�0�, synergy �R�0�, and independence �R=0�. To better
convey their meaning we illustrate each of these cases with

examples. A summary of what can be learned from these
quantities about the detailed connectivity mapping between
variables is given in Table II, below.

1. Independence: R=0

It follows immediately from definition �4� that if Z is in-
dependent of 	X ,Y
, then R=0. Indeed, if both X and Y are
statistically independent of Z, so that p�x �z�= p�x�, p�y �z�
= p�y� and naturally p�x ,y �z�= p�x ,y�. Then I�x ,y �z�
= I�x ,y�, which implies R=0.

Moreover, this is true in general, as expected from sym-
metry of R, if any of the three variables is independent of the
other two. We see this for the Boolean functions X and Y of
Tables I�a� and I�b�. In these cases we would infer the exis-
tence of only one link from the only nonzero binary mutual
information, and the absence of a three-variable structure,
from R=0.

2. Synergy: R�0

If Z is a function of both variables X and Y, then knowl-
edge of Z leads to greater information of the joint state of
	X ,Y
. In this case R�0 and we speak of synergy.

In order to illustrate this point we follow Schneidman et
al. �28� in considering a set of Boolean functions of two
binary variables X and Y. Although these functions are much
too stylized to be realized between neurons, they supply us
with the simplest useful illustrations. Table I�a� shows sev-
eral of the 16 possible Boolean functions of two binary vari-
ables.

In all the cases of Table I�a�, except for CHAIN to be
discussed below, X and Y are independent random variables
�p0= p1=1/2� and are thus statistically independent so that
I�X ;Y�=0. Information-theoretic quantities for these func-
tions are given in Table I�b�.

Considering exclusively the mutual information in Table
I�b� as a starting point we see that we would infer correctly
that X ,Z and Y ,Z are connected but X and Y are not for the
functions AND and OR �and X�Y and Y �X, not shown�.

We may find it surprising, however, that for XOR we
would infer no connectivity �all pairwise mutual informa-
tions are zero�. We find nevertheless a negative R and a
nonzero I�X ,Y ,Z�, which tell us that the three-variable joint
distribution is nontrivial. Thus we infer a genuine three-cell
object present, despite the absence of pairwise mutual infor-
mation. Such structures would be missed under exclusively
pairwise analysis.

Finally we notice that a fully connected diagram, in which
variables are not Markovian �see below�, is also synergetic
and therefore implies R�0.

3. Redundancy: R�0

Finally we consider cases where knowledge of a third
variable Z provides redundant information about to the state
of 	X ,Y
. The simplest examples are the functions CHAIN of
Table I�a�. CHAIN can be seen as the limit of the �anti�ferro-
magnetic interaction considered in Schneidman et al. �28�, as
the coupling �→�.
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Clearly the state of the third variable, while not indepen-
dent, does not add information about the state of the other
two. This situation is generic of connections organized as
chains. An important and tractable situation is when vari-
ables are Markovian, in which case a well-known result, the
information processing inequality, emerges. This implies in
turn that R�0, generally, so it is worth explicit consider-
ation.

If X, Y, Z form a Markov chain, denoted X→Y →Z, then
their joint distribution can be written as �27�

p�x,y,z� = p�x�p�y�x�p�z�y� . �7�

This means in particular that X and Z are independent given
Y—i.e., I�X ;Z �Y�=0. In this situation the information pro-
cessing inequality �27� also tells us that for a Markov chain
X→Y →Z

I�X;Y� � I�X;Z� . �8�

Now, writing I�	X ,Y
 ;Z� as �see the Appendix�

I�	X,Y
;Z� = I�X;Z� + I�X;Y�Z� = I�X;Y� + I�X;Z�Y� �9�

and using I�X ;Z �Y�=0 we conclude that

R = I�X;Y� − I�X;Y�Z� = I�X;Z� � 0. �10�

The same result is obtained for the chain Z→Y →X, which
from the point of view of information quantities is equivalent
to its reversed order considered above.

For the chain X→Z→Y, for which I�X ;Y �Z�=0, it fol-
lows immediately that R= I�X ;Y��0. In particular, if the
variables are indeed connected, then I�X ;Y��0 strictly and
R�0 is a general property of Markov chains.

Finally we note that if Z drives both X and Y, as in
X←Z→Y, then R�0. We may suspect this from the fact
that Z is then a function of a single variable. Nevertheless,
formally this follows from the form of the joint distribution

p�x,y,z� = p�z�p�x�z�p�y�z� ⇒ p�x,y�z� =
p�x,y,z�

p�z�

= p�x�z�p�y�z� , �11�

which implies I�X ;Y �Z�=0 and therefore that R
= I�X ;Y��0. In the case of R�0 we therefore preserve only
the two strongest links among the three cells, a strategy also
adopted in �30�.

4. Normalization of R

Just as for the mutual information the absolute value of R
is dependent on the magnitude of the various multi-
information involved in its definition. We can place upper
and lower bounds on R, so that a normalized quantity
r�X ,Y ,Z� can be constructed that factors out these effects.

First note that it follows directly from the definitions �see
also the Appendix� that

TABLE I. Examples of three cell functional arrangements and their information-theoretic signatures. �a�
Examples of the relationships among three Boolean variables, showing synergy, independence, or redun-
dancy; see text. Nontrivial logical circuits �e.g., OR, AND� are examples of functions for which output is a joint
function of the two inputs and are thus associated with information processing. Outputs that reflect only one
of the inputs are trivial as three cell structures �independence�. CHAIN is an example of a third type of relation
where variables are not independent, but knowledge of any third cell does not convey new information. �b�
Information-theoretic quantities for the Boolean functions of �a�. Inputs for X, Y are taken at random so that
H�X�=H�Y�=1, except for CHAIN, where x=y, resulting in the only case where there is mutual information
between the two inputs. The functions Y �X and X�Y give the same results as AND and were thus omitted for
simplicity. Note that there are possible connectivity structures, like XOR, which have zero mutual information
between any two links, but still exist as synergetic triplets.

�a�
Inputs Synergy Independence Redundancy

x y AND OR XOR Y �X X�Y X Y CHAINS

0 0 0 0 0 0 0 0 0 0 1

0 1 0 1 1 0 1 0 1

1 0 0 1 1 1 0 1 0

1 1 1 1 0 0 0 1 1 1 0

�b�

Function H�Z� I�X ;Y� I�X ;Z� I�Y ;Z� I�X ,Y ,Z� R

AND 2− 3
4 ln2�3� 0 3

2 − 3
4 ln2�3� I�X ;Z� 2− 3

4 ln2�3� 1− 3
4 ln2�3�

OR 2− 3
4 ln2�3� 0 3

2 − 3
4 ln2�3� I�X ;Z� 2− 3

4 ln2�3� 1− 3
4 ln2�3�

XOR 1 0 0 0 1 −1

X 1 0 1 0 1 0

Y 1 0 0 1 1 0

CHAIN 1 1 1 1 2 1
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R � min�I�X;Y�,I�X;Z�;I�Y ;Z�� . �12�

So that if R�0, r=R /min�I�X ;Y� , I�X ;Z� ; I�Y ;Z��. Similarly
when R�0 then

R � − min�I�X;Y�Z�,I�X;Z�Y�,I�Y ;Z�X�� . �13�

Note also that

R � − min�I�	X,Y
;Z�,I�	X,Z
;Y�,I�	Y,Z
;X�� , �14�

but that the first bound is more stringent �see the Appendix�.
Thus for R�0 a normalized r is given by

r =
R

min�I�X;Y�Z�,I�X;Z�Y�,I�Y ;Z�X��
. �15�

IV. STRUCTURE OF NETWORKS OF SPIKING NEURONS
IN VITRO

In this section we show how to use the information theo-
retic diagnostics of the previous section to construct connec-
tivity graphs for neuronal ensembles.

A. Graph construction in practice

The joint consideration of R and of pairwise mutual infor-
mation leads to a classification of the connectivity diagrams
of any three nodes. The summary of these results, which can
be implemented as an algorithm to map the network connec-
tivity, is given in Table II. An efficient algorithm computes
first the value of R for a chosen triplet of variables. This
determines how many links to attribute. The strength of these
links, whenever appropriate, is determined by mutual infor-
mation between pairs of variables. Whenever the consider-
ation of several trios implies different weights for the same
connection between two neurons, the results are averaged.

To determine whether measured values of R and I are
significant, we compute their values according to a null

model where every cell i in the network produces spikes at
the same average rate 	i as observed for each neuron’s actual
spike train, but whose temporal structure is otherwise ran-
dom. This corresponds to a number of spikes per unit time
given by a Poisson distribution with rate 	i or equivalently,
as we do in practice, a time interval between consecutive
spikes given by an exponential distribution. Under perfect
estimation this Poisson model generates statistically indepen-
dent spike trains between any two cells. In practice estima-
tion is imperfect and this procedure leads instead to very
small, but nonzero, values of R and I. Thus for each trio of
cells we take the observed R to be significant if it is larger
than 3 times that measured via the Poisson model. Otherwise
the trio is considered statistically independent with R=0. We
proceed similarly for the mutual information measured for
any two cells.

B. Graph-theoretic analysis

Next we characterize the structural properties of the re-
sulting networks in terms of graph-theoretic quantities. Al-
though all three graphs are small in terms of numbers of
nodes, we show that results about their network structure are
consistent for the different networks. Figure 4 shows the
weighted graphs for two of these networks. Figure 5 shows
the connectivity weight distribution and the histogram of r
for all cell trios.

The distribution of connectivity weights is well described
by an exponential. This implies that most links are weak,
with a few stronger ones tending to interconnect subsets of
cells. The distribution of r shows that most trios are associ-
ated with redundant structures that may be involved in short-
term memory functions. Nevertheless, a number of trios dis-
play r�0, indicating the existence of nontrivial functional
relations between measured cells, that may play a role in
information processing.

To compare the structure of these weighted graphs quan-
titatively to other complex networks we transform them into

TABLE II. The joint consideration of the values of R and of the binary mutual information I leads to a
classification of the connectivity arrangements between three stochastic channels. For R�0 only the two
strongest links are adopted. For R�0 we adopt three links as a general representation of the specific
functional interdependence between the three cells.

No three-cell connected structure

No connections: ∀i,j�	1,2,3
I�Xi ,Xj�=0

R=0 One connection: ∃!i,j�	1,2,3
I�Xi ,Xj��0

R�0 There is a three-cell connected structure

Two connections: R�0 �redundancy�
X↔Y ↔Z X↔Z↔Y X←Z→Y

Markov: Markov:

I�X ;Y�� I�X ;Z� I�X ;Z�� I�X ;Y�
I�X ;Z �Y�=0 I�X ;Y �Z�=0 I�X ;Y �Z�=0

R= I�X ;Z� R= I�X ;Y� R= I�X ;Y�
Three connections: R�0 �synergy�

X→Z←Y: Z= f�X ,Y�
Each variable is a function of all others.
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binary graphs, with each link set to zero or one if its strength
lies below or above a given threshold, respectively. Table III
shows the average clustering coefficient, diameter, and Pear-
son coefficient for degree-degree correlations for the three
networks as functions of the threshold and compares them to
results from 100 realizations of the standard null model—
viz., a network with the same node degrees but with random-
ized connections.

We see that in every case the neuronal graphs display
significantly higher clustering than the null networks. They
also show small diameters of the largest component d, of
order d� ln�N�, where N is the number of nodes. These two
properties together indicate that cortical networks in vitro,
like the neuronal network of the nematode �3�, are small
world graphs.

Finally we observe that cortical networks in vitro are
weakly disassortative—i.e., that the Pearson coefficient asso-
ciated with degree-degree correlations is, in most cases,
negative but small �31�. This indicates that nodes of dissimi-
lar degree preferentially connect to each other. Together
these measures show that networks of neurons, constructed
via the information shared by groups of cells, are signifi-
cantly different from randomized graphs, but share instead
many structural properties with other complex networks
�3,5,6�.

V. DISCUSSION AND CONCLUSIONS

The understanding of the functional network structures
used by living nervous systems to store and process informa-

tion is key to unraveling the mechanisms of their computa-
tional power. It is now possible to measure the activity of
networks of individual neurons and to start to identify such
informational structures, their development over time, and
their role in response to external stimuli �see, e.g., �32��.
Here we have shown how time series for networks of spiking
neurons can be treated statistically and analyzed in terms of
information-theoretic quantities to reveal how information is
shared, relayed, and processed by groups of cells. This analy-
sis generates networks of shared information, which are
proxies for the physical connectivity between neurons. In
fact, knowledge of this type of connectivity and its dynamics
may well suffice to reveal the underpinnings of collective
computation in networks of neurons.

We have also shown that consideration of information-
theoretic quantities beyond two cells can identify structures

FIG. 4. �Color� Weighted graphs for network of �a� 62 and �c�
33 recorded neurons. Panels �b� and �d� show the corresponding
networks selecting only the links with strength above 0.4. The
graphs are characterized by a large number of weak links that con-
nect almost every pair of cells and of fewer stronger links that tend
to interconnect subsets of neurons. Node size is drawn proportion-
ally to its total connectivity weigh.

FIG. 5. The probability distribution for weights of the inferred
network of 62 recorded cells �left�. This distribution is well de-
scribed by an exponential �dashed line�, with average connectivity
weight 0.294±0.019. The distribution of normalized r for the same
network �right�. Most trios show information redundancy �r�0�,
while a smaller number display synergy �r�0�. The central peak at
r=0, with probability p=0.091, consists of a fraction of 70% of
truly independent trios �R=0�, 22% with negative r�−0.05, and
8% with positive r�0.05. The other two networks exhibit quanti-
tatively consistent results, but with poorer statistics. These results
are suggestive that multineuron connectivity structures associated
with both information processing �R�0� and short-term memory
�R�0� are present in cultured neuronal networks in vitro.
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that are naturally higher order, revealing, for example, a cell
whose output is a nonlinear function of several others. The
specificity of such structures is lost when we represent them
as sets of binary links, as we have done here to produce
standard network analyses. The systematic mapping and
characterization of these functional modules goes beyond the
scope of the present work and will be pursued elsewhere.

Neglecting such functional specificity we have built net-
works of shared information, which we showed to be weakly
disassortative small-world graphs, in agreement with, e.g.,
the detailed neuronal network of C. elegans �3�, but in con-
trast to networks of correlation between large-scale brain
regions, identified via fMRI measurements �7�. The distribu-
tion of weights is approximately exponential, and multineu-
ron structures associated with information relaying dominate
over a smaller number of cell arrangements associated with
information processing. Regardless of the details of the spe-
cific proportions for these cellular arrangements we showed,
by identifying multi-neuron structures with R�0 and R�0,
that neuronal modules associated with short-term memory
and information processing coexist in disassociate neuronal
cultures in vitro. How these structures and their generaliza-
tions to larger cell numbers may be harnessed to perform
reliable computation remains perhaps the clearest single
challenge for future studies of information processing in neu-
ronal networks living in vitro.

These results raise several other interesting questions for
future research. It is natural to expand the analysis presented
here to include multi-information quantities involving more
cells, in order to identify the functional role of more complex
neuronal arrangements. It is also interesting to investigate
their change over time and under electrophysiological stimu-
lation. Finally, this type of analysis can be applied to any
distributed information processing system, natural or artifi-
cial, and should prove useful in revealing the computational
structures that constitute other types of nervous tissue, in
vivo and in vitro, and in creating mathematical models and
engineered systems that mimic them.
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APPENDIX

In this appendix we prove the equivalence of the defini-
tions of R, Eqs. �5� and �6�. This equality establishes that the
measure R of redundancy, proposed by Schneidman et al. in
Ref. �28�, can be written for three variables in terms of the
difference between the mutual information of a pair of vari-
ables and its mutual information conditional on a third cell
�5�.

We begin with the definition of R given two variables X
and Y, and upon consideration of a third Z, which is a can-
didate for having connections with X and Y or may be an
external stimulus:

R = I�X;Z� + I�Y ;Z� − I�	X,Y
;Z� , �A1�

where, as usual, the semicolon separates the states being
compared, so that the last mutual information is between the
joint state of 	X ,Y
 and Z. We will now prove that R, defined
in Eq. �A1�, can also be written as

R = I�X;Y� − I�X;Y�Z� . �A2�

Starting from Eq. �A1� we use the chain rule for mutual
information �27�:

I�	X1,X2, . . . ,Xn
;Z� = �
i=1

n

I�Xi;Z�Xi−1Xi−2, . . . ,X1� .

�A3�

Specifically for three variables �n=2�

TABLE III. Graph-theoretic measures for each of three cortical neuronal networks and as functions of the
weight threshold and their comparisons with the average and standard deviations obtained from a graph with
the same degree but randomized connections. Cultured neuronal networks are clearly distinguishable from
randomized networks with the same degree. They are small-world graphs with weakly disassortative degree
correlations.

Size
�recorded neurons N�

Threshold
�0,1�

Av. Clustering Diameter Assortativity

Actual Random Actual Random Pearson coeff.

N=20 0.1 0.89 0.52±0.04 2 2.97±0.03 −0.150±0.025

0.3 0.57 0.24±0.06 4 4.15±0.55 −0.040±0.048

0.5 0.32 0.05±0.10 1 2.10±0.70 −0.200±0.100

N=33 0.1 0.83 0.48±0.02 3 2.97±0.03 −0.114±0.001

0.3 0.61 0.26±0.04 4 3.99±0.30 −0.033±0.026

0.5 0.07 0.00±0.02 2 2.98±0.86 0.064±0.053

N=62 0.1 0.82 0.51±0.01 3 2.97±0.03 −0.025±0.004

0.3 0.60 0.37±0.02 4 4.00±0.20 −0.093±0.004

0.5 0.43 0.24±0.02 3 3.93±0.18 −0.102±0.006
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I�	X,Y
;Z� = I�X;Z� + I�Y ;Z�X� = I�Y ;Z� + I�X;Z�Y� ,

�A4�

I�	Y,Z
;X� = I�X;Y� + I�X;Z�Y� = I�X;Z� + I�X;Y�Z� ,

�A5�

I�	X,Z
;Y� = I�Y ;Z� + I�X;Y�Z� = I�X;Y� + I�Y ;Z�X� .

�A6�

These expression can now be used in Eq. �A1� to give

I�X;Z� + I�Y ;Z� − I�	X,Y
;Z�

= I�Y ;Z� − I�Y ;Z�X�

= I�X;Z� − I�X;Z�Y� . �A7�

Similarly we can write

I�X;Y� + I�Z;Y� − I�	X,Z
;Y�

= I�X;Y� − I�X;Y�Z�

= I�Y ;Z� − I�Y ;Z�X� , �A8�

I�Y ;X� + I�Z;X� − I�	Y,Z
;X�

= I�Y ;X� − I�Y ;X�Z�

= I�Z;X� − I�Z;X�Y� . �A9�

These identities taken together show that the definition of
R is symmetric under variable permutations and in particular
proves our proposition

R = I�X;Z� + I�Y ;Z� − I�	X,Y
;Z� = I�X;Y� − I�X;Y�Z� .

�A10�

As a corollary we see that R is fully symmetric—i.e.,

R = I�X;Z� + I�Y ;Z� − I�	X,Y
;Z�

= I�X;Y� + I�Z;Y� − I�	X,Z
;Y�

= I�Y ;X� + I�X;Z� − I�	Y,Z
;X�

= I�X;Y� − I�X;Y�Z�

= I�X;Z� − I�X;Z�Y�

= I�Y ;Z� − I�Y ;Z�X� . �A11�

Thus R can be computed efficiently through the most conve-
nient set of estimated distributions.

In the case of more than three variables analogous expres-
sions for R in terms of conditional mutual information can be
written easily, through Eq. �A3�, but become less elegant as
the distributions are now conditional on several variables.
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