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In this work, the calcium-induced aggregation of phosphatidylserine liposomes is probed by means of the
analysis of the kinetics of such process as well as the aggregate morphology. This novel characterization of
liposome aggregation involves the use of static and dynamic light-scattering techniques to obtain kinetic
exponents and fractal dimensions. For salt concentrations larger than 5 mM, a diffusion-limited aggregation
regime is observed and the Brownian kernel properly describes the time evolution of the diffusion coefficient.
For slow kinetics, a slightly modified multiple contact kernel is required. In any case, a time evolution model
based on the numerical resolution of Smoluchowski’s equation is proposed in order to establish a theoretical
description for the aggregating system. Such a model provides an alternative procedure to determine the
dimerization constant, which might supply valuable information about interaction mechanisms between phos-
pholipid vesicles.
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I. INTRODUCTION

Phospholipid vesicles �liposomes� are colloidal systems
that present a major interest in the pharmaceutical, cosmetic,
and food industry since they are biocompatible structures to
encapsulate proteins, nucleic acids, drugs, etc. Moreover, li-
posomes are considered as model systems of the cellular
membrane. In particular, they have been widely applied to
the study of biological transport through membranes, in-
duced aggregation phenomena, etc…�1–3�. Therefore, lipo-
somes play an important role in many research areas since
the early 60s. Besides their numerous medical applications,
liposomes could be considered as model colloidal systems
since magnitudes such as size, charge, and rigidity can be
easily controlled during their synthesis. In this sense, vesicu-
lar suspensions present the typical properties of colloidal dis-
persions from a physicochemical point of view. This twofold
role of liposomes is precisely the main advantage of this
system. Namely, a colloidal formalism of aggregation ap-
plied to phospholipid vesicles appears as a crucial step for a
better understanding of complex phenomena in cell biology,
such as the membrane fusion. In this sense, knowledge about
the temporal evolution of an aggregating colloidal system, as
well as the study of the geometrical properties of the result-
ing aggregates, have been demonstrated to be a key to un-
derstand and control the interaction mechanism between in-
dividual particles.

Due to the importance of the aggregation-fusion between
vesicles, in the last decades considerable progress has been
made toward the comprehension of the underlying mecha-
nisms and factors involved in these processes �1,4–6�. In
most of these works, it is well established that the ion-
induced vesicular aggregation and fusion depend essentially
on the composition, charge, size, and concentrations of the

liposomes, as well as on characteristics of the dispersion me-
dia such as pH, ionic strength, temperature, and type of ions
presented therein. In particular, the well-known fact that
Ca2+ is involved in many biological membrane fusion phe-
nomena results in numerous research works devoted to the
study of aggregation and fusion of pure bovine brain phos-
phatidylserine �PS� liposomes by effect of the divalent cat-
ions �4,5,7,8�. Accordingly, the main goal of this research
work is dedicated to deepen into the study of the
Ca2+-induced aggregation between PS liposomes by means
of a novel modus operandi based on the analysis of the ag-
gregation kinetics as well as the morphology of the resulting
aggregates.

From the point of view of colloidal science, an enormous
effort has been done in the past in order to reach a whole
knowledge of the particle aggregation phenomena from the-
oretical, simulation, and experimental approaches. However,
in reviewing the literature, the aggregation of “biological
particles” such proteins or vesicles has been scarcely studied
using the well-developed techniques from colloidal aggrega-
tion. This is the main interest of this work, to describe the
aggregation of vesicles using some methods from colloidal
science. This is the primal reason why in this work the ag-
gregation kinetics and cluster structure of the liposomes are
analyzed. On one hand, the term cluster structure refers to
the spatial distribution of the monomers into the aggregate.
When a scale-invariant growth appears the geometrical de-
scription can be expressed in terms of a cluster fractal dimen-
sion, df. In colloidal science, this magnitude can be straight-
forwardly determined by means of scattering techniques;
hence it is surprising that this magnitude has been rarely
employed in the studies of aggregation of liposomes as Lasic
claims �7�. Certainly, there are previous works in which li-
posomes and their aggregation processes are studied by light
scattering. However, the number of them that apply the no-
tion of fractal dimension is considerably scarce. For instance,
Bordi et al. �9� offers an advisable work in which light scat-
tering becomes a powerful tool to investigate polyion-*Email address: jcalleja@ugr.es
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induced aggregation but fractal dimensions are not consid-
ered by them. Stauch and Schubert �10� do apply this
concept to the study of the inner structure of chemically
modified liposomes �but as individual entities�. As far as we
know, only Lynch et al. looked into the kinetics of liposome
aggregation �induced by proteins in such case� by means of
turbidity measurements with the help of this concept �11�.

On the other hand, aggregation kinetics addresses the pos-
sibility of doing a whole description of the aggregating dis-
persion, i.e., to know at a fixed time the number of clusters
Nn�t� having n particles for each one. A feasible approach to
solving this nontrivial problem is the resolution of the
Smoluchowski equation at which the key parameters are the
“aggregation kernels”, i.e., a set of kinetic rate constants for
all possible cluster-cluster reactions. Additionally, the van
Dongen–Ernst homogeneity parameter, �, can be useful to
complete the description of an aggregating system �12,13�.

Historically, two limiting regimes have been identified in
colloidal aggregation: a rapid diffusion-limited cluster aggre-
gation �DLCA� and a slow reaction-limited cluster aggrega-
tion �RLCA�. Salt-induced aggregation of electrically stabi-
lized bare particles aggregating at low and high electrolyte
concentration is an example where these limiting regimes
have been successfully obtained. To date, both the resolution
of Smoluchowski’s equation �via the selection of an adequate
kernel� and the kinetics description in the van Dongen–Ernst
scheme have not been applied to liposome aggregation.

Bearing all this in mind, the paper is organized as follows:
First, an overview of the colloidal aggregation theory is pre-
sented. Next, a section in which the experimental procedures
are described. Finally, experimental and numerical results are
shown. Namely, the spatial distribution of liposomes into the
clusters is estimated via measurements of the aggregate frac-
tal dimension obtained by means of static light scattering
�SLS�. On the other hand, dynamic light scattering �DLS�
technique is used to describe the kinetics of the liposome
aggregation induced by calcium. In addition, an evolution
kinetic model based in the numerical resolution of Smolu-
chowski’s equation is proposed in order to establish a theo-
retical description for the aggregating system.

II. THEORETICAL BACKGROUND

A. Fractal geometry and static light scattering

The spatial correlations between particles of a structure
are usually accounted for the pair correlation function c�r��,

c�r�� =
1

V
�
r�

��r� + r�����r��� , �1�

where V is the volume of the structure and ��r�� the local
density ���r��=1 if r� belongs to the structure, otherwise it is
equal to zero�. The functional behavior of c�r�� can be used as
a criterion to determine the fractal growth of an object �ag-
gregate�. An isotropic finite object presents a nontrivial
scale-invariant growth if �14�

c�r� � rdf−d f�r/Robj� , �2�

where d is the topological spatial dimension, df is the fractal
dimension, Robj the average radius of the object, and f�x� is a
cutoff function in which the finite size of the object is con-
sidered, satisfying f�x��1 for x�1 and f�x��0 for x�1.

According to its definition in scattering theory, the struc-
ture factor S�q� is related with the pair correlation function
through a Fourier transform �14�. This relationship gives an
equivalent condition for �2�, expressed via S�q�,

S�q� � q−df �1/Robj � q � 1/a� , �3�

where the finite size of the constituent particles of the object
has been considered through the domain given by the in-

equality, q� =k�i−k�s is the scattering vector, defined as the dif-
ference between the incident and the scattered wave vectors,
and a is the average radius of the particles.

Thanks to this equivalent description in the q space given
by the structure factor, the fractal geometry of a distribution
of aggregates in a three-dimensional �3D� suspension can be
determined by means of an SLS experiment, where experi-
mental values for S�q� and, in the case that fractal nature
appears, df, are obtained. This experimental access is given
by

S�q� =
�0�I�q��
��I0�q��

, �4�

where we assume q= �4� /�m�sin�� /2� �elastic light scatter-
ing�, �m being the wavelength of the incident light beam in
the medium, � is the scattering angle, � is the particle con-
centration, and �I�q�� is the time-averaged light intensity
scattered by the particle dispersion. The lower index 0 indi-
cates the corresponding values to the diluted and disordered
suspension.

B. Diffusion and dynamic light scattering (DLS)

The temporal fluctuations in the instantaneous electric
field, E�q , t�, scattered by a particle suspension and detected
in a far-field position are the measurable effect of the diffu-
sive motion of the particles. The time correlations of these
fluctuations are studied in terms of the normalized field au-
tocorrelation function g���, and its expression for a polydis-
perse cluster system adopts the form �15�

g��� =
�E�q,0�E*�q,���

�I�q��
=

1

�I�q���n

bn�q�exp�− �n�� , �5�

where bn�q� contains the relative frequency and the structure
of an n-particle cluster and �n is its associated decay rate in
which rotational and translational diffusions are included,

�n = Dnq2 + 6Dn
rot, �6�

where Dn and Dn
rot are the translational and rotational diffu-

sion coefficients of an n-particle cluster, assuming that Dn
and Dn

rot are uncoupled. Taking into account the typical val-
ues for q and the average cluster size, through its hydrody-
namic radius, we can assume that rotational and translational

ROLDÁN-VARGAS et al. PHYSICAL REVIEW E 75, 021912 �2007�

021912-2



diffusions happen in two separated time scales and

Dnq2 � Dn
rot �7�

can be considered as a plausible assumption �13�.
In order to obtain the average value for the translational

diffusion coefficient D̄�q� over the system at any time, the
experimental autocorrelation function is treated as an expan-
sion in powers of �. This treatment is known as cumulant
method �16�. The expression for its logarithm results,

ln�gexp���� = − 	1� +
1

2
	2�2 + . . . , �8�

where 	i is the ith-order cumulant. Relating �5� with �8� and
assuming �7�, we find that 	1 represents the average decay

rate, 	2 contains the standard deviation, while D̄�q� is given
by

D̄�q� =

�
n

bn�q�Dn

�
n

bn�q�
=

	1

q2 , �9�

which is the basis for the access, through a DLS experiment,
to the aggregation kinetics of a particle suspension.

C. Aggregation kinetics and Smoluchowski’s equation

A time evolution model for the cluster size distribution
arising in an aggregating system may be obtained by solving
Smoluchowski’s rate equation �17,18�

dNn

dt
=

1

2 �
i+j=n

kijNiNj − Nn�
i=1




kinNi, �10�

where Nn�t� can be used as a frequency distribution in order
to obtain the mean value of any function of n. kij is a set of
constants called kernel, hypothetically infinite, in which the
whole kinetic information is contained. The aggregation ker-
nel, kij, quantifies the average rate �for all orientational and
structural configurations� at which two i- and j-particle clus-
ters react and form an �i+ j�-particle cluster. The above equa-
tion, in which fragmentation does not occur, is applied to
diluted systems where only binary reactions are contem-
plated.

A general scheme to classify the aggregation kernels at-
tending their homogeneity was proposed by van Dongen and
Ernst �19�. This classification can be expressed as follows:

k�ai��aj� 	 c�kij, �� � 2�

ki�j 	 i�j�−�, �� − � � 1� , �11�

where c
1 is a constant, the homogeneity parameter, �,
correlates the aggregation rates involving two different reac-
tions between similar sized clusters, while � controls the
rates for the reactions involving different sized clusters. Re-
strictions over � and � come from the nonphysical possibil-
ity for which cluster reactivity cannot rise faster than its
mass. Restricting ourselves to nongelling kernels ���1�, the

scaling theory �20� gives us the asymptotic behavior in time
for the number-average cluster size, n̄n�t�, as a function of �,

n̄n�t� =

�
j

jNj

�
j

Nj

	 t1/�1−��. �12�

On the other hand, the n dependence for the n-particle cluster
translational diffusion coefficient, Dn, was estimated assum-
ing the aggregates to be fractal objects �19�,

Dn

D0
= �n�−1/df , �13�

where D0 is the diffusion coefficient of the free individual
particles. Considering �12� and �13�, the following

asymptotic behavior for D̄�t ;q� can be predicted:

D̄�t;q� 	 t−�, �14�

where �=1/ �1−��df. This behavior is the key to associate a
type of kernel to the results obtained for experimental aggre-
gation kinetics.

In order to describe DLCA regime, mentioned in the In-
troduction, the Brownian kernel is commonly accepted
�17,18�,

kij
Brown =

1

4
k11

Brown�i1/df + j1/df��i−1/dh + j−1/dh� , �15�

where k11
Brown

is the dimer aggregation rate, df is the previ-
ously defined cluster geometric fractal dimension, and dh is
the cluster hydrodynamic fractal dimension. In this work, we
assume for liposomes dh=df as other authors do for rigid
particles �21,22�. In any case, the plausibility for this as-
sumption will be argued later.

A common kind of kernel for describing slow-type regime
evolution usually considers the Brownian kernel as a limit,
introducing the function Pij �depending on a sticking prob-
ability, p11� in order to impose a rate of effective contacts
�23�,

kij = kij
Brown

Pij, �Pij = p11�ij��� , �16�

where the probability for an effective monomer-monomer
contact, p11, has been separated from the total effective com-
binations of contacts between two i and j clusters, through
the � parameter, where �=2�. � lies in general between the
limiting values 0 and 0.5, but an expected value comes from
the hypothesis that only particles at the surface of the cluster
contribute in the collision �12�. For this multiple contact
�MC� diffusionlike case, � becomes:

� = 3�df − dfD�/dfdfD. �17�

Here df is the fractal dimension for the slow aggregates
while dfD is the diffusive fractal dimension. As expected, this
nondiffusive kernel reduces to the Brownian case when
df =dfD.
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III. MATERIALS AND METHODS

PS from bovine spinal cord was obtained from Lipid
Products �Nutfield, UK�. Phospholipid at the proportions in-
dicated below were dissolved in a mixture �2:1, volume ra-
tio� of chloroform and methanol in a round-bottom flask and
dried in a rotary evaporator under reduced pressure at 40 °C
to form a thin film on the flask. The film was hydrated with
deionized water �MilliQ, Millipore, USA� to give a lipid con-
centration of 30 mM. Multilamellar liposomes �MLV� were
formed by constant vortexing for 4 min on a vortex mixer
and sonication in a Transonic Digitals bath sonifier �Elma,
Germany� for 10 min. MLV were downsized in an Extruder
device �Lipex Biomembranes, Canada� through polycarbon-
ate membrane filters of variable pore size under nitrogen
pressures of up to 55�105 N m−2 �24�. Liposomes were ex-
truded in three steps: first, three consecutive extrusions
through a 0.8 �m pore diameter filter and three other con-
secutive extrusions through two stacked 0.4 �m membranes.
The resulting lipid suspension was then extruded fifteen con-
secutive times through two stacked 0.2 �m filters. After
preparation, a nitrogen stream was passed to displace the air,
and finally, liposomes were stored at 4–7 °C in a refrigera-
tor in quiescent conditions until their use.

A. Characterization of the liposomes

To characterize a liposome suspension, two different re-
quirements are necessary. The first involves their character-
ization in size and shape while the second concerns the de-
termination of the initial liposome concentration, which is a
troublesome problem when vesicles are used as colloidal par-
ticles.

In order to determine liposome size, several DLS experi-
ments were performed for different diluted liposome volume
fractions and angles, verifying a constant value �in time and
experiment� for the mean particle diffusion coefficient,

D̄exp�t ;q�, obtained using the cumulant analysis given by �8�.
The experimental field autocorrelation function results from
the scattered intensity autocorrelation function, gI���,
through the Siegert relation, ��1 being a constant,

gI��� = 1 + �2�gfield����2. �18�

An approximated value for the mean liposome external
radius comes from the hydrodynamic radius Rh associated to

D̄�t ;q� via the Stokes–Einstein relation. Combining these
previous DLS experiments with a SLS experiment, an alter-
native size determination can be done by fitting the form
factor, P�q�, realizing �I0�q��� P�q�. Theoretically, a hollow
sphere is usually accepted as a simple geometrical model to
describe the form of a liposome. The form factor for a hol-
low sphere in the context of the Rayleigh–Gans–Debye
theory is given by the expression

P�q� = 
3
sin�qR� − qR cos�qR� − sin�tqR� + tqR cos�qR�

�1 − t3��qR�3 �2

,

�19�

where R is the inner radius of the sphere and R�t−1� the
thickness of the shell, a value which when applied to unila-

mellar liposomes is close to 4.5 nm �25�. Since a direct esti-
mation for the size distribution in a polydisperse suspension
is an ill-conditioned problem, a probability distribution has
to be assumed. In order to consider the intrinsic size poly-
dispersity, Schulz’s distribution is commonly used as a semi-
empirical model, where thickness remains constant. This
continuous distribution is defined by two parameters, the
mean inner diameter, �̄, and the relative standard deviation s
�26,27�. In this work, however, the polydispersity description
has been done by using an alternative discrete trimodal dis-
tribution, characterized by three modal values and their
weights, and related with a Schulz distribution asking for
equal values for the five first moments for both distributions
�the sixth condition is the normalization condition for the
weights�. The best estimation comes from the optimum val-
ues for �̄ and s that minimize mean quadratic error between
the linear combination given by the trimodal distribution

Ptri�q� = �
i=1

3

aiPi�q� , �20�

and the experimental data, where Pi�q� is the form factor for
a vesicle with modal inner radius Ri according with �19�, is
weighted by ai. Figure 1 shows the best fitting for the form
factor �normalized by the value corresponding to 30° � of the
PS vesicles used within this study and its optimum trimodal
distribution; the best agreement was reached for �̄=2R
=184 nm and 20% polydispersity. The previous DLS experi-
ments noted above, averaging six individual measures, pre-
sented a similar value, �̄=2R=179 nm, for the same suspen-
sion.

In order to verify the initial liposome concentration, we
have followed the procedure by Haro–Perez et al. �28�. If we
consider a homogeneous distribution of vesicles in space, we
can define a typical distance, L, between a pair of neighbour
particles associated to a volume fraction �v,

L = � 4

3
�Rext

3

�v



1/3

, �21�

where Rext is the mean external radius of the vesicles.

FIG. 1. Normalized form factor P�q� / P�q0�. Open circles stand
for experimental values, according to �I0�q��� P�q�, whereas solid
line denotes the best trimodal fit given by Eq. �20�.
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On the other hand, if the whole PS mass is forming
vesicles, the mass fraction, x, can be related with �v through

�v =
x

4��Rext
3

− R3�
3

��

4�Rext
3

3
, �22�

where ��=1.015 is the relative density PS/water �29�.
Although the structure factor contains the whole informa-

tion of the interparticle distance distribution through its rela-
tionship with the pair correlation function, it is useful to give
an interpretation in terms of Bragg’s law for the interference
peak in a nonaggregating and structured dispersion in order
to check the expected value for the volume fraction from a
known mass fraction. We have obtained the experimental
structure factor corresponding to a mass fraction x=0.0031,
where three individual measures were done at each angle.
Bragg’s law gives an experimental approach to the most fre-
quent distance, L, for a pair of vesicles in the suspension
related with a difference in phase, ��, for the field intensity
scattered by them,

�� = qmL = 2� . �23�

The maximum value for S�q� in the previous structure
accounts for qm=0.0120 nm−1, corresponding to �v
=0.0219 using �21� and �23�. By means of �22� we obtained
�v=0.0227, where only a relative deviation of 3.5% comes
out.

B. Experiment

The light-scattering experiments presented in this paper
were performed using a slightly modified Malvern 4700 Sys-
tem �UK� working with a 632.8 nm wavelength He-Ne laser.
Aggregation was monitored simultaneously by SLS and
DLS. For SLS experiments, the photomultiplier arm was pre-
viously located at the reference position in order to set the
zero angle. After that, the mean scattered intensity was ob-
tained for different angles in the range 10° –100°. For DLS
experiments, the scattered intensity autocorrelation functions
were determined at different times and a fixed angle of 90°
during aggregation and registered by the same computer
which controls the instrument. Data analysis was performed
using our own computer software.

Aggregation was induced by adding electrolyte to the ini-
tially stable aqueous suspensions of liposomes. The water
used for sample preparation was purified by inverse osmosis
using Millipore equipment. The different electrolyte-particle
mixtures were prepared by mixing equal amounts of buffered
electrolyte solution and particle suspension through a
Y-shaped mixing device in a cylindrical quartz glass cuvette.
The electrolyte concentration was varied from 1 mM to
7 mM of CaCl2.

The cluster fractal dimension was obtained by measuring
the time-averaged scattered light intensity, �I�q��, as a func-
tion of the scattering vector. The inequality present in Eq. �3�
limits the range for data interpolation, so the correct choice
for this range deserves explanatory comments. Such expres-
sion is strictly accurate in 1/Raggr�q�1/Rext �where Raggr

is the radius of the aggregate�. However, in practice, a com-
monly accepted criterion to choose the highest q value is
qmax�1/Rext, whereas the election for the lowest q considers
qmin�1/Raggr. This effective range ensures a nonincursion
into Porod and Guinier regimes, respectively �30�.

For the DLS results obtained in this work, even in the

most unfavourable case �2.5 mM�, the ratio D̄exp/D0 is lower
than 0.2 �when the fractal regime holds�; this implies that in
a crude calculus, the corresponding Raggr reaches about
1000 nm and qmin�0.001 nm−1, in accord with the men-
tioned condition. In our experiments, the smallest value for
the modulus of the scattering vector has been, in all cases,
qmin�0.002 nm−1, at which reliability is guaranteed, so a
decade in q is covered. A right election for the interpolation
interval discards possible misinterpretations between fractal
dimensions close to 2 �e.g., see Table I, where df =1.91 at
2.5 mM� and the exponent at the Guinier regime, which typi-
cally operates at 1 /Raggr�q.

�I�q�� measurements were performed for different electro-
lyte initial concentrations, stopping the aggregation in an ad-
vanced stadium by diluting the original mixture under a non-
aggregating electrolyte concentration, where a previous DLS
experiment was done in order to probe the stabilization in
time for the mean diffusion coefficient value. Special atten-
tion has to be paid in order to determine the time required by
an aggregating system to evolve to a stable state in which its
self-similar growth becomes patent, reaching a constant
value for the fractal dimension. The necessity to stop the
aggregation is obviously imposed by the fact that a complete
I�q� scan takes additional time. In consequence, a rigorous
measurement protocol has to be chosen. To determine the
time at which the SLS scan starts, we made previous experi-
ments, for each sample, stopping the aggregation at different
times in order to find out the sufficient time for which a
permanent value for the fractal dimensions were verified.
With the exception of the 2.5 mM sample, 1 h resulted in
enough in all cases for the initial monomeric concentrations.
The results presented within this work were obtained for this
self-similar aggregation stadium, according with the com-
mented experimental protocol, averaging 10 I�q� scans for
each sample.

It is essential to confirm, when we deal with deformable
and potentially fusionable particles, the permanence of the
individuality, as well as the form, of the initial monomers
during the aggregation process. The well-correlated results
obtained for the fractal dimension via SLS constitute them-
selves an indirect confirmation. We have to take into account
that according to Eq. �4�, the detected signal for the aggre-

TABLE I. Experimental kinetic exponents, fractal dimensions,
and van Dongen–Ernst homogeneity parameter.

�Ca2+� �mM� � df �

2.5 0.85±0.03 1.91±0.07 0.38±0.04

3.5 0.76±0.02 1.84±0.07 0.28±0.04

5 0.54±0.02 1.75±0.06 −0.06±0.07

7 0.52±0.02 1.75±0.05 −0.10±0.08
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gating system is normalized by the detected signal for the
diluted system, in which only a monomer information is con-
tained. The resulting signal will have the structural cluster
information, with the expected potential behavior, only if the
initial monomers are still present in the clusters. In order to
have additional evidence, parallel fluorescence experiments,
based in the so-called ANTS/DPX assay �31�, were per-
formed. No significant reduction in the fluorescent intensity
due to the quenching of ANTS by DPX was registered for
the electrolyte and particle concentrations used within this
work.

IV. RESULTS AND DISCUSSION

A. Liposome aggregation: Kinetic exponents

In a preliminary set of experiments, we found that aggre-
gation took place for �CaCl2��2.5 mM. For lower values,
neither the diffusion coefficient nor the form factor under-
went significant changes. At any rate, similar aggregation
salt concentrations were reported by other authors �4�. Apart
from that, we have determined the optimal liposome volume
fractions to carry out aggregation experiments above this salt
concentration, 0.15% for 2.5 and 3.5 mM, and 0.08% for 5
and 7 mM. The liposome volume fraction is a critical param-
eter from an experimental point of view. It should be chosen
to avoid too fast or slow aggregation kinetics.

Time-resolved DLS was employed for monitoring the ex-
perimental average diffusion coefficient of the aggregates,

D̄exp�t ;q�. In Fig. 2, the time evolution of D̄exp�t ;q� is plotted
in a double-logarithmic scale for �CaCl2�=2.5, 3.5, 5, and
7 mM. The curve decreases as time increases and is charac-
terized by a power law at large times. This suggests that the
cluster size distribution may be described by the dynamic

scaling approach in this time interval. As can be observed,
the data align on a straight line even for quite small clusters.

This observed power law, D̄�t ;q�	 t−�, is also obtained in all
cases. Accordingly the � parameters were obtained by fitting
the experimental data. Table I contains the obtained values. It
should be pointed out that the values for 5–7 mM are in
good agreement with the theoretical prediction given for the
diffusion regime ��=1/df �0.57, since df =1.75 is widely
accepted for DLCA� �32,33�. DLCA is considered the result
of the absence of a repulsive barrier of potential between
particles in which aggregation happens at any contact due to
an attractive well between the particles, typically operating at
very short distances. Regarding the kinetic exponent,�, this
parameter decreases with increasing the salt concentration,
reaching a stable value at 5 mM.

B. Liposome aggregation: Fractal dimension

Although an implicit single scattering assumption is con-
sidered in the determination of fractal dimensions via SLS, it
is clear that any monomer inside an aggregate scatters a field
proceeding from the incident beam radiation in addition to
the fields scattered by the rest of the monomers in the cluster.
The relevance of this intracluster multiple scattering yields a
coupled problem that still remains open. A complete theoret-
ical approach to this problem would involve the size and
geometry of the aggregates, as well as the monomers, the
optical properties of the scatterers �through their refractive
index�, and the wavelength of the incident light �30�. An
early theoretical work by Chen et al. �34� showed no influ-
ence of multiple scattering on the measurement of fractal
dimensions �through the behavior of S�q�� for the range con-
sidered in Eq. �4�, even for df 
2. This theoretical prediction
was experimentally confirmed by Lattuada et al. �35� for

FIG. 2. Normalized experi-
mental mean diffusion coefficient

D̄exp/D0 as a function of time for
�a� 2.5 mM, �b� 3.5 mM, �c�
5 mM, and �d� 7 mM. Open
circles stand for experimental val-
ues, whereas solid lines denote the
asymptotic fit according to �14�.
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clusters and monomers comparable in size and refractive in-
dex to the particles used within this work �n=1.36, �36��.
Additionally, the validity of SLS experiments to determine
fractal dimensions has been proven for aggregating suspen-
sions of polystyrene latexes, involving large clusters and par-
ticles, in which the refractive index of the scatterer particles
is considerably greater �n=1.49� �37,38�. These experiments
confirm the values for the fractal dimension obtained by
computer simulations under rapid and slow aggregation re-
gimes. Apart from that, we consider the experimental con-
vergence to a DLCA fractal dimension �df �1.75� as an in-
dication of self-consistency for a SLS assay under our
suspension conditions, supporting the single scattering as-
sumption.

Having determined the structure factor from light-
scattering data �Eq. �4��, df was obtained by fitting the ex-
perimental data to the power law given in Eq. �3�. Good
agreement was reached in all cases. Figure 3 shows typical
plots of the structure factor for �CaCl2�=2.5, 3.5, 5, and
7 mM. It can be clearly seen that this function presents a
functional behavior from which the cluster fractal dimension
can be easily obtained. In Table I the fractal dimensions es-
timated at different electrolyte concentrations are summa-
rized. As can be concluded, the fractal dimension decreases
with increasing electrolyte concentration and ranges from
1.91 to 1.75. It should be noted that the latter fractal dimen-
sion is the well-established value for the DLCA regime, so at
5–7 mM the liposomes have reached such a regime and
form ramified open structures. For lower salt concentration,
more dense structures will be formed, as the increase in frac-
tal dimension reveals �1.84–1.91�. Consequently, SLS ex-
periments provide us a direct access to the aggregate struc-
ture and a clear observation of the different aggregation
regimes. In a previous work by Lynch et al., a fractal dimen-

sion value was reported by fitting the time evolution of tur-
bidity in protein-induced liposome aggregation, although
these authors did not analyze the aggregate morphology.

Once the � parameter is known, and using the fractal
dimension obtained from independent SLS experiments, the
homogeneity � parameter was determined by �14�. The re-
sults are also summarized in Table I. For the 5 and 7 mM,
the � value is practically 0 within experimental uncertainty.
This is the well-accepted value for DLCA kinetics. The �
values between 0.3 and 0.4 point toward a relatively slow
aggregation kinetics.

C. Liposome aggregation: Time evolution of the diffusion
coefficient

The values of fractal dimensions obtained in the preced-
ing section will be used as input in our time evolution model,
which involves the resolution of Smoluchowski’s equation.
As mentioned in the theoretical background, we are assum-
ing dh�df. Such assumption is well admitted for hard par-
ticles �see, for instance, �21,22��. Although no experimental
test has been reported in the same way for liposomes, we
have found that the vesicle sizes determined by static light
scattering and dynamic light scattering are practically iden-
tical, which suggests that the liposome flexibility does not
affect the diffusive behavior of the monomers. On the other
hand, the fluorescence assays �mentioned above� point to the
absence of fusion after aggregation, that is, monomers con-
serve their individuality inside the aggregates. Additionally,
the good correlation for the results of the SLS experiments
indicates that the form factor of the monomers appears to be
contained in the signal scattered by the aggregating system
�as discussed previously�. Therefore, in the light of our ex-
periments, liposome aggregates seem to behave as hard ob-

FIG. 3. Structure factor S�q�
for �a� 2.5 mM, �b� 3.5 mM, �c�
5 mM, and �d� 7 mM. Experimen-
tal values �open circles� result
from Eq. �4�. Solid lines represent
the theoretical fit according to the
expected behavior given by �3�.
Vertical dashed lines denote the
interpolation q ranges.

AGGREGATION OF LIPOSOMES INDUCED BY CALCIUM:… PHYSICAL REVIEW E 75, 021912 �2007�

021912-7



ject structures �for which this assumption holds�.
The experimental values for � and df obtained above for

5–7 mM suggest a DLCA regime, while a slow regime can
be assumed for smaller salt concentration values. At this
point we are going to corroborate these features for the
whole time evolution with the appropriated kernel model at
Smoluchowski’s rate equation.

First, we describe the numerical calculation procedure
used here. The existence and uniqueness for the solution of
Smoluchowski’s equation depend on the election for the ker-
nel and the initial condition. For the different proposed ker-
nels, a normalized evolution problem was resolved in terms
of the relative concentrations, Xn�T�=Nn�T� /N1�0�, where
T= t�N1�0�k11/2�, Kij =2kij /k11, and initial monomeric condi-
tions were assumed,

dXn�T�
dT

=
1

2 �
i+j=n

KijXiXj − Xn�
i=1




KinXi, �X� �0� = �1,0, . . . �� .

�24�

In order to obtain the master curve �X� �T��, which is asso-
ciated to a �df ,�� input and solution to this dimensionless
problem, numerical calculations were carried out by cutting
off the number of equations, Nc, for the previous system,
taking under consideration the error related with the non-
computed equations. In order to neglect this cutting-off error,
the conservation for the number of monomers was imposed
within the whole integration process. This conservation con-
dition can be expressed as

abs��
i=1

Nc

iXi�T� − 1� � � � 0, ∀ T , �25�

� being the imposed accuracy.
The numerical algorithm was based in a Runge–Kutta

fourth-order explicit iterative method.
The estimation for the numerical diffusion coefficient,

D̄num�t ;q�, was done according to light-scattering theory in

which D̄�q� may be expressed, at any time, as

D̄�q� =

�
n=1

Nc

bn�q�Dn

�
n=1

Nc

bn�q�

, �26�

where bn=Nnn2S�qRg� and S�qRg� is the structure factor of
an n-particle aggregate with radius of gyration Rg �15�. In
literature, several functional forms for S�qRg� can be found.
The main difficulty lies in obtaining an expression for the
structure factor valid for the whole range qRg
1. We adopt
the expression calculated by Lin et al. �39� directly from
computer-generated clusters obtained under diffusion- and
reaction-limited conditions.

In order to compare experimental data for the diffusion

coefficient D̄exp�t ;q� with those obtained from the expres-

sions �26� and the solution of �24� for D̄num�t ;q�, a transfor-
mation between the normalized time in the numerical model

into the real one for the experimental data should be done.
The relationship must adopt the form of an afin transforma-
tion,

T = mt + n , �27�

where m=N1�0�k11/2� tagg
−1 , tagg is the so-called aggregation

time and n /m gives us the possible delay between the start of
the experimental measure and the start of the aggregation
process. The values for m and n were determined by impos-
ing the minimum distance between numerical and experi-
mental data through their mean quadratic error over the
whole time evolution. This optimization problem takes the
form

min
m,n

E�m,n� = min
m,n

�
i

�D̄num�mti + n� − D̄exp�ti��2. �28�

According to the � and df values obtained, we will analyze
the results for 5 mM as a representative case of DLCA re-
gime using the Brownian kernel. Figure 4 shows a good
accord between the theoretical curves and the experimental
data in the whole time range. This best fitting between nu-
merical and experimental data corresponds to k11=k11

Brown

= �9.3±1.1�10−20 m3 s−1. Although this value agrees with
those determined by other authors for liposomes �40�, it is
significantly smaller than the value predicted from Smolu-
chowski’s diffusion model �17,18� and obtained for other
systems �latexes�. This model assumes that free diffusion
works at distances larger or equal than 2a �i.e., geometrical
contact�. Our � and df data suggest that this hypothesis is
valid at large distances. In our opinion, however, the dis-
agreement mentioned above might be due to the fact that this
free diffusion model is not properly working at short dis-
tances for liposomes. Although the scope of this paper does
not go beyond the geometrical and kinetic properties, this
result points to differences in the interaction mechanisms be-
tween liposomes and other model systems at short distances.

Now we will investigate a first case of slow aggregation
regime �3.5 mM�. Figure 5 shows the experimental data and
three different theoretical fittings. As expected, the solution
obtained using the Brownian kernel is not able to capture the

FIG. 4. Normalized mean diffusion coefficient D̄ /D0 as a func-
tion of time �5 mM�. Solid line shows the numerical solution for
Smoluchowski’s equation, assuming the Brownian kernel. Open
circles denote the experimental values.
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asymptotic behavior. In the attempt to improve the agree-
ment between experimental data and the theoretical model,
the MC kernel given by the expression �17� was applied.
Here df =1.84 and dfD=1.75. Certain improvement is
achieved but at very large times the agreement is still rather
poor. Taking into account the general slow aggregation
model given by �16� in which �=2� and having experimen-
tal access to �, we explore if by using this value, a complete
description over the whole time range can be done. This is
somewhat logical since the experimental � successfully cap-
tures the asymptotic behavior. This result �with �=0.28� is
also plotted in Fig. 5. As can be seen, the agreement is con-
siderably improved. In this case, k11= �3.6±0.4�10−20 m3 s−1,
which implies p11=k11/k11

Brown=0.32�1/3. These quantities
are of the order of those reported by other authors practically
at the same conditions �41�. p11 can also be interpreted in
terms of a energy barrier with the help of the Arrhenius equa-
tion. In this case, such barrier would be of the order of
�3/2�kBT �where kB is Boltzmann’s constant and T the abso-
lute temperature�. In fact, a slow aggregation regime is char-
acterized by a residual repulsive barrier with height compa-

rable to the mean kinetic energy of the reacting particles.
Concerning the other slow aggregation �2.5 mM�, the

same fittings as those mentioned previously were tried. Un-
fortunately, the accord was not so good. In our opinion, this
bad description comes from the possibility of fragmentation,
which is not accounted for in Smoluchowski’s approach con-
sidered here.

V. CONCLUSIONS

The aggregation of PS liposome dispersions has been
studied in terms of the fractal dimension and the homogene-
ity parameter of the van Dongen–Ernst. Cluster structure and
aggregation kinetics found at 5–7 mM of divalent Ca indi-
cate that the DLCA regime was reached. For these salt con-
centrations, the Brownian kernel was able to describe the
time evolution of the effective diffusion coefficient. For
lower calcium concentrations, the fractal dimension and the
homogeneity parameter suggest a transition from DLCA to a
slow aggregation regime.

The Brownian kernel does not explain the whole time
evolution of the effective diffusion coefficient for the slow
kinetics. Although the multiple contact kernel improves the
predictions, a slightly modified kernel is required. In this
framework, an alternative procedure to determine the dimer-
ization constant has been put forward in both rapid and slow
cases. The values here obtained are in good agreement with
others reported previously by different methods.
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