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We study the transient regime of type-II biophysical neuron models and determine the scaling behavior of
relaxation times � near but below the repetitive firing critical current, ��C�Ic− I�−�. For both the Hodgkin-
Huxley and Morris-Lecar models we find that the critical exponent is independent of the numerical integration
time step and that both systems belong to the same universality class, with �=1/2. For appropriately chosen
parameters, the FitzHugh-Nagumo model presents the same generic transient behavior, but the critical region
is significantly smaller. We propose an experiment that may reveal nontrivial critical exponents in the squid
axon.
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I. INTRODUCTION

The search for biophysical models for information pro-
cessing systems has led to a variety of model neurons which
describe the dynamics of the membrane potential. Collective
properties arise from their interaction through several pos-
sible architectures and types of couplings. These can be
chemical, voltage-gated synapses, simpler proteic electrical
connections, or even just electrical ephaptic interactions aris-
ing between neighboring nerve fibers. Maybe the most strik-
ing feature of a neuron is the threshold of the stimulus that
separates spiking from nonspiking regimes. Spiking neurons
generate telltale signatures which have served as the basis for
frequency-dependent neural codes, an idea that can be traced
back to the work of Adrian in the 1920s �1�. Although of
paramount importance to neural dynamics, spike frequencies
do not tell the complete story. Subtle computations may arise
from subthreshold dynamics such as for examples in the
early stages of the mammalian visual system, olfactory bulb,
and cortex. In many cases the key to the information dynam-
ics lies in the transients, either below the current threshold to
generate action potentials or the threshold to generate infinite
sequences of spikes. In this paper we investigate transient
spike trains of single model neurons since this might have a
bearing on the collective behavior, i.e., computational capa-
bilities, of subthreshold assemblies of neurons.

A dynamical system approach reveals that universal bifur-
cation scenarios for the firing behavior appear irrespective of
the specific membrane ion channels and microscopic details
involved. Full characterization of these bifurcation routes is
important for a deeper understanding of how they affect the
firing behavior and possible implementation of neural codes.
For example, it is now acknowledged that bistable behavior

and the small range of firing frequencies in neurons that un-
dergo subcritical Hopf bifurcations prevent a robust use of a
pure frequency code.

The transient behavior of neuron models has not received
much attention in either experimental or theoretical studies.
In this paper we study the divergence of transient times in a
class of conductance-based models and show that it follows a
universal critical behavior. We propose an experiment that
may test our theoretical predictions and discuss how neurons
could employ transients for computational purposes.

II. TRANSIENTS IN TYPE-II MODELS

The Hodgkin-Huxley �HH� model is a biophysically mo-
tivated system of four coupled nonlinear differential equa-
tions that describe the dynamics of the membrane potential V
of the squid giant axon �e.g., �2,3��:

C
dV

dt
= GNam

3h�ENa − V� + GKn4�EK − V� + GL�EL − V�

+ I�t� ,

dxi

dt
= �xi

�V��1 − xi� − �xi
�V�xi. �1�

xi stand for the three gate variables xi=m, h, and n describing
the activation of ionic channels and �xi

,�xi
are voltage-

dependent transition rates �3�:

�m�V� =
2.5 − 0.1V

e�2.5−0.1V� − 1
,

�m�V� = 4e−V/18,

�h�V� = 0.07e−V/20,*Electronic address: mcopelli@df.ufpe.br
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�h�V� =
1

e�3−0.1V� + 1
,

�n�V� =
0.1 − 0.01V

e�1−V� − 1
,

�n�V� = 0.125e−V/20, �2�

where voltages are expressed in mV, rates in ms−1,
C=1 �F/cm2 is the specific membrane capacitance,
GNa=120 mS/cm2, GK=36 mS/cm2, and GL=0.3 mS/cm2

are ionic conductances per unit area, and ENa=115 mV,
EK=−12 mV, and EL=10.6 mV are reversal potentials.

The HH system plays a fundamental role in the field of
neurophysiology and computational neuroscience since it de-
fines the class of conductance-based models. As a function of
a constant applied current I, the HH model undergoes a sub-
critical Hopf bifurcation at I= IH, above which the fixed point
solution �membrane potential at rest� is no longer stable and
trajectories are attracted to a stable limit cycle, leading to
repetitive firing �infinite train of action potentials�.

The sudden jump to a periodic behavior with nonzero
frequency f is analogous to a first-order phase transition and
is referred to as type-II behavior in the neuroscience litera-
ture �4�. As in first-order phase transitions, coexistence also
appears in type-II behavior. Just below the Hopf bifurcation,
the stable fixed point coexists with a stable limit cycle, their
basins of attraction being separated by an unstable limit
cycle �4�. Both limit cycles are created in a saddle-node �or
“fold”� bifurcation of cycles at I= Ic� IH. In our analogy with
equilibrium phase transitions, Ic would correspond to a spin-
odal point. If the fixed point at I=0 is perturbed by the ap-
plication of a constant current near but below Ic, several
spikes may appear before the system returns to the new rest-
ing state �Fig. 1�.

In the original version of the Morris-Lecar �ML� model
�5�, a system with two coupled nonlinear ordinary differen-
tial equations �ODEs� used to describe action potentials in a

barnacle motor fiber, the relevant bifurcation at the onset of
repetitive firing is a saddle-node one. That means that the
spiking frequency varies continuously from Ic as f 	 �I− Ic��,
with �=1/2, which is similar to a mean field second-order
phase transition behavior if we think of f as the order param-
eter. This transition is called type-I behavior in the neuro-
science literature �4� and does not present a slow transient
phenomenon similar to Fig. 1. However, the Morris-Lecar
system has also been used to describe cells which present a
type-II behavior �3,4�, which occurs for the equations

C
dV

dt
= 0.5GCa�1 + tanh�V + 1

15
�	�ECa − V�

+ GKw�EK − V� + GL�EL − V� + I�t� ,

dw

dt
= 0.1 cosh�V/60��1 + tanh�V/30� − 2w� , �3�

when, for example, the values of the parameters are chosen
as GCa=1.1 mS/cm2, GK=2.0 mS/cm2, GL=0.5 mS/cm2,
ECa=100 mV, EK=−70 mV, and EL=−50 mV. Then, large
transient times are also observed �Fig. 2�.

The FitzHugh-Nagumo �FHN� system

dV

dt
= V�V − a��1 − V� − w + I ,

dw

dt
= 
�V − �w� �4�

has been proposed as a low-dimensional toy model that rep-
resents the type-II behavior of the HH and other excitable
systems. We verified that the transient behavior here reported
is not seen with the usual parameters �6�. However, the FHN
model can reproduce the HH transient behavior if one
chooses parameters near a=0.5, �=4.2, and 
=0.01 �Fig. 3�.

In this paper we show that the long relaxation times in
type-II models are a consequence of the changes in phase
space which occur near the creation of the limit cycles.

FIG. 1. Examples of transient behavior near Ic for the HH
model. The constant step current is applied at t=10 ms. The esti-
mated critical current is Ic=6.264 221 256 85 �A/cm2 for an inte-
gration time step dt=0.01 ms.

FIG. 2. Examples of transient behavior near Ic for the ML sys-
tem. The constant step current is applied at t=10 ms. The estimated
critical current is Ic=24.841 346 762 79 �A/cm2 for an integration
time step dt=0.01 ms.
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Moreover, this leads to a scaling relation whose exponent
can be predicted, in agreement with numerical simulations.

III. SCALING LAW

The relaxation time � may be defined as the time until the
last spike, or the time until the membrane voltage stays
within a small distance from the resting potential �these two
times are very similar near Ic�. When we plot � as a function
of Ic− I we find a power law divergence of the relaxation
time, ��C�Ic− I�−�, where � is similar to a dynamic critical
exponent. The � exponent characterizes the “critical slowing
down” behavior near the bifurcation. We expect that � is a
universal exponent but we are not aware that this exponent
has been measured for neuron models. Here we report the
measured exponents for these three type-II biophysical neu-
ron models, finding very good agreement between them.

We integrated the equations using a standard fourth-order
Runge-Kutta algorithm and determined � by measuring the
time interval from the onset of the current step to a near stop

of the flow �
ẋ
�10−5, where ẋ is the velocity vector in phase
space: ẋ= �ẇ , v̇� for the ML and FHN systems, and ẋ

= �ẇ , ṁ , ḣ , ṅ� for the HH model�. As opposed to the Hopf
bifurcation, the fold bifurcation cannot be obtained analyti-
cally, so Ic was estimated numerically after integration of the
ODEs up to a �long� maximum time Tmax. The determination
of the critical current is sensitive to Tmax, but in practice this
only limits the range of validity of the power law �see Fig.
4�. We have employed Tmax=105 ms and dt=0.01 ms, unless
otherwise stated. The estimated critical currents Ic�Tmax ,dt�
quoted in the figure captions are very precisely determined
given Tmax and the integration step size dt.

The critical exponent is determined from the plot � vs Ic
− I. We found �=0.47 for the HH system �Fig. 4� and �
=0.49 for the ML model �Fig. 5�, irrespective of the size of
the integration step dt. This suggests a universal exponent
�=1/2. Obtaining long transients in the FHN model has
proved numerically more difficult, since the phenomenon oc-
curs only very close to Ic �Fig. 6�. Nonetheless, we have
obtained the exponent �=0.48.

Figure 7�a� shows that for Ic� I� IH an unstable and a
stable limit cycles coexist and surround a stable fixed point.
The fixed point for I=0 lies outside both limit cycles �Fig.

FIG. 3. Examples of transient behavior near Ic for the FHN
system. The constant step current is applied at t=10. The estimated
critical current is Ic=0.102 544 718 312 7 for an integration time
step dt=0.01 �all quantities in arbitrary units�.

FIG. 4. Relaxation times for the HH model as a function of the
distance to critical current for different integration times: Tmax

=104 �open circles� and 105 ms �filled circles�.

FIG. 5. Relaxation times for the Morris-Lecar model as a func-
tion of the distance to critical current for different integration times:
dt=0.01 �filled circles� and 0.1 ms �open circles�.

FIG. 6. Relaxation times for the FitzHugh-Nagumo model as a
function of the distance to critical current. Note that the power law
becomes visible only very close to the fold bifurcation �Ic− I
�10−9�.
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7�b��. Therefore, when the current is abruptly changed to I
� Ic, the fixed point is displaced to a region within a “ghost
limit cycle,” and the transient is completely dominated by
the time it takes for the system to overcome it. The ghost is
a natural consequence of the system being immediately be-
low a saddle-node bifurcation of cycles, and can be charac-
terized by the vanishingly small flow component normal to
the half-stable limit cycle that is created at I= Ic. It effec-
tively works as a one-dimensional extended bottleneck
through which the system must pass before reaching the
fixed point �see Fig. 8 for a caricature�. If one considers an

analogous system in polar coordinates �7� 
̇= f�r ,
�, ṙ=�r

+r3−r5, where f�r ,
��0,∀ r�0, it is clear that for �
��c=−1/4 the time for the system to overcome the ghost at
r=1/2 scales as ����c−��−1/2 �the Hopf bifurcation occur-
ring only at �H=0�. Solutions for the transient behavior have
been obtained by Tonnelier �8� for McKean’s piecewise lin-
ear version of the FHN model �9�. However, the scaling be-
havior has not been observed because the model has been
studied in the absence of an external current.

It should be clear that the current step is just a simple way
of putting the system outside the ghost limit cycle, but the
scaling law for the transient is not restricted to this somewhat
artificial protocol �even though it is very common in both
theory and experiments�. Close to the fold transition, any
short-lived perturbation that is strong enough to make the
system cross the ghost limit cycle will give rise to long tran-
sients back to the fixed point. We exemplify this with a bio-
logically plausible example in the HH model. Suppose the
system is somehow maintained close to criticality at I� Ic
�this could be achieved by several different possible mecha-
nisms, so we just fix I�. In addition, assume the neuron un-
dergoes a fast excitatory postsynaptic potential �EPSP� simu-
lated by an injected synaptic current Isyn�t�=gsyn�t��ENa−V�:

C
dV

dt
= GNam

3h�ENa − V� + GKn4�EK − V�

+ GL�EL − V� + I + Isyn�t� . �5�

The fast change in the synaptic conductance is given by
Rall’s alpha function �10�: g�t��=
�t���gmt� /�s

2�exp�−t� /�s�,
where 
 is the Heaviside function, gm=1 mS/cm2, �s
=0.5 ms, and t�= t− tEPSP, where tEPSP=50 ms is the time the
EPSP is initiated. Results are shown in Fig. 9, whose simi-
larity with Fig. 1 attests to the robustness of the effect �notice
however that, differently from Fig. 1, in Fig. 9 the resting
membrane potential is at the I�0 fixed point before the per-
turbation�. This opens interesting possibilities from the point
of view of neuronal computation: the length of the transient
response of a neuron “probed” by an EPSP could code for its

FIG. 7. Phase portraits of the ML model for I slightly above �a�
and below �b� Ic. The long transient is dominated by the time it
takes to pass through the region where the limit cycles are about to
emerge. SPO �UPO�=stable �unstable� periodic orbit, SFP=stable
fixed point.

FIG. 8. Schematic bifurcation diagram for type-II neuron mod-
els. The fold bifurcation occurs at Ic, while the Hopf bifurcation
occurs at IH. Owing to the onset of the current step �dot-dashed
arrow�, the fixed point for I=0 becomes the initial condition in a
new phase portrait. The transient � �solid arrow� to reach the new
fixed point is governed by the ghost limit cycle where the UPO and
the SPO annihilate each other �see Fig. 7�.

FIG. 9. Long transients appear if the system initially at rest with
I� Ic is perturbed by an additional EPSP �see text for details�. Solid
lines are membrane potentials, while the dashed line is the synaptic
conductance.
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internal state of excitability, that is, for how close it is to Ic.
Naturally, this transient coding would work only if the sys-
tem is close to the fold bifurcation. We therefore could have
another example in neuroscience of optimal information pro-
cessing at criticality �11–17�.

It is interesting to point out that this bottleneck effect is
analogous to what occurs for type-I neurons above the
saddle-node bifurcation that leads to repetitive firing. In that
case, however, the ghost results from the annihilation of
fixed points �not limit cycles� and the period T of the limit
cycles diverges as �I− Ic�−1/2. This provides a complementary
scenario connecting both classes of neurons: the transient of
type-II models below Ic diverges with the same exponent as
the period of type-I models above Ic, that is, �=�.

IV. CONCLUDING REMARKS

We were unable to find a description of this scaling law
behavior for transients in neuron models or the associated
dynamic critical exponent in the literature. Some kind of
critical slowing down for subthreshold oscillations has been
reported experimentally in the squid axon �18�, but these
authors examined the vicinity of a parametric subcritical
Hopf bifurcation, not a saddle-node bifurcation of cycles in-
duced by external currents. We propose that a similar experi-
ment with high-precision injected currents near Ic could be
used to check the power law found in the computational
model. Since the area of the giant squid axon is of order
�1 cm2, to examine the critical regime requires that current
fluctuations should be less than �103 pA �see Fig. 4�. Even
if the full critical regime seems to be hard to achieve, the
initial divergence in the transient lifetime may provide an
experimental check of our predictions.

We emphasize that both in standard experiments and in
our single-compartment model space clamping is used. It
might happen though, as in spin systems, that for the ex-

tended real system without voltage clamp, or for a compart-
mental model with a large number of compartments, the ex-
ponents may differ from the values here reported, changing
the universality class to one not described by a “mean field”
approach. Interestingly, this would mean that collective prop-
erties within a nontrivial universality class could be observed
at the level of a single axon. So whether this result can be
verified experimentally hinges on the effects that spatially
extended neurons may have on the robustness of this picture.

Furthermore, noise could always play a role. In studies of
type-I intermittency in simple maps, the length of the “lami-
nar phase” �l
 in a chaotic regime is analogous to the tran-
sient in this work and diverges as �l
�
−1/2 because of a
zero-dimensional bottleneck as the distance 
 to a tangent
bifurcation tends to zero �19,20�. In the presence of additive
noise with amplitude g �21�, the scaling changes to �
�l

� f�g2 /
3/2�, where f is a universal function �see also �22� for
recent extensions�. It is conceivable that similar scaling rela-
tions could be obtained for � provided that the chaotic phase
of intermittency theory could be replaced by some mecha-
nism of “reinjection” in type-II neuron models. For instance,
in the phenomenon of coherence resonance �23� noise itself
plays this reinjecting role. However, the excitable systems
employed are usually not close enough to the fold transition
to exhibit long transients, so it would be interesting to inves-
tigate the effects of the scaling laws we report here in the
resonance curves. These theoretical issues should be dealt
with before engaging in an experimental search.
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