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Genetic switch systems with mutual repression of two transcription factors are studied using deterministic
methods �rate equations� and stochastic methods �the master equation and Monte Carlo simulations�. These
systems exhibit bistability, namely two stable states such that spontaneous transitions between them are rare.
Induced transitions may take place as a result of an external stimulus. We study several variants of the genetic
switch and examine the effects of cooperative binding, exclusive binding, protein-protein interactions, and
degradation of bound repressors. We identify the range of parameters in which bistability takes place, enabling
the system to function as a switch. Numerous studies have concluded that cooperative binding is a necessary
condition for the emergence of bistability in these systems. We show that a suitable combination of network
structure and stochastic effects gives rise to bistability even without cooperative binding. The average time
between spontaneous transitions is evaluated as a function of the biological parameters.
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I. INTRODUCTION

Recent advances in quantitative measurements of gene
expression at the single-cell level �1,2� have brought new
insight on the importance of stochastic fluctuations in genetic
circuits �3�. The role of fluctuations is enhanced due to the
discrete nature of the transcription factors and their binding
sites, which may appear in low copy numbers �4,5�. As a
result, populations of genetically identical cells may show
significant variability. Stochastic behavior may invoke oscil-
lations �6� and spatio-temporal patterns �7�, which are unac-
counted for by macroscopic chemical rate equations. Genetic
circuits with feedback mechanisms may exhibit bistability,
namely, two distinct stable states which can be switched by
an external signal �8�. A low rate of spontaneous switching
events may also take place. To qualify as a switch, this rate
must be much lower than the rates of the relevant processes
in the cell, namely transcription, translation, and degradation
of transcription factors. Genetic switches, such as the phage
� switch, give rise to different cell fates �9�. In this switch, �
phages infect E. coli bacteria and can exist in two exclusive
states, one called lysogeny and the other called lysis. When
the phage enters its host, it integrates itself into the host’s
DNA and is duplicated by cell division. It codes for proteins
that can identify stress in the host cell. In case of stress, the
phage transforms into the lysis state. In this state, it kills the
host cell, using its DNA to produce many copies of the ph-
age, which are released and later infect other cells. Other
switch circuits exist in the metabolic systems of cells. These
switches determine which type of sugar the cell will digest
�10�. The genetic switch may also serve as a memory unit of
the cell, and help determine its fate during cell differentia-
tion.

Recent advances enable the construction of genetic cir-
cuits with desired properties, that are determined by the net-
work architecture. These networks are constructed from
available components, namely genes and promoters. They do
not require the manipulation of the structure of proteins and
other regulatory elements at the molecular level. These genes

and promoters are often inserted into plasmids rather than on
the chromosome. A synthetic toggle switch, that consists of
two repressible promoters with mutual negative regulation,
was constructed in E. coli and the conditions for bistability
were examined �11�. The switching between its two states
was demonstrated using chemical and thermal induction.
More recently, such circuit was found to exist in a natural
system in which two mutual repressors regulate the differen-
tiation of myeloid progenitors into either macrophages or
neutrophils �12�.

In this paper we analyze the genetic toggle switch using
deterministic and stochastic methods. In this simple genetic
circuit, two proteins, A and B, negatively regulate each oth-
er’s synthesis. The regulation is performed at the transcrip-
tion level, namely the production of protein A is negatively
regulated by protein B, through binding of n copies of B to
the A promoter �and vice versa�. This process can be mod-
eled by a Hill function, which reduces the production rate of
A by a factor of 1+k�B�n, where �B� is the concentration of B
proteins in the cell, k is a parameter, and n is the Hill coef-
ficient �13�. In the case that n=1, the binding of a single
protein is sufficient in order to perform the negative regula-
tion, while for n�1 the cooperative binding of two or more
proteins is required.

One may expect this circuit to function as a switch, with
two stable states, one dominated by A proteins and the other
dominated by B proteins. When the population of A proteins
is larger than the population of B proteins, the A proteins
suppress the production of B proteins. Under these condi-
tions, the production of A proteins will not be suppressed
much by the small B population. Therefore, the system ap-
proaches a state rich in A proteins and poor in B proteins.
Similarly, the system may approach a state rich in B proteins
and poor in A proteins.

To qualify as a switch, the system should be bistable. In
the deterministic description, bistability is defined as the ex-
istence of two stable steady state solutions of the rate equa-
tions. This description does not account for the possibility of
spontaneous transitions between the two states. In the sto-
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chastic description, spontaneous transitions do take place.
Therefore, the condition for bistability is that the rate of
spontaneous switching events �due to random fluctuations
rather than an external signal� is much lower than the rates of
all other relevant processes in the system.

Rate equations provide the average concentrations of A
and B proteins in a population of cells. In these equations,
bistability emerges at a bifurcation point, where two stable
states emerge. Rate equations do not include fluctuations and
do not account for the possibility of spontaneous transitions
between the two states. The master equation provides the
probability distribution of the populations of A and B pro-
teins. The two bistable states appear as two distinct peaks in
this distribution. Monte Carlo simulations enable to follow
the fluctuations in a single cell and to evaluate the rate of
spontaneous switching events.

We examine the conditions for the system to become a
switch, and calculate the rate of spontaneous transitions be-
tween its two states. This is done for several variants of the
toggle switch. In particular, we focus on switch systems in
which the repression in done without cooperative binding
�namely, n=1�. Numerous studies have concluded, using rate
equations, that cooperative binding is a necessary condition
for the emergence of bistability �11,14–17�. Below we show,
using a combination of deterministic and stochastic simula-
tion methods, that this is not the case, namely a bistable
switch can exist even in the absence of cooperative binding.
In particular, we show that bound-repressor degradation
�BRD� and protein-protein interactions �PPI� give rise to bi-
stability, without cooperative binding, even at the level of
rate equations. These results are confirmed by stochastic
simulations using the master equation and Monte Carlo
methods. We also consider the exclusive switch, in which the
A and B repressors cannot be bound simultaneously due to
overlap between their promoter sites. This system exhibits
bistability only when stochastic fluctuations are taken into
account. The rate of spontaneous transitions between the two
states is calculated as a function of the biological parameters.

The paper is organized as follows. In Sec. II we consider
the basic version called the general switch. Several variants
of this circuit are considered in the sections that follow. The
exclusive switch is studied in Sec. III, the BRD switch is
considered in Sec. IV and the PPI switch is analyzed in Sec.
V. The effects of cooperative binding are studied in Sec. VI.
The response of toggle switch systems to external signals is
examined in Sec. VII. The results are discussed in Sec. VIII
and summarized in Sec. IX.

II. THE GENERAL SWITCH (WITHOUT COOPERATIVE
BINDING)

The general switch consists of two transcription factors, A
and B, that negatively regulate each other’s synthesis
�14,15�. A schematic description of this circuit is given in
Fig. 1�a�. The regulation is done by the binding of a protein
to the promoter site of the other gene, blocking the access of
the RNA polymerase and suppressing the transcription pro-
cess. In this circuit there is no cooperative binding, namely
the regulation process is performed by a single bound
protein.

The concentrations of free A and B proteins in the cell are
denoted by �A� and �B�, respectively �by concentration we
mean the average copy number of proteins per cell�. The
copy numbers of the bound proteins, are denoted by �rA� and
�rB�, where rA is a bound A protein that monitors the produc-
tion of B, while rB is a bound B protein that monitors the
production of A. Note that there is at most one bound repres-
sor of each type at any given time, and thus 0�rA ,rB�1.
For simplicity, we ignore the mRNA level and combine the
processes of transcription and translation as a single step of
synthesis �18�.

The maximal production rate of protein X is denoted by
gX �s−1�, X=A ,B. The degradation rate of protein X is given
by dX �s−1�. While the structure of the circuits studied here is
symmetric, the rate constants can be different for A and B.
However, for simplicity we use symmetric parameters, i.e.,
g=gA=gB and d=dA=dB. The binding rate of proteins to the
promoter is denoted by �0 �s−1� and the dissociation rate by
�1 �s−1�.

A. Rate equations

The dynamics of the general switch circuit is described by
the rate equations �19,20�

�A�˙ = gA�1 − �rB�� − dA�A� − �0�A��1 − �rA�� + �1�rA� ,

�B�˙ = gB�1 − �rA�� − dB�B� − �0�B��1 − �rB�� + �1�rB� ,

�rA�˙ = �0�A��1 − �rA�� − �1�rA� ,

�rB�˙ = �0�B��1 − �rB�� − �1�rB� . �1�

It is commonly assumed that the binding-unbinding pro-
cesses are much faster than other processes in the circuit,

FIG. 1. Schematic illustrations of �a� the general switch circuit,
that includes two transcription factors, A and B, which negatively
regulate each other’s synthesis; �b� the exclusive switch, in which
there is an overlap between the promoter sites of A and B proteins,
so they cannot be bound simultaneously.
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namely �0 ,�1�dX ,gX. This means that the relaxation times
of �rX� are much shorter than other relaxation times in the
circuit. Under this assumption, one can take the time deriva-
tives of �rX� to zero, even if the system is away from steady
state. This brings the rate equations to the standard
Michaelis-Menten form

�A�˙ =
g

1 + k�B�
− d�A� ,

�B�˙ =
g

1 + k�A�
− d�B� , �2�

where symmetric parameters are used, and k=�0 /�1 is the
repression strength. For a given population of free X repres-
sors, the parameter k controls the value of �rX�. The limit of
weak repression, �rX��1, is obtained when k�X��1, while
the limit of strong repression, �rX��1, is obtained for
k�X��1.

The meaning of bistability at the level of rate equations is
that at steady state the equations exhibit two distinct positive
solutions. In this particular class of circuits, one solution is
dominated by A proteins and the other is dominated by B
proteins. Starting from any initial state, the system will con-
verge to one of these solutions. The solutions are stable, so
the possibility of spontaneous transitions, induced by sto-
chastic fluctuations, is not included in the rate equation de-
scription.

The steady state solutions of Eqs. �1� and �2� are identical.
We will now show that these equations have only one posi-

tive steady-state solution. To this end, we first take �A�˙

= �B�˙ =0 in Eq. �2�. We multiply each equation by the de-
nominator of the Hill function that appears in it. We obtain

g − d�A� − kd�A��B� = 0,

g − d�B� − kd�A��B� = 0. �3�

Subtracting one equation from the other we get d��A�− �B��
=0 and therefore �A� must be equal to �B� at steady state.
The steady state values of �A� and �B� can be easily found.
Inserting �A�= �B� into Eq. �3� we obtain a quadratic equation
whose only positive solution is

�A� = �B� =
− 1 + �1 + 4kg/d

2k
. �4�

Standard linear stability analysis shows that this solution is
always stable.

As a result, we conclude that at the level of rate equations
the general switch, without cooperative binding, does not
exhibit bistability. In Sec. VI we consider the case of coop-
erative binding, where the rate equations do exhibit bistabil-
ity.

B. Master equation

In order to account for stochastic effects and to obtain
insight on the reason that this system is not bistable, the
master equation approach is applied �3,21–24�. In this case,
we consider the probability distribution function
P�NA ,NB ,rA ,rB�. It is the probability for a cell to include NX

copies of free protein X and rX copies of the bound X repres-
sor, where NX=0,1 ,2 , . . ., and rX=0,1. The master equation
for the general switch takes the form

Ṗ�NA,NB,rA,rB� = gA�rB,0�P�NA − 1,NB,rA,rB� − P�NA,NB,rA,rB�� + gB�rA,0�P�NA,NB − 1,rA,rB� − P�NA,NB,rA,rB�� + dA��NA

+ 1�P�NA + 1,NB,rA,rB� − NAP�NA,NB,rA,rB�� + dB��NB + 1�P�NA,NB + 1,rA,rB� − NBP�NA,NB,rA,rB��

+ �0��NA + 1��rA,1P�NA + 1,NB,rA − 1,rB� − NA�rA,0P�NA,NB,rA,rB�� + �0��NB + 1��rB,1P�NA,NB + 1,rA,rB

− 1� − NB�rB,0P�NA,NB,rA,rB�� + �1��rA,0P�NA − 1,NB,rA + 1,rB� − �rA,1P�NA,NB,rA,rB�� + �1��rB,0P�NA,NB

− 1,rA,rB + 1� − �rB,1P�NA,NB,rA,rB�� , �5�

where �i,j =1 for i= j and 0 otherwise. The gX terms account
for the production of proteins. The dX terms account for the
degradation of free proteins, while the �0 ��1� terms describe
the binding �unbinding� of proteins to �from� the promoter
site. In numerical integration, the master equation must be
truncated in order to keep the number of equations finite.
This is done by setting suitable upper cutoffs, NA

max and NB
max,

on the populations sizes of free proteins. In order to maintain
the accuracy of the calculations, the probability of population
sizes beyond the cutoffs must be sufficiently small.

The master equation has a single steady state solution,
which is always stable �25�. The criterion for bistabil-
ity is that the steady state solution P�NA ,NB ,rA ,rB�
exhibits two distinct regions �peaks� of high prob-
abilities, separated by a gap in which the probabilities
are very small. These two regions correspond to the two
states in which the system is likely to be. If the transition
rate between the peaks is small enough, the system is
indeed a bistable switch. Note, that in this case, averages of
the form
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�NX� = 	
NA=0

NA
max

	
NB=0

NB
max

	
rA=0

1

	
rB=0

1

NXP�NA,NB,rA,rB� , �6�

where X=A, B, do not reflect the complex structure of the
probability distribution. These can be considered as averages
over many cells, some dominated by A and others dominated
by B proteins, such that the total populations of the two
species are about the same.

To examine the existence of bistability we consider the
marginal probability distribution

P�NA,NB� = 	
rA=0

1

	
rB=0

1

P�NA,NB,rA,rB� . �7�

This probability distribution was calculated for a broad range
of parameters. Two representative examples are shown in
Fig. 2.

Under conditions of weak repression �small k�, P�NA ,NB�
exhibits a single peak for which NA
NB
g /d �Fig. 2�a��, in
agreement with the rate equations. This is due to the fact that
the repression is weak, and the A and B populations are
almost uncorrelated. In this case, the cell will contain
roughly the same amount of A and B proteins.

For strong repression, the distribution P�NA ,NB� exhibits
a peak dominated by A proteins and a peak dominated by B
proteins, as expected for a bistable system. However, a third
peak appears near the origin, in which both populations of
free proteins are suppressed �Fig. 2�b��. This peak represents
a dead-lock situation, caused by the fact that both A and B
repressors can be bound simultaneously, each bringing to a
halt the production of the other specie. The third peak pro-
vides a corridor through which the probability can flow be-
tween the other two peaks. As a result, the system can

quickly switch between the A-dominated and the
B-dominated states.

In addition to the solution of the master equation, Monte
Carlo simulations have been performed. In these simulations
one can follow the time evolution of the populations of free
and bound proteins in a single cell. In Fig. 3�a� we present
the population sizes of free proteins vs time for the general
switch. It is clear that the cell can indeed be in one of three
states: a state rich in A, a state rich in B, and a state in which
both proteins are in very low copy numbers. We conclude
that a necessary condition for the system to become a switch
is to prevent this dead-lock situation in which both protein
populations are suppressed simultaneously. Below we
present several variants of the circuit in which the third peak
is suppressed, giving rise to a bistable switch.

III. THE EXCLUSIVE SWITCH

The first variant we consider is the exclusive switch, de-
picted in Fig. 1�b�. In this circuit there is an overlap between
the promoters of A and B. As a result, there is no room for
both A and B proteins to be bound simultaneously. Exclusive
binding is encountered in nature, for example, in the lysis-
lysogeny switch of phage � �9�.

It was shown that in presence of cooperative binding, the
exclusive switch is more stable than the general switch
�14,15�. This is because in the exclusive switch the access of
the minority proteins to the promoter site is blocked by the
dominant proteins. Here we show that in the exclusive
switch, stochastic effects give rise to bistability even without
cooperativity between the transcription factors. The dead-
lock situation in prevented in this case, since A and B repres-
sors cannot be bound simultaneously.

A. Rate equations

To model the exclusive switch, recall that the variable �rA�
��rB�� is actually the fraction of time in which the promoter is

FIG. 2. �Color online� The probability distri-
bution P�NA ,NB� for the general switch, under
conditions of �a� weak repression �k=0.005�
where there is one symmetric peak; and �b�
strong repression �k=50� where three peaks ap-
pear, one dominated by A, the second dominated
by B and the third in which both species are mu-
tually suppressed. The weights of the three peaks
are about the same.
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occupied by a bound A �B� protein �19�. The fraction of time
in which the promoter is vacant is thus 1− �rA�− �rB�. Incor-
porating this into Eq. �1� gives rise to the following modifi-
cation: in the �0 terms, each appearance of �rA� or �rB�
should be replaced by �rA�+ �rB�. With this modification, the
rate equations take the form

�A�˙ = g�1 − �rB�� − d�A� − �0�A��1 − �rA� − �rB�� + �1�rA� ,

�B�˙ = g�1 − �rA�� − d�B� − �0�B��1 − �rA� − �rB�� + �1�rB� ,

�rA�˙ = �0�A��1 − �rA� − �rB�� − �1�rA� ,

�rB�˙ = �0�B��1 − �rA� − �rB�� − �1�rB� . �8�

Under steady state conditions, the rate equations can be re-
duced to the Michaelis-Menten form

�A�˙ =
g

1 + k�B�/�1 + k�A��
− d�A� ,

�B�˙ =
g

1 + k�A�/�1 + k�B��
− d�B� , �9�

where, as before, k=�0 /�1. We will now show that even for
the case of the exclusive switch, the rate equations still ex-
hibit a single solution, thus there is no bistability. This is

done by taking �A�˙ = �B�˙ =0 and getting rid of the denomina-
tors, by repeated multiplications. The resulting equations are

g + �kg − d��A� − kd�A���A� + �B�� = 0,

g + �kg − d��B� − kd�B���A� + �B�� = 0. �10�

By subtraction of one equation from the other, we find that

FIG. 3. �Color online� The population sizes of
free A and B proteins vs time obtained from a
Monte Carlo simulation �a� for the general
switch, where the system exhibits fast transitions
between its three states; �b� for the exclusive
switch. The bistable behavior is clearly observed,
where the population size of the dominant specie
is between 20–60 and the other specie is nearly
diminished. Failed switching attempts are clearly
seen. The typical switching time is in the order of
105 �s� or roughly 1 day. Bound proteins are also
shown. Their fast binding and unbinding events
cannot be resolved on the time scale that is pre-
sented. In both cases, g=0.2, d=0.005, �0=0.2,
and �1=0.01 �s−1�.
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�kg − d − kd��A� + �B�����A� − �B�� = 0. �11�

The positive, symmetric solution, �A�= �B�, is given by

�A� =
�kg − d� + ��kg + d�2 + 4kgd

4kd
. �12�

The other, nonsymmetric solution, given by

kg − d − kd��A� + �B�� = 0 �13�

is inconsistent with Eq. �10� unless g=0, namely there is no
production of A and B proteins, which immediately leads to
�A�= �B�=0. Under these conditions the solution of Eq. �13�
is �A�+ �B�=−1/k, which requires a negative population size
and thus makes no physical sense. Therefore, the only solu-

tion for g�0 is the symmetric solution, �A�= �B�. Thus, the
rate equations do not support a bistable solution for the ex-
clusive switch for any choice of the parameters.

B. Master equation

To account for the effects of fluctuations, we now de-
scribe the exclusive switch using the master equation. It is
similar to master equation for the general switch given by
Eq. �5�, except for the following modifications: �a� In the �0
and �1 terms, each time �rA,j ��rB,j�, j=0,1, appears it should
be multiplied by �rB,0, ��rA,0�; �b� the constraint
P�NA ,NB ,1 ,1�=0 should be imposed. Implementing these
changes we obtain the following equation:

Ṗ�NA,NB,rA,rB� = gA�rB,0�P�NA − 1,NB,rA,rB� − P�NA,NB,rA,rB�� + gB�rA,0�P�NA,NB − 1,rA,rB� − P�NA,NB,rA,rB�� + dA��NA

+ 1�P�NA + 1,NB,rA,rB� − NAP�NA,NB,rA,rB�� + dB��NB + 1�P�NA,NB + 1,rA,rB� − NBP�NA,NB,rA,rB��

+ �0�rB,0��NA + 1��rA,1P�NA + 1,NB,rA − 1,rB� − NA�rA,0P�NA,NB,rA,rB�� + �0�rA,0��NB + 1��rB,1P�NA,NB

+ 1,rA,rB − 1� − NB�rB,0P�NA,NB,rA,rB�� + �1��rA,0P�NA − 1,NB,rA + 1,rB� − �rA,1P�NA,NB,rA,rB��

+ �1��rB,0P�NA,NB − 1,rA,rB + 1� − �rB,1P�NA,NB,rA,rB�� . �14�

For the exclusive switch, as for the general switch, under
conditions of weak repression, P�NA ,NB� exhibits a single
peak �Fig. 4�a�� that satisfies NA
NB
g /d. However, as the
repression strength increases two distinct peaks begin to
form. For intermediate values of k these peaks are still con-
nected, by a corridor of nonvanishing probabilities �Fig.
4�b��. Monte Carlo simulations show that for intermediate
values of k, the system indeed exhibits two states, one rich in
A and the other rich in B, but rapid transitions occur between
them.

For strong repression, the distribution P�NA ,NB� exhibits
two peaks which are separated by a region with vanishing
probabilities �Fig. 4�c��. In one peak the A population is sup-
pressed, while in the other peak the B population is sup-
pressed, as expected for a bistable system. The average
population of the dominant protein specie in each peak is
�NX�
g /d, while the population of the suppressed specie is
�NX�
0. Monte Carlo simulations show that in this case the
average time between spontaneous transitions is much
longer. The typical switching time for the case shown in
Fig. 3�b� is around 105 seconds. It is much longer than the
time scales of the transcription, translation, and degradation
processes. It is also longer than the time between cell divi-
sions which is of the order of 103–104 seconds. The Monte
Carlo results clearly show a large number of failed attempts
in which a protein of the minority specie binds to the pro-
moter and then unbinds again, without causing the system to
flip.

C. Analysis of switching times

To evaluate the switching times we performed the follow-
ing procedure. We initialized the master equation in a state
which is completely dominated by A proteins, namely,
P�NA= �g /d� ,NB=0,rA=0,rB=0�=1 �where � � represents the
integer part�, and all other probabilities vanish. The master
equation was then integrated numerically and P�NA ,NB�
was calculated as a function of time. The function f�t�
= P�NA�NB�− P�NA�NB� was found to decay exponentially
from its initial value, f�0�=1, to zero, according to f�t�
=exp�−t /	�. The time constant 	 is defined as the switching
time �26�. Its inverse, 	−1, is referred to as the switching rate.

Using this procedure, we examined the dependence of the
switching time, 	 on the protein synthesis rate, g �Fig. 5�a��,
the degradation rate, d �Fig. 5�b��, and the repression
strength, k �Fig. 5�c��. In the parameter range in which bista-
bility takes place, we obtain that �a� 	g, �b� 	1/d2, and
�c� 	k. Concerning Fig. 5�c�, note that system exhibits bi-
stability only in the regime in which k is large �27�. For k
�1, 	100–1000 �s�, which is the typical time scale of
other processes in the cell. Only for k
10, 	 becomes sig-
nificantly larger than the time scales of other processes, and
the system can function as a stable switch. The scaling prop-
erties of the switching time can be summarized by

	 
�0

�1

g

d2 . �15�

This result can be reproduced by a simple argument. Con-
sider an initial state in which the system is dominated by A
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FIG. 4. �Color online� The probability distri-
bution P�NA ,NB� for the exclusive switch, under
conditions of �a� weak repression �k=0.005�
where there is one symmetric peak �b� intermedi-
ate repression �k=1� where two distinct peaks be-
gin to emerge but are still connected, and �c�
strong repression �k=50�, where bistability is
observed.

FIG. 5. �Color online� Scaling properties of
the switching time 	 for the exclusive switch vs
the protein synthesis rate g, the degradation rate d
and the repression strength k.
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proteins, while the population of B proteins is suppressed,
namely �A�� �B�. In this situation the promoter site is occu-
pied by an A protein during most of the time. In order that
the switch will flip, the bound A protein must unbind �at rate
�1�. Then, a B protein �rather than an A protein� should bind
to the promoter. The probability for this to happen is
�B� / �A�. This B protein should remain bound long enough
in order to build up a sufficiently large population of B pro-
teins. On average, the B protein stays bound 1/�1 �s�, during
which g /�1 proteins of type B are produced. After the B
repressor will unbind, the probability that the next protein
that binds will be of type B rather than A, is thus
�g /�1� / �A� �neglecting the degradation of A proteins, be-
cause �1�d�. Following this argument, the switching rate is
given by

	−1  �1 �
�B�
�A�

�
g

�1�A�
= g

�B�
�A�2 . �16�

From the Michaelis-Menten equations we obtain that

�B�
�A�

=
1

1 + k�A�



1

k�A�
, �17�

since for strong repression k�A��1. Inserting this result into
Eq. �16� and using and �A�
g /d we find that

	 =
kg

d2 . �18�

This result can be considered as the leading term in the ex-
pansion of 	 in powers of g, d, and k. This leading term turns
out to provide a very good approximation to simulation re-
sults. For example, for g=0.2, d=0.005, �0=0.2, and �1
=0.01 �s−1� we get 	=1.6�105 �s�, which agrees perfectly
with the results of Monte Carlo simulations.

From Eq. �16�, and from the fact that the average copy
number of the dominant specie is �A�
g /d, we find that
when the production rate, g, is varied while keeping all other
parameters fixed, 	�A�. Otherwise, when the degradation
rate, d, is varied while all other parameters are fixed, 	
�A�2. In general, the switching time is 	=	�k ,g ,d�, while
the population size, �A�, of the dominant specie depends on
both g and d. Thus, by a suitable variation of the rate con-
stants, any desired dependence of 	 on �A� can be obtained.
In particular, by increasing k, 	 can be increased with no
effect on �A�. A similar result is obtained when g and d are
decreased by the same factor. We thus conclude that the
population size is only one of several factors that affect the
switching time. A complete description of the switching time
should include all the relevant rate constants.

In Monte Carlo simulations of a switch system with co-
operative binding, the switching time was found to depend
exponentialy on the copy number �14,15�. This is consistent
with the discussion above, but requires a well-defined proto-
col according to which the rate constants are varied.

IV. THE SWITCH WITH BOUND REPRESSOR
DEGRADATION

Consider a different variant of the general switch, in
which not only free repressors, but also bound repressors are
affected by degradation. The bound-repressor degradation
�BRD� tends to prevent the dead-lock situation in which both
A and B repressors are bound simultaneously. This is due to
the fact that degradation removes the bound repressor from
the system, unlike unbinding, where the resulting free repres-
sor may quickly bind again. It turns out that degradation of
bound repressors induces bistability not only at the level of
the master equation but even at the level of rate equations.

A. Rate equations

The rate equations that describe the BRD switch take the
form

�A�˙ = g�1 − �rB�� − d�A� − �0�A��1 − �rA�� + �1�rA� ,

�B�˙ = g�1 − �rA�� − d�B� − �0�B��1 − �rB�� + �1�rB� ,

�rA�˙ = �0�A��1 − �rA�� − �1�rA� − dr�rA� ,

�rB�˙ = �0�B��1 − �rB�� − �1�rB� − dr�rB� , �19�

where dr is the degradation rate of the bound repressors.
Assuming quasisteady state for the binding-unbinding pro-
cesses we obtain the Michaelis-Menten equations

�A�˙ =
g

1 + k�B�
− �d +

drk

1 + k�A���A� ,

�B�˙ =
g

1 + k�A�
− �d +

drk

1 + k�B���B� , �20�

where now k=�0 / ��1+dr�. Note that the coefficients of �A�
and �B� in the second terms in Eq. �20� can be considered as
effective degradation rate constants.

For steady state conditions, Eq. �20� exhibits the symmet-
ric solution

�A� = �B� =
��d + drk�2 + 4dkg�1/2 − d − drk

2dk
. �21�

This solution exists for any choice of the parameters. In ad-
dition, in some parameter range, two nonsymmetric solutions
exist. These solutions can be expressed as the solutions of
the quadratic equation

ddrk
2�A�2 + �gdk + ddrk + dr

2k2 − gdrk
2��A� + gd = 0.

�22�

The condition for the existence of two different solutions of
this equation is

�g − dr��g�kdr − d�2 − dr�kdr + d�2� � 0. �23�

In order for them to be positive the condition g�dr must be
satisfied. Thus, the bifurcation takes place at
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kc =
d��g + �dr�
dr��g − �dr�

, �24�

and the nonsymmetric solutions exist for k�kc. Linear sta-
bility analysis shows that whenever the nonsymmetric solu-
tions exist they are stable, while the symmetric solution is
stable only for k�kc.

The steady state populations of free A and B repressors vs
k, for the BRD switch, are shown in Fig. 6. The results of
numerical integration of the rate equations ��� are in perfect
agreement with the analytical results derived above �solid
line�. We conclude that the degradation of bound repressors
induces bistability, even at the level of rate equations. The
emergence of bistability can be attributed to the fact that the
effective degradation rate for the minority specie in Eq. �20�
is larger than the effective degradation rate for the dominant
specie. This tends to enhance the difference between the
population sizes and to destabilize the symmetric solution for
k�kc.

B. Master equation

The master equation for the BRD switch can be obtained
from Eq. �5� by adding the term

dr��rA,0P�NA,NB,rA + 1,rB� − �rA,1P�NA,NB,rA,rB��

+ dr��rB,0P�NA,NB,rA,rB + 1� − �rB,1P�NA,NB,rA,rB�� .

�25�

For steady state conditions we find that BRD tends to sup-
press the peak near the origin of P�NA ,NB�. For a suitable
range of parameters, two separate peaks appear, which quali-
tatively resemble those obtained for the exclusive switch.
However, unlike the exclusive switch, there is a narrow cor-
ridor with small but nonvanishing probabilities that connects
the two peaks via the origin. As a result, the switching time

for the BRD switch tend to be somewhat shorter than for the
exclusive switch with the same parameters. The switching
times, 	, vs the repression strength, k, are shown in Fig. 7.

We now examine in what range of parameters this circuit
is indeed a switch according to the master equation. Unlike
the rate equation where the condition for bistability is clear
�Eq. �24��, in the case of the master equation the notion of
bistability is more subtle. Thus, in the analysis below we use
the following operational criterion. First we define the two
states of the switch. The A-dominated state is defined as the
set of all states in which NA�2 and NB=0,1. Similarly, the
B-dominated state is defined by NB�2 and NA=0,1. The
system is considered as a switch if, under steady state con-
ditions, the total probability to be in either of these states is
larger than 0.99. This leaves a probability of only 0.01 for all
the intermediate states, which the system must visit in order
to switch between the A-dominated and the B-dominated
states. As a result, the switching rate is low.

We used this criterion in order to find the region in the
�k ,dr� plane of the parameter space in which the BRD circuit
exhibits bistability. It was found that the BRD switch exhib-
its bistability for large enough values of k, as long as the
value of dr is not too different from d. If dr /d�1, the pro-
cess of bound-repressor degradation is negligible and cannot
eliminate the dead-lock situation. If dr /d�1, proteins bind
and quickly degrade. As a result, the population of the domi-
nant specie is reduced and bistability is suppressed.

Within the parameter range in which the system exhibits
bistability, we examined the dependence of the switching
time 	 of the BRD switch on the parameters g, d, �0, and dr.
It was found that 	 exhibits linear dependence on the produc-
tion rate g and on the repression strength k �here, k was
varied by changing �0, keeping �1 and dr fixed�. The depen-
dence of 	 on the degradation rate d was found to be approxi-
mately 1/d2. Note that as d was varied, we kept dr=d in
order that the system remains bistable. Since k depends on
dr, it slightly varied as well.

Unlike the exclusive switch, where we managed to obtain
the scaling properties of 	 by a simple argument, the BRD
switch turns out to be more complicated. This is due to the

FIG. 6. Population sizes of the free A and B proteins vs k for the
BRD switch obtained from the rate equations. The parameters are
g=0.05, d=dr=0.005, �1=0.01, and �0 is varied. Here kc
1.92.
Stable solutions are shown by solid lines and unstable solutions by
dashed lines.

FIG. 7. �Color online� The switching time 	 vs k for the exclu-
sive ���, BRD ��� and PPI ��� switch systems. The parameters
used are g=0.05, d=dr=0.005, and �=0.1 �s−1�.
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fact that there are several processes that may lead to the
flipping of the switch, such as the unbinding or the degrada-
tion of the bound repressor. A further complication is that the
two repressors can be bound simultaneously. As a result, we
have not managed to obtain an expression for 	 in the BRD
switch.

V. THE SWITCH WITH PROTEIN-PROTEIN
INTERACTION

Consider a switch circuit which in addition to the mutual
repression, exhibits protein-protein interactions, namely an A
protein and a B protein may form a complex, AB. The AB
complex is not active as a transcription factor.

A. Rate equations

The PPI switch can be described by the following rate
equations:

�A�˙ = g�1 − �rB�� − d�A� − �0�A��1 − �rA�� + �1�rA� − �AB ,

�B�˙ = g�1 − �rA�� − d�B� − �0�B��1 − �rB�� + �1�rB� − �AB ,

�rA�˙ = �0�A��1 − �rA�� − �1�rA� ,

�rB�˙ = �0�B��1 − �rB�� − �1�rB� . �26�

The parameter � is the rate constant for the binding of a pair
of A and B proteins. The Michaelis-Menten equations take
the form

�A�˙ =
g

1 + k�B�
− d�A� − ��A��B� ,

�B�˙ =
g

1 + k�A�
− d�B� − ��A��B� . �27�

For steady state conditions, these equations exhibit a sym-
metric solution, �A�= �B�, for any choice of the parameters. It
is the solution of

�k�A�3 + �� + dk��A�2 + d�A� − g = 0. �28�

Since all the coefficients of powers of �A� are positive, this
equation has only one positive solution. Also, within some
range of parameters there exist nonsymmetric solutions,
given by the solutions of

d�k�A�2 + �d� + d2k − g�k��A� + d2 = 0. �29�

The nonsymmetric solutions exist only for the range of pa-
rameters in which Eq. �29� has two positive solutions. The
condition for this can be easily expressed in terms of the
coefficients in Eq. �29�.

As in the case of the BRD switch, bistability is observed
even at the level of rate equations. Again, the emergence of
bistability can be attributed to the fact that the effective deg-
radation rate constant for the minority specie is larger than
for the dominant specie, thus enhancing the difference be-

tween the population sizes �note that the effective degrada-
tion rate constant for A is �d+��B��, while for B it is �d
+��A���.

B. Master equation

The master equation for the PPI switch can be obtained
from Eq. �5� by adding the term

���NA + 1��NB + 1�P�NA + 1,NB + 1,rA,rB�

− NANBP�NA,NB,rA,rB�� . �30�

For a suitable range of parameters the steady state solution of
the master equation exhibits two separate peaks. To draw the
range of parameters in which bistability takes place we apply
the operational criterion used above for the BRD switch. We
fix g, d, and �1 and examined the system in the �k ,�� plane.
The results are plotted in Fig. 8 �solid line�.

For small values of � �weak PP interaction�, the circuit
does not exhibit bistability. As the interaction strength in-
creases the circuit behaves as a switch for a certain range of
repression strength k. This range broadens as � is increased.
Unlike the switch systems discussed above, in which the
bistability gets stronger as k is increased, the PPI switch is
bistable for intermediate values of k. This can be understood
as follows. Recall that the key to the formation of a switch is
the elimination of the dead-lock situation. The exclusive and
the BRD switches deal with this situation directly at the
bound repressor level. However the PP interaction does not
directly affect the bound repressor. To prevent the possibility
of two proteins bound simultaneously, one of them should
unbind and form a complex with a protein of the other
specie. In order for this to happen, the repressors must not be
bound too strongly. Therefore, the PPI switch works at inter-
mediate repression strength. As the PPI becomes more effec-
tive �larger �� this mechanism applies at larger values of k.

Enhanced switching properties can be obtained by consid-
ering a hybrid system that combines PPI and exclusive bind-
ing. The resulting switch exhibits bistability in a broader
range of parameters than the exclusive or PPI switches alone.
The master equation for the exclusive-PPI switch is obtained
from Eq. �14� by adding the term

���NA + 1��NB + 1�P�NA + 1,NB + 1,rA,rB�

− NANBP�NA,NB,rA,rB�� , �31�

which accounts for the PP interaction. Numerical results,
shown in Fig. 8, indicate that indeed as expected the
exclusive-PPI switch is a better switch than either the PPI or
the exclusive switch. The parameter range in which it exhib-
its bistability is broader. Thus, it is more robust to variations
in the parameters than the exclusive or PPI switches.

VI. COOPERATIVE BINDING

Cooperative binding is found in genetic switch systems
such as the phage � switch �9�. In this case, transcription
regulation is obtained only when several copies of the repres-
sor are bound simultaneously. This situation can be achieved
in two ways. One possibility is that repressors bind to each
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other and form a complex, which then binds to the promoter.
The other possibility is that the repressors bind separately,
but those already bound assist the other ones to bind more
effectively. In the case of cooperative binding, bistability
turns out to appear even at the level of rate equations �17�.

A. Rate equations

Switch systems with cooperative binding are commonly
described by

�A�˙ =
g

1 + k�B�n − d�A� ,

�B�˙ =
g

1 + k�A�n − d�B� , �32�

where n is the Hill coefficient. It corresponds to the number
of copies of the transcription factor which are required in
order to perform the repression process. Here we focus on
the case n=2, and show that these equations exhibit two
stable steady state solutions for some range of parameters.

Imposing �A�˙ = �B�˙ =0 in Eq. �32�, we obtain

g − d�A� − kd�A��B�2 = 0,

g − d�B� − kd�B��A�2 = 0. �33�

Subtracting one of these equations from the other we find
that

− d��A� − �B�� − kd�A��B���B� − �A�� = 0. �34�

Looking for a nonsymmetric solution for which �A�� �B�,
we divide Eq. �34� by �A�− �B�. We find that k�A��B�=1, or
�B�=1/k�A�. Inserting this into Eq. �33� we get an equation
for �A�:

dk�A�2 − gk�A� + d = 0. �35�

This equation exhibits two distinct stable solutions

�A� =
gk ± �g2k2 − 4d2k

2dk
, �36�

for k�4d2 /g2. This means that the system becomes bistable
at the bifurcation point, k=4d2 /g2. In addition to these solu-
tions, the symmetric solution �A�= �B� exists for any choice

FIG. 8. The range of parameters in the �� ,k�
plane in which bistability takes place in the PPI
switch �solid line� and in the exclusive-PPI
switch �dashed line�, using rate equations �a� and
using the master equation �b�. The other param-
eters are g=0.05 and d=0.005 �s−1�.
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of the parameters. This symmetric solution is stable for k
�4d2 /g2 and becomes unstable at the bifurcation point.

B. Monte Carlo simulations

Consider a switch system with cooperative binding with
n=2, in which two proteins of the same specie bind together
to form a complex or dimer. The repression of A synthesis is
done by dimers composed of two B proteins and vice versa.
For example, consider an exclusive switch, in which the
dimers of A and B cannot be bound simultaneously. To ac-
count for stochastic effects, we have studied this system us-
ing Monte Carlo simulations.

The rate constant for the formation of dimers is denoted
by �D. It is assumed that dimers cannot dissociate into single
proteins, but they can degrade. The degradation rate of
dimers is denoted by dD. We examined the dependence of the
switching time 	 on all the parameters. We found the follow-
ing properties. The dependence of 	 on g was found to be
linear as for the exclusive and BRD switch. The dependence
on d is very weak, except for the limit in which d is very
large. This is because the proteins tend to form dimers before
they have a chance to degrade. The dependence of 	 on k
=�0 /�1 is found to be well fitted by a quadratic polynomial.
This means that for sufficiently strong repression, 	k2.

The dependence of 	 on the dimerization rate �D �Fig.
9�a�� exhibits interesting behavior. For small values of �D the
system is not really a switch, because almost no dimers are
formed. Therefore the switching time is short. For larger val-
ues of �D the dimer population increases and the system
starts to function as a switch. The switching time 	 increases
as the switch becomes more stable. But from some point,
increasing �D causes 	 to decrease. This is because, very fast

dimerization helps the minority specie to form dimers, mak-
ing it more likely to flip the switch.

The dependence of 	 on dD �Fig. 9�b�� was found to be
well fitted by a cubic polynomial in 1/dD. This means that in
the limit of slowly degrading dimers, 	1/dD

3 . In the limit
of fast dimer-degradation the system is not bistable, because
the population of dimers is too small to make the repression
effective.

The switching time for this system was also studied in
Ref. �14�, where 	 was presented as a function of the average
copy number of the dominant specie. However, the copy
number depends in a nontrivial way on the parameters and
cannot be directly controlled. Therefore, we believe that in a
systematic study of the switching times, it is more practical
to examine the dependence of 	 on the parameters them-
selves.

Note that there is another important realization of coop-
erative binding in which the promoter consists of two bind-
ing sites. When a protein binds to one of them it facilitates
the binding of another protein to the second site. The effect
of this mechanism is qualitatively similar to the one shown
above for dimers. In general cooperative binding induces bi-
stability because it forces the minority specie to recruit at
least two proteins in order to flip the switch. As a result,
cooperative binding helps to remove the dead-lock situation
in which both species are suppressed simultaneously.

VII. RESPONSE TO EXTERNAL SIGNALS

Until now our discussion considered only spontaneous
transitions between the two states of the switch. Here we
demonstrate how an external signal may lead to the flipping
of the switch. In case of the � switch, such an external signal
may be, for example, the exposure of E. coli infected by
phage � to UV light. In the lac circuit, the external signal
indicates the presence of lactose. We assume that the effect
of the external signal is that one of the proteins undergoes a
conformal change that prevents its binding to the promoter.
When the signal affects the dominant specie, this may lead to
the flipping of the switch. We assume that the conformal
change is fast and that it lasts for a period of time determined
by the duration of the external signal.

We have performed Monte Carlo simulations, where the
binding rate �0 of the dominant specie was set to zero for
some period of time �the length of external signal�. We cal-
culated the probability for a flipping of the switch during
1800 �s�, which is roughly the time between divisions of E.
coli, as a function of the signal length. The results are shown
in Fig. 10.

For short duration of the signal, the switch has a small
chance to flip. As the duration increases the probability to
flip increases too, and so for a long enough signal, the switch
will eventually flip as expected �the actual switching time
depends on the parameters of the switch, like the production
rate g or the unbinding rate �1�. Here we just demonstrated
that in principle the switch will flip states in response to an
external signal.

VIII. DISCUSSION

In the rate equations, the meaning of bistability is clear. It
typically appears as a result of a bifurcation. Below the bi-

FIG. 9. �Color online� The dependence of the switching time 	
for the dimers exclusive switch on the dimers degradation rate dD

�a� and the dimerization rate �D �b�.
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furcation there is a single, stable solution, which becomes
unstable at the bifurcation point, where two stable solutions
emerge. In case of the toggle switch, one of these solutions is
dominated by A proteins and the other is dominated by B
proteins. Since both solutions are stable, the possibility of
spontaneous transitions between them due to stochastic fluc-
tuations is not included in the rate equation model.

The objects that participate in regulatory processes in
cells, namely genes, mRNAs, proteins and promoter sites are
discrete objects, and some of them often appear in low copy
numbers. This, together with the fact that many of the rel-
evant processes such as diffusion, degradation as well as
binding and unbinding of transcription factors are of stochas-
tic nature, requires to consider the role of stochastic fluctua-
tions in these regulatory processes. This can be done by us-
ing the master equation or Monte Carlo simulations.

In the master equation, bistability is characterized by two
separate peaks in the probability distribution. These peaks
should be sufficiently far from each other, with low prob-
abilities in the domain between them. As a result, the flow of
probability between the two peaks is low and the time be-
tween spontaneous switching events is long. In order to
qualify as a switch, the average time between spontaneous
switching events must be much longer than the time con-
stants of the transcription, translation, and degradation pro-
cesses in the cell.

For the systems studied here it was found that the general
switch without cooperative binding does not exhibit bistabil-
ity either with the rate equations or with the master equation.
Two other variants, the BRD and the PPI switch systems,
were found to exhibit bistability both with the rate equations

and with the master equation. However, the exclusive switch,
which is not bistable at the rate equation level, was found to
exhibit bistability with the master equation. Thus, in case of
the exclusive switch it is clear that stochastic fluctuations
play a crucial role in making the system bistable. For this
system we also found an exact phenomenological expression
for the switching time in terms of the rate constants of the
relevant processes.

Stochastic analysis of genetic networks can be done either
by direct integration of the master equation or by Monte
Carlo simulations. The master equation provides the prob-
ability distribution of the population sizes of all the mRNA’s
and proteins in the simulated circuit. It can be considered as
a distribution over a large number of genetically identical
cells. The average population sizes and the rates of processes
are expressed in terms of moments of this distribution. To
obtain such distributions from Monte Carlo simulations, one
needs to repeat the simulations a large number of times and
average over them. This may be inefficient in terms of com-
puter time, and the statistical errors may be significant. On
the other hand, unlike the master equation, Monte Carlo
simulations enable to follow the time evolution of a single
cell and directly evaluate quantities such as switching times
and oscillation periods.

The number of equations in the master equation set in-
creases exponentially with the number of proteins and mR-
NAs included in the simulated circuit. As a result, the master
equation becomes infeasible for complex networks. Recently,
we have shown that for reaction networks described by
sparse graphs, one can use suitable approximations and dra-
matically reduce the number of equations �28�.

A related circuit, the mixed feedback loop, in which A is a
repressor to B and the A and B proteins bind to form a
complex was recently studied using rate equations �29,30�. It
was found to exhibit bistability within a range of parameters.

IX. SUMMARY

Genetic switch systems with mutual repression of two
transcription factors, have been studied using a combination
of deterministic and stochastic methods. These systems ex-
hibit bistability, namely two stable states such that spontane-
ous transitions between them are rare. Induced transitions
take place as a result of an external stimulus. We have stud-
ied several variants of the genetic switch, which exhibit co-
operative binding, exclusive binding, protein-protein interac-
tions and degradation of bound repressors. For each variant
we examined the range of parameters in which bistability
takes place. Numerous studies have concluded that coopera-
tive binding is a necessary condition for the emergence of
bistability in these systems. We have shown that a suitable
combination of network structure and stochastic effects gives
rise to bistability even without cooperative binding. The av-
erage time 	 between spontaneous transitions was evaluated
as a function of the biological parameters.

FIG. 10. Probability for the exclusive switch to flip during 1800
�s� after the initiation of the signal, as a function of the external
signal duration. The parameters used were g=0.2, d=0.005, �1

=0.01, and �0=0.2 or zero during the signal.
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