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Spatial step edge fluctuations on a multicomponent surface of Al/Si�111�-��3��3� were measured via
scanning tunneling microscopy over a temperature range of 720–1070 K, for step lengths of L=65–160 nm.
Even though the time scale of fluctuations of steps on this surface varies by orders of magnitude over the
indicated temperature range, measured first-passage spatial persistence and survival probabilities are tempera-
ture independent. The power law functional form for spatial persistence probabilities is confirmed and the
symmetric spatial persistence exponent is measured to be �=0.498±0.062 in agreement with the theoretical
prediction �=1/2. The survival probability is found to scale directly with y /L, where y is the distance along
the step edge. The form of the survival probabilities agrees quantitatively with the theoretical prediction, which
yields exponential decay in the limit of small y /L. The decay constant is found experimentally to be ys /L
=0.076±0.033 for y /L�0.2.
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I. INTRODUCTION

The reasons for interest in nanoscale fluctuations stem
from the drive to reduce the dimensions of electrical devices
to a length scale that is comparable to defect fluctuation am-
plitudes. In crystalline solids, the boundaries of layers of
material, or monatomic step edges, are the dominant source
or sink for atomic motion for the surfaces of crystalline sol-
ids �1–4�. In the regime where thermally activated atomic
motion is allowed, the steps will change shape with time, or
wander �5�. Traditionally, these step edge fluctuations have
been examined using correlation function approaches. How-
ever, additional information is available in the form of first-
passage analyses �6–9�, which may be pertinent to applica-
tions in self-assembly and nanoscale device properties
�10–13�.

While first-passage problems are most often posed in
terms of temporal fluctuations, spatial wandering is also an
applicable problem. The distance that a fluctuation will per-
sist along a step edge is particularly interesting as a measure
of the stability of nanoscale structures �14–16�. Such infor-
mation can be gained by examining spatial first-passage sta-
tistics such as persistence and survival probabilities P�y� and
S�y�, respectively. The persistence probability P�y� is the
probability that a fluctuating step edge does not return to its
initial position over a given distance y measured parallel to
the average step edge. A closely related quantity, the survival
probability S�y�, is the probability that a fluctuating step edge
does not cross its average position over a given distance y.
Formally, the persistence and survival probabilities are de-
fined as

Pss�y0,y0 + y� � Prob�sign�x�y0 + y�� − x�y0�� = const� ,

�1�

∀ 0 � y� � y,

Sss�y0,y0 + y� � Prob�sign�x�y0 + y�� − 	x
� = const� , �2�

∀ 0 � y� � y,

where x�y� is the displacement of the step, measured at a
position y, from its average position. The angular brackets
indicate an average over the length in question and it is as-
sumed that steady state conditions exist and no growth is
occurring �14�.

Theoretical studies �12,14� have shown that persistence
probabilities have the general form of a power law decay for
the step displacement not to return to its starting position
over a distance y,

P�y� � y−�, �3�

where � is the persistence exponent �15,17� characterizing
the model universality class of the system. Fluctuations of
step edges on Al/Si�111� display the time correlation func-
tion signature of a t1/2 dependence at short times �18�. The
most straightforward interpretation of this signature is that
the fluctuations result from mass exchange randomly from
all step edge positions with the neighboring terraces. Alter-
native explanations �19–21� based on diffusion-limited kinet-
ics are rendered less tenable in this case by the experimental
cross-correlation signature �22� and the observation of tem-
poral persistence behavior consistent with z=2 �23�. If the
observations are due to random mass exchange, these dy-
namics fall within the Edwards-Wilkinson model, which can
be described by the equation

�x�y,t�
�t

= �
�2x�y,t�

�y2 + ��y,t� �4�

where x is the step edge displacement, � is the mobility, and
� is a noise term. We only consider �24�
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	��x,t���x�,t��
 = ��x − x����t − t�� �5�

which is uncorrelated Gaussian noise. It has been shown �16�
that in the steady state configuration,

� = �3/2 − n , 1/2 � n � 3/2,

0, n 	 3/2,
�6�

where n= �z−d+1� /2. For this �1+1�-dimensional interface,
d=1 and the dynamical exponent of the Edwards-Wilkinson
model is z=2. Therefore, we expect the persistence exponent
�=1/2 �15�. In comparison with the persistence probability,
the survival probability is related to the autocorrelation func-
tion and decays roughly exponentially with decay constants
related to the correlation length �14�.

The spatial correlation function, i.e., the mean square dis-
placement of a step edge as a function of distance parallel to
the edge, is defined as

G�y� � 	�x�y − y0� − x�y0��2
y0
�7�

where the angular brackets indicate an average over an en-
semble of initial step positions y0. Using this definition, the
spatial correlation function can be calculated directly from
the measured step edge geometry x�y�. For small step edge
distances, y smaller than the correlation length �25�, the av-
erage of G�y� yields an initially linear behavior:

G�y� � kTy/
̃ = b2y/a �8�

where 
̃ is the step edge stiffness, and b2 /a is the step dif-
fusivity. The experimental correlation function G�y� of every
image was used to determine the linear region, over which
persistence and survival probabilities were evaluated. As has
been previously reported for the Al/Si�111� system �26�, the
step edge diffusivity for this data set follows a Boltzmann
dependence on temperature, increasing from 0.45 Å at
770 K to 1.00 Å at 1020 K.

II. EXPERIMENT

Scanning tunneling microscope �STM� images were mea-
sured on Al/Si�111�-��3��3�R30° surfaces at temperatures
ranging from 720 to 1070 K. Growth parameters were con-
trolled to maintain the surface structure in the ��3
��3�R30° reconstruction induced by the deposition of Al
onto the Si�111� surface �18,26�. The experiments were con-
ducted in an ultrahigh vacuum �UHV� chamber �base pres-
sure �6�10−11 Torr� equipped with a variable temperature
�VT� STM �Omicron�, a rear-view low-energy electron dif-
fraction �LEED� apparatus �Physical Electronics Industries�,
and a mass spectrometer �Pfeiffer Vacuum�. The vicinal
Si�111� samples �As doped, 10 m� cm� were misoriented by

0.5° toward the �112̄� direction. The Si surface was cleaned
by several 5 s flashes at 1520 K with subsequent cooling at a
slow rate ��20°C/min� through the �1�1�-to-�7�7� phase
transition.

The Al/Si�111�-��3��3�R30° reconstructed surface was
prepared by evaporation of 0.25–0.33 monolayers �ML� of
Al at a deposition rate of 0.5 ML/min on a Si substrate held

at 1020 K �27,28� and was monitored by LEED. The pres-
sure during evaporation was below 3�10−10 Torr and the Al
flux was measured by a water-cooled quartz microbalance
�Leybold Inficon�. The Si substrate was heated resistively
with direct current while the temperature was measured via
an infrared pyrometer. About 0.5 h of thermal stabilization
was used before STM measurement at elevated temperatures.

The images chosen for this study were of two sizes,
�300 nm�2 and �500 nm�2 with scan rates 3 and 15 �m/s and
pixel sizes 0.586 and 0.977 nm, respectively. Where pos-
sible, only images that included enough monatomic steps to
facilitate more than eight different step edge samplings were
used for this analysis. Only single-layer steps were analyzed.
For the analysis, the spatial STM images used must represent
a “snapshot” of the system, i.e., there should not be any
significant edge dynamics occurring during the image acqui-
sition �26�. At temperatures below 770 K, fluctuations are
absent over time intervals of several minutes, while at
1020 K steps can fluctuate on the order of seconds �18�.
Therefore, to obtain viable information above 870 K,
samples were prepared at elevated temperatures and were
then quenched at an initial cooling rate of over 200 K/s to
room temperature in order to capture and preserve the step
edge displacements �26�.

A representative spatial image is presented in Fig. 1. Step
displacements are defined by the x coordinate which is per-
pendicular to the direction of step edge propagation and a
function of the y coordinate, which is parallel to the step
edge �29�. The spatial deviations of each image’s step edges
x�y� are extracted after cropping the step edge of interest to
eliminate any step regions that are marred by defects or pin-
ning sites, and flattening the upper and lower terraces. Each
constant-y slice of the step edge image is fitted to an analytic
steplike hyperbolic tangent function and the inflection point
of the function is extracted as the position of the step. A
linear fit of the step positions is then subtracted from x�y� to
account for a possible large scale wandering or rotation of

FIG. 1. �Color online� A �500 nm�2 STM image of Al/Si�111�
with pixel size of 0.977 nm, measured at 970 K. The single-step
heights are 3.1 Å.
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the step edge. x�y� is then used to calculate correlation func-
tions, autocorrelation functions, width distributions, persis-
tence probabilities, and survival probabilities. The indicated
error bars are the standard deviations �1� and are obtained
from the deviations of repeated measurements.

The length of the step analyzed and the pixel size both are
important as numerical simulations and theoretical calcula-
tions have shown that the persistence scales as f�y /�y� as
long as y�L �14,30�, and the survival scales as f�y /L ,�y /L�
where L is the variable step length and �y is the image pixel
size. Each step image used for this analysis was cropped
from a larger original STM image, yielding a distribution of
effective system sizes L but the same value of the pixel size
�y. For the entire data set, the range of values of �y /L was
from 0.003 to 0.015. For the steps analyzed from any given
image the smallest and largest values differed by no more
than a factor of 2.

III. RESULTS AND ANALYSIS

Theoretical discussions implicitly assume that the equilib-
rium step displacements have a Gaussian distribution �15�

P�x� � exp− 2� �x − x0�
w

�2� �9�

where x0 is the maximum of the distribution and w is the
width of the distribution. Using the measured values of x�y�,
the stationary single-site height distributions were calculated
and agree with a Gaussian functional form as shown in Fig.
2 for data measured at 920 K. The fit yields a root-mean
squared width of 2.37±0.05 nm.

The persistence and survival probabilities were calculated
as described above over the temperature range 720–1070 K.
Examples of a linear plot of persistence and survival prob-
abilities versus distance parallel to the step edge y are shown
in Fig. 3. The same persistence curve with a power law fit

using logarithmic scales is shown in the inset to more clearly
illustrate the data. Deviations from the power law fit occur
outside the linear region of the correlation function and
therefore do not appreciably effect persistence exponent
measurements. The deviations themselves stem from limited
statistics at large y as well as possible effects of finite mea-
surement size issues, as discussed below. The average of the
persistence curves for all the steps in one image is fitted to
Eq. �3� to extract the persistence exponent �. Figure 4 is a
linear plot of the persistence exponent values versus the tem-
perature. No systematic dependence on temperature is ob-
served, and a weighted linear fit of the persistence exponent
versus temperature produces a slope close to zero, −7.7
�10−5±2.7�10−5 K−1. An analysis of the averaged persis-
tence probabilities over all the temperatures results in a per-
sistence exponent of �=0.498±0.062.

The survival curves are found empirically to follow an
exponential decay at small distances:

S�y� � exp�− y/ys� . �10�

The measured survival length constant ys showed a great
deal of scatter, with no apparent correlation with changes in
temperature. A weighted linear fit of the survival length con-
stant versus temperature produces a slope of 1.2
�10−3±6.6�10−3 nm K−1, and an average value of
9.2±5.7 nm. More physical analysis requires correcting for
the fact that each measurement was carried out for a step

FIG. 2. �Color online� Stationary single-site height distribution
for all data taken at 920 K. The fitting parameters are x0

=0.118±0.020 nm and w=2.37±0.05 nm.
FIG. 3. �Color online� Representative persistence and survival

probability data. The data were taken at 970 K, from a STM image
with pixel size of 0.977 nm. The persistence and survival curves are
represented by squares and circles, respectively. The inset is the
same persistence curve using logarithmic scales. The solid green
line is a power law fit to the data over the linear region of the spatial
correlation function with the persistence exponent �=0.59. Error
bars are 1 values of measurements on seven to ten step segments
each measured from the steps in a single STM image. The true
standard deviation would be obtained in the limit of a large number
of such measurements, and here is estimated by a sampling of sev-
eral such images.
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segment of a different length. It is known that survival prob-
ability can be described by a scaling function �15�

S�y,L,�y� = f�y/L,�y/L� �11�

where L is the size of the system and �y is the pixel size of
the image. Therefore the survival curves for the individual
steps in each image were calculated as a function of y /L, and
then fitted as S�y /L��exp��−y /L� / �ys /L��. The individual
length constants ys /L for each of the steps in one image were
then averaged to give the average scaled survival length con-
stant for the image. The scaled survival length constants ys /L
are plotted versus temperature in Fig. 5. The average scaled
survival length constant is found to be 0.076±0.033 and a
weighted linear fit of the scaled survival length versus tem-
perature produces a slope of −3.5�10−5±7.0�10−5 K−1,
i.e., any true temperature variation must be smaller in mag-
nitude than the experimental uncertainty in the data. To illustrate the effects of step length scaling, data mea-

sured for individual steps with different pixel size and a wide
range of step lengths are shown in Fig. 6�a�. The collapse of
the scaled survival probability curves with scaling as y /L is
shown in Fig. 6�b�. For large distances y, the survival prob-
ability statistics significantly decrease and variations be-
tween measurements and deviations from the theory are ob-
served. By analogy with the effects of finite measurement
times �31�, such deviations of the survival probability may
be expected for large distances y due to the finite sample
size. No systematic effect of the pixel ratio on the linear
region is observed in Fig. 6. This is confirmed by evaluating
of the variation of the scaled decay length ys /L with pixel
ratio �y /L for all the steps analyzed. The result showed no
systematic dependence over the measurement range of
0.003��y /L�0.015.

IV. DISCUSSION AND CONCLUSIONS

In general, the spatial data obtained in this study are
noisier than in previous temporal studies �18,22,23,26�. Nev-
ertheless, the measured persistence exponent value of �

FIG. 4. Persistence exponents vs temperature. Error bars are 1
values of measurements on seven to ten step segments each mea-
sured from the steps in a single STM image. The true standard
deviation would be obtained in the limit of a large number of such
measurements, and here is estimated by a sampling of several such
images.

FIG. 5. Scaled survival decay length vs temperature. Error bars
are 1 values of measurements on eight to ten step segments. Open
and solid triangles are from �300 nm�2 images and �500 nm�2 im-
ages, respectively. The lengths of the steps analyzed were
37.5–134 nm �720 K�, 73–237 nm �820 K�, 56–111 nm �870 K�,
97–277 nm �920 K�, 87–139 nm �970 K�, 63–124 nm �1020 K�,
and 118–194 nm �1070 K�.

FIG. 6. Survival probabilities determined from single steps cho-
sen to display measurements at both pixel sizes and a wide range of
step lengths. Solid diamonds, squares, and circles are from
�500 nm�2 images and have system lengths of L=98.9, 170, and
162 nm, respectively. Open diamonds, squares, and circles are from
�300 nm�2 images and have system lengths of L=65.8, 154, and
87 nm, respectively. Survival probabilities vs �a� distance y parallel
to the step edge and �b� scaled distance y /L. The solid line is the
theoretical prediction of Eq. �12� �15�.
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=0.498±0.062 is clearly in agreement with the theoretical
value of 1 /2. As can be seen in Fig. 4, there is no apparent
temperature dependence of the exponent. This indicates that
there is no change in the value of z in Eq. �6�, and thus no
change in the underlying mechanism of the step motion over
the temperature range as observed previously �22�. This lack
of temperature dependence is consistent with the previous
determination of the temporal persistence exponent for this
system �23�.

The survival probability curves have been shown to scale
with system size as expected, and to follow an exponential
decay at small distances. Full theoretical predictions are
available for the spatial survival to longer distance scales,
which can be written as an expansion �15�

S�u� = 1 −
4�3u

�
+

8

��3
u3/2 +

4�3

�
u5/2 −

32�3a�1 − a�
�

u7/2

�12�

where the parameter a= 1
2 and the scaled length parameter is

y /L=u. This curve is shown as the solid line plotted in Fig.
6, and reproduces the rapid fall-off of the survival probability
at larger distances. Consistent with the experimental obser-
vation, the functional form is indistinguishable from an ex-
ponential for y /L� �0.2. A fit of the theoretical curve by an
exponential over similar length scales provides a scaled sur-
vival length constant of ys /L=0.122, somewhat larger than
the average measured value of 0.076±0.033. This empirical
survival length constant is a useful experimental rule of
thumb. This constant is independent of sample-dependent
system length, and provides a ratio of the characteristic fluc-
tuation length scales to the system size �15�. Furthermore, an
analysis of all the data, illustrated for a subset of the data in
Fig. 6, shows that the scaled decay length for the linear ex-
ponential region of the fit is robust with respect to changes of
a factor of 5 in the pixel size.

In summary, spatial first-passage statistics have been used
to analyze step fluctuations on Al/Si�111�. The temperature-
dependent study on a model metal-semiconductor surface

was carried out using variable-temperature STM. The quan-
titative examination of step fluctuation dynamics was based
on analysis of both traditional spatial correlation functions
and the statistically based persistence and survival. The sta-
tionary displacement distribution of the step deviations is
confirmed to have a Gaussian functional form as predicted.
The extracted mean squared width provides valuable infor-
mation concerning the average step edge displacement.

However, when this information is combined with the
predictive nature of persistence and survival studies the ex-
perimentally meaningful length scales are easily extracted.
The spatial persistence exponent is measured to be
0.498±0.062 in agreement with the theoretical prediction of
1
2 for the Edwards-Wilkins model. This is further confirma-
tion that the step fluctuations in this system are governed by
random exchange of mass with the terraces over the entire
temperature range of observation. An effective exponential
form for the survival probabilities is found, with a scaled
survival length constant value of 0.076±0.033. The survival
probability is observed to scale directly with y /L, where y is
the step edge position and L is the step length, and the over-
all shape of the curve agrees well with the theoretical pre-
diction �15�. Both the extracted persistence exponent and
survival length constant are observed to be temperature in-
dependent over the range 720–1070 K, where the underlying
mass transport rates in this system change by three orders of
magnitude �18�. This can be traced back to the finite sample
size of the measurements. Since the step length is playing the
role of the correlation length, the temperature independence
of the persistence exponent and the survival length constant
is expected.
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