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The rheology of a two-dimensional granular gas under a plane shear is investigated. From the comparison
among the discrete element method, the simulation of a set of hydrodynamic equation, and the analytic solution
of the steady hydrodynamic equations, it is confirmed that the fluid equations derived from the kinetic theory
give us accurate results even in relatively high density cases.
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I. INTRODUCTION

Granular materials consist of macroscopic dissipative par-
ticles. The granular material often behaves as an unusual
fluid. Although to understand the rheology of the granular
fluid is practically important, our understanding on the rhe-
ology is still poor. There are several reasons to have poor
understanding on the rheology of granular flows: �i� The
separation of the length scale among the size of particles, the
mean-free path, and the system size is not enough, �ii� there
are many cases that the fluid region coexists with the solid-
like region, and �iii� most of experiments are strongly af-
fected by boundary conditions and the external field. Never-
theless, it is believed that rapid granular flows for relatively
dilute granular gases can be described by a set of hydrody-
namic equations derived from the kinetic theory �1�.

To maintain a granular gas we need to add an external
field. The simplest steady situation of the granular fluid is
achieved by the balance between an external shear and in-
elastic collisions between particles. This system is appropri-
ate to investigate what the constitutive equation for the
granular fluid is. The kinetic theory may suggest that the
relation between the stress and the strain rate at Navier-
Stokes order may be sufficient to describe hydrodynamics of
granular fluids �2–4�.

About 50 years ago, Bagnold �5� suggested that the granu-
lar fluid is characterized by ���̇2 or ����̇�, where �, �̇, and
� are the shear stress, the shear rate �the strain rate�, and the
shear viscosity, respectively. This relation is known as Bag-
nold’s scaling and is different from the conventional linear
relation ���̇. Recently, Pouliquen �6� and Silbert et al. �7�
have reconfirmed the quantitative relevancy of Bagnold’s
scaling in granular flows on inclined slopes. Mitarai and Na-
kanishi �8� have demonstrated that a set of hydrodynamic
equations at Navier-Stokes order derived from the kinetic
theory can be compatible with Bagnold’s scaling. Their deri-
vation is simple. Suppose that the granular fluid can be ap-
proximated by a set of hydrodynamic equations at Navier-
Stokes order. From the kinetic theory the viscosity may

satisfy ���T with the temperature T. If there is the relation
T��̇2, Bagnold’s scaling �� ��̇� is satisfied. This relation is
approximately true if the heat conduction is not important in
the equation of the energy continuity. Santos et al. �9� also
indicate that Bagnold’s scaling is valid for steady dilute
granular gases without the influence of the gravity in the
uniform shear flow �USF�, though the transport coefficients
such as the viscosity and the heat conductivity are different
from those in homogeneous cooling state �4�. It is a key
point whether the heat conduction is negligible to hold Bag-
nold’s scaling. Therefore, it is reasonable to have Bagnold’s
scaling in USF because of the nonexistence of a temperature
gradient. However, we still do not know whether Bagnold’s
scaling is relevant in other situations.

Recently, the rheology of dense granular flows under the
plane shear with a constant pressure has been studied and a
new scaling has been reported �10,11�. These studies are im-
portant but particles are not in a gas state, i.e., each particle is
in contact with many other particles simultaneously. The
analysis of such process is challenging but we do not have
any good tool to analyze it at present. Here, we focus on the
granular shear flows without multibody contacts in a con-
stant volume container.

The purpose of this paper is to check the relevancy of the
kinetic theory for a granular gas with moderate density under
the plane shear in a constant volume container to character-
ize the rheology of granular fluids. For this purpose, we in-
vestigate whether �i� the kinetic theory is relevant for the
granular gas and �ii� the tangential contact and the rotation of
particles are irrelevant except for the boundary layers. We
also discuss whether Bagnold’s scaling is a universal concept
for granular flows. It should be noted that Bagnold’s scaling
is no more relevant for flows with nonuniform shear rate in
the steady granular flow without any body force. In fact, to
satisfy ���̇2 even in an approximate sense, the shear rate �̇
should be a nearly uniform, because the shear stress and the
pressure are spatially uniform in the steady state in the ab-
sence of any body force. To investigate the above problem,
we use the discrete element method �DEM� for particles’
simulation �Sec. II�. We adopt the constitutive equations de-
rived by Jenkins and Richman �12� for nonrotational par-
ticles in Sec. III. In Sec. IV we solve a set of hydrodynamic
equations obtained from the kinetic theory numerically and
compare the result with the result of DEM. We also check
the renormalization theory of the restitution coefficient de-
veloped by Yoon and Jenkins �13�. In Sec. V we obtain the
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analytic solution of the steady hydrodynamic equations to
verify the quantitative relevancy of the constitutive equation.
In Sec. VI we discuss our result and the relevancy of Bag-
nold’s scaling. In Sec. VII, we conclude our results. In the
Appendix, we briefly explain the method to determine the
tangential restitution coefficient as a function of the incident
angle.

II. DEM SIMULATION

A. DEM model

The discrete element method �DEM� is one of the stan-
dard methods to simulate the motion of granular particles
�14�. DEM is applicable to most of situations of granular
dynamics even when particles are almost motionless and in
contact with many other particles simultaneously. We adopt
DEM to simulate a granular fluid to check �i� the validity of
kinetic theory based on the reliable model and �ii� the effects
of rotation of particles for the granular fluid.

In this paper, we focus on a two-dimensional motion of
granular particles under a plane shear. We adopt the linear
spring model for the repulsion with the normal stiffness kn
and the tangential stiffness kt, and the normal and the tan-
gential viscous coefficients �n and �t, respectively.

Let us consider a colliding pair of two disks i and j of the
diameter � and the mass m at the position xk with the veloc-
ity ck� ẋk and the angular velocity �k for k= i or j. If the
particles are in contact, the overlap distance

�ij � � − �xi − x j� �1�

must be positive. The relative velocity at the contact point is
given by

cij = ci − c j +
�

2
nij � ��i + � j� �2�

with the normal unit vector nij ��xi−x j� / �xi−x j�. Introducing
the normal velocity cn

ij =nij ·cij, the tangential velocity ct
ij

= tij ·cij, the tangential displacement wt
ij =	t0

t dsct
ij�s� with the

tangential unit vector tij satisfying tij ·nij =0, the normal and
the tangential forces Fn

ij and Ft
ij are, respectively, given by

Fn
ij = mkn�ij − m�nvn

ij for �ij 	 0, �3�

Ft
ij = min�ht,
�Fn

ij��sgn�ht
ij� , �4�

where ht
ij �−mktwt

ij −m�tct
ij with Coulomb friction constant


, min�a ,b� is the function to select the smaller one between
a and b, and sgn�x�=1 for x	0 and sgn�x�=−1 for x�0.
The total repulsive force at the contact can be represented as
Fij =Fn

ijnij +Ft
ijtij.

Thus, the equation of motion of particle i is described by

mċi = 

j�i

Fij , �5�

I�̇i =
�

2 

j�i

nij � tijFt
ij , �6�

where I=m�2 /8 is the moment of inertia. We integrate Eqs.
�5� and �6� in terms of the second order Adams-Bashforth
with the time interval �t=4.0�10−4�2� /U�.

Throughout the paper we adopt the following parameters
as kn=3.0�103�U /��2, kt=kn /4, �n=3.0�U /��, �t=�n /2,
and 
=0.20, where U is the relative shear speed between
boundaries. These parameters lead to the normal restitution
constant ē=0.85 and the tangential restitution �−1
+1.12442 cot � for ���c and =0�0.769235 for �	�c,
where � is the incident angle of two colliding disks and the
critical angle �c is given by cot �c�1.56734 �see Eq. �A4� in
the Appendix �. As shown in Appendix , the tangential resti-
tution constant  can be approximated by �15�

 � �− 1 + 
�1 + ē�cot �1 +
m�2

4I
� �� � �c� ,

0 �� � �c� .
� �7�

We also note that the realistic value of Coulomb friction
constant in both disks and spheres is 
�0.2 �16–18�.

B. Setup

Simulations of granular particles under the plane shear
have been performed by many researchers, but many of them
�19–21� assume the Lees-Edwards boundary condition �22�
which may not be adequate to consider the behavior in
physical situations. On the other hand, Babic �23�, Popken
and Cleary �24� have simulated sheared granular flows con-
fined in frictional flat boundaries, but their simulations are
restricted to the cases for small systems and almost elastic
particles. Kim �25� has indicated that the density of particles
near the boundary is higher than that in the bulk region for a
small system with the flat frictional boundary, while particles
are accumulated in the center region for a larger system.
Louge �26� has simulated a three dimensional shear flow on
the flat frictional boundary to examine the boundary condi-
tion proposed by Jenkins �27�, but Louge is mainly interested
in the behavior of flux, the ratio of the normal stress to the
shear stress as functions of volume fraction, and the restitu-
tion constant. Recent papers by Xu et al. for an experiment
�28� and a simulation �29� examine the validity of three di-
mensional kinetic theory by Jenkins and Richman�30� under
asymmetric shears in the presence of a streamwise body
force, where they obtain reasonable agreements between the
theory and the observations in both the experiment and the
simulation.

To our knowledge, we do not know of any papers that
discuss the validity of kinetic theory in a transient dynamics
and a symmetric shear without a body force in a large
enough system. Thus, we adopt the following setup of our
DEM simulation shown in Fig. 1. The system is confined in
a two-dimensional container. Without including the effects of
the air and the gravity we add a symmetric shear with the
shear speed U between two horizontal walls �Fig. 1�. The
fixed parameters throughout our simulation are the number
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of particles N=5000, the linear dimension of the system in y
direction �=180� and the mean area fraction �̄=0.121. We
adopt the periodic boundary condition in the x direction
which is the horizontal direction in Fig. 1.

We introduce some fixed particles on the wall to repro-
duce the bumpy boundary. The reason why we adopt the
bumpy boundary is to avoid the large amount of slips on the
wall. In our simulation we start from an initial condition
without the shear. Then, the wall at y=� /2 obeys the equa-
tion of motion in the x direction

Mw
dcW

dt
= − m�w�cW − Uex/2� + Fex, �8�

where cW and ex are, respectively, the actual wall velocity
and the unit vector along x direction. Mw, �w, and Fex are the
mass of wall Mw=5.0�106 m, the relaxation rate �w
=10U / �2��, and the force acting on the wall by the collision
between mobile particles and the wall, respectively.

Simulation

We use the initial condition that the configuration of par-
ticles is at random and the velocity distribution function
obeys Maxwellian. Figure 2 is the time evolution of par-
ticles’ configuration for �̄=0.121. As we can see in Fig. 2,
two shallow clusters appear near the wall in an early stage,
and move to the center region of the container. Then, the two
clusters merge to form a big cluster. The behavior to form a
big cluster can be observed in the simulation under the Lees-
Edwards boundary condition �21�.

The time evolution of the total kinetic energy E in a typi-
cal situation is shown in Fig. 3, where the energy is defined
by

E�t� =
1

2

i

�mci
2 + I�i

2� . �9�

It is characteristics that the total kinetic energy is relaxed to
almost a constant value quickly.

The hydrodynamic variables are the local area fraction
��r , t����2n�r , t� /4 with the number density n�r , t�, the ve-
locity field v�r , t� and the granular temperature T�r , t� which
is defined by

T�r,t� =
1

2n
� dc�c − v�2f�r,c,t� . �10�

Unfortunately, the system size is not enough large to obtain
hydrodynamic variables without neglecting x dependence. In
our simulation, thus, we divide the system into rectangular
cells of ��L where L is the system size in x direction. Thus,
the measured area fraction in our simulation is given by
��y , t��
i�C��2 /L� where the summation is taken over the
center of particle i existing in the cell C at y. Similarly, the
velocity field v�y , t� is the local average of the velocity of
particles. The temperature field is also calculated by

T�y,t� =
1

2n


i�C

�ci − v�2. �11�

The time evolution of hydrodynamic variables can be
summarized as follows. Corresponding to Fig. 2, the local
area fraction becomes large near the boundary at the initial
stage, and the shallow clusters move to the central region of
the container with growing the peak density. Finally, the two
dense regions merge to form a compact cluster at the center
y=0.

The interesting behavior can be observed in the velocity
field and the granular temperature. The x component of the
velocity field is almost zero between two clusters during the
time evolution, and such region is narrower as the distance of
two clusters is closer. Even in the steady state, the velocity
gradient in the central region is much smaller than that near
the boundary. The y component of the dimensionless velocity
field uy is the quantity to characterize unsteady fluid motion
�Fig. 4�. Similarly, the temperature field in the central region
is smaller than that near the boundary. However, the mini-
mum value of temperature decreases with time and reaches
almost zero in the central region in the steady stage. The
results of our DEM simulation except for uy =2vy /U will be

FIG. 1. The configuration of our simulation.

FIG. 2. The time evolution of the particles’ configurations from
�a� to �b� for �̄=0.121.

FIG. 3. The time evolution of the kinetic energy, where the units
of time and the energy are 2� /U and mU2 /2, respectively.
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shown in Secs. IV and V through the comparison of DEM
with hydrodynamic simulations or the theoretical results in
the steady state.

The result of our simulation may give us suspicious im-
pression of the validity of kinetic theory for this system,
because �i� the density in the cluster is near the closest pack-
ing � /2�3�0.907 in the steady state and �ii� the particles
are almost motionless in the clusters. Our result is contrast to
the result by Xu et al. �28,29�, where the flow is almost USF
under the existence of a streamwise body force.

III. HYDRODYNAMIC EQUATIONS

Although there are two standard methods, Chapman-
Enskog method �3,4,31� and Grad expansions �32�, many of
established results are limited to dilute gases to derive hy-
drodynamic equations from the kinetic theory. However, as
shown in the previous section, we have to adopt the kinetic
theory for moderate dense granular gases. Garzó and Dufty
�33� and Lutsko �34� predict transport coefficients in dense
granular gases based on Chapman-Enskog method. On the
other hand, Jenkins and Richman derive hydrodynamic equa-
tions based on Grad expansion and give transport coeffi-
cients �12,30�. Although the treatment by Jenkins and Rich-
man �12� does not take into account the contraction of the
phase space volume in each collision, the theory is suitable
for our purpose because it gives us explicit expressions of
the transport coefficients in the two-dimensional dense
granular gases.

Jenkins and Richman �12� and Lun �35� derive hydrody-
namic equations which include the angular velocity, the spin
temperature as well as the density, the translational velocity,
and the granular temperature. The equations include the
couple stress and the collisional loss of spin energy. These
hydrodynamic equations are categorized into the micropolar
fluid mechanics which was originally proposed by Cosserat
and Cosserat for the description of the elastic materials �36�.
Application of the concept of micropolar fluid mechanics to
atomic gases are developed by Dahler and his co-workers
�37�. The micropolar fluid mechanics is applied to granular
flows by Kanatani �38�, Lun �35�, Babic �39�, Hayakawa
�40�, and Mitarai et al. �41�. The importance of the excitation
of the spin on the boundary is indicated by Jenkins �27�, but
the effects of the spin may be decoupled with the transla-
tional velocity in the bulk region. In particular, Babic �39�
indicated that the coupled stress induced by the collisions

between circular particles is canceled. On the other hand,
some recent papers suggest that the spin effects are relevant
in granular flows. For instance, Goldhirsch et al. �44� have
indicated that the equipartition between spin energy and the
translational energy is violated, and Gefen and Alam �45�
discuss the linear stability of sheared micropolar fluid.
Therefore, we need to judge whether the concept of micropo-
lar fluid is necessary for the description of granular fluids.

Recently, Jenkins and Zhang �42� have suggested that the
effect of the tangential contact in collisions can be absorbed
in the renormalized restitution coefficient. Yoon and Jenkins
�13� have extended the scheme to two-dimensional cases as

e � ē − 
 + 2
2�1 + ē� �12�

for small 
. The validity of three dimensional theory �42�
has been tested by Xu et al. �29� and Jenkins and Zhang �42�.
The latter is consistent with Lun and Bent �43� in part. How-
ever, the quantitative validity of Yoon and Jenkins �13� has
not been examined yet.

In this paper, we adopt the renormalization procedure of
the restitution coefficient proposed by Yoon and Jenkins
�13�. Thus, the restitution constant e appears in hydrody-
namic equations is different from ē of DEM, where the rela-
tion between two restitution constants is given in Eq. �12�.
Namely, ē=0.85 in DEM corresponds to e=0.798 for 

=0.20 in hydrodynamic equations.

The advantage to adopt the renormalization is that hydro-
dynamic equations can be simplified as

Dt� = − �� · v , �13�

�Dtv = − � · P , �14�

�DtT = − P:��v� − � · q − � , �15�

where �=nm is the mass density and Dt=�t+v ·�. Here �i , j�
component Pij of the pressure tensor P is expressed as the
function of the bulk viscosity � and the shear viscosity �

Pij = �p − ��� · v���ij − �D̂ij �16�

at the Navier-Stokes order, where �ij =1 for i= j and 0 for

otherwise, D̂ij = ��iv j +� jvi� /2−�ij�kvk /2. Here q represents
the heat flux which can be expanded as

q = − ��T − ��� , �17�

where � is the heat conductivity. Note that the transport co-
efficient � becomes zero at e=1. The collisional loss rate of
the energy � can be represented by

� =
1 − e2

4��p
��

�2g���T1/2�8T − 3���T1/2�� · v�� , �18�

where �p=4m / ���2� is the mass density of a particle.
Let us nondimensionalize the time, position, velocity, and

temperature as

FIG. 4. The time evolution of dimensionless uy with �a� at t
=60 and �b� at t=380, where the units of the time and uy are
�2� /U� and U /2, respectively.
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t =
2�

U
t*, x = �x*, v =

U

2
u, T =

U2

8
� . �19�

Thus, the nondimensional pressure tensor, the heat flux, and
the collisional loss rate of energy are, respectively, given by

Pij =
�pU2

4
Pij

* , q =
�pU3

8
q*, � =

�pU3

8�
�*. �20�

Here the dimensionless quantities are written as

Pij
* = �p���� − �����1/2��* · u���ij − �����1/2D̂ij

* , �21�

q* = − �����1/2�*� − �����3/2�*� , �22�

�* =
1 − e2

4�2�
�2g����1/2�4� − 3��

2
�1/2��* · u�� . �23�

The explicit expressions of p���, ����, ����, ���� and ����
obtained by Jenkins and Richman �12� are summarized in
Table I with the radial distribution function �46�

g��� = gc��� +
gf��� − gc���

1 + exp�− �� − �0�/m0�
, �24�

where gc���= �1−7� /16� / �1−��2 and gf���= ��1+e�����c /�
−1��−1 with �c=0.82, �0=0.7006, and m0=0.0111. The
choice of g��� is not unique. For example, we expect that a
similar result can be obtained by using the radial distribution
function in Ref. �47�. Thus, the dimensionless hydrodynamic
equations are reduced to

Dt� = − �� · u , �25�

�Dtu = − � · P , �26�

1

2
�Dt� = − Pij�iuj − � · q − � . �27�

From hereon, the asterisk representing dimensionless quanti-
ties is eliminated.

IV. SIMULATION OF HYDRODYNAMIC EQUATIONS

A. The outline of our simulation

To verify the accuracy of the set of hydrodynamic equa-
tions �25�–�27� derived from the kinetic theory by Jenkins

and Richman �12�, we simulate hydrodynamic equations.
Since the grid scale is comparable with the diameter of the
disks, each grid in a two-dimensional space cannot contain
enough number of particles to define hydrodynamic vari-
ables. Therefore, we average the field variables in the x di-
rection. Thus, all quantities only depend only on y and t.
However, we should note that the x component of velocity is
one of the relevant hydrodynamic variables in the unsteady
state. The second purpose of the simulation of hydrodynamic
equations is to obtain a reduced set of equations to recover
the qualitative accurate results to describe the metastable dy-
namics after the total energy is relaxed to a constant value.

The method of the discretization of continuous variables
is based on the standard procedure. We adopt the classical
Runge-Kutta scheme for the time derivative with �t=0.01
and the second order accuracy of the spatial derivative of a
hydrodynamic variable � as

��

�y
=
� j+1 − � j−1

2h
,

�2�

�y2 =
� j+1 − 2� j + � j−1

h2 , �28�

where h is the grid displacement with h /�=1/180 and y
= jh with j=0, ±1, ±2, . . . . It should be noted that we do not
have to solve Poisson equation for the pressure because the
fluid is compressible and the pressure is completely deter-
mined by the equation of state.

B. The boundary condition

We adopt the boundary condition proposed by Johnson
and Jackson �48�. We define the slip velocity on the bound-
ary as usl=u−uw, where uw= ±ex at y= ±� / �2��. Let t and n
be the tangential unit vector and the normal unit vector to the
wall, respectively. Thus, the conservation of the linear mo-
mentum on the wall is given by

− n · P · t =
�

4
����,���usl� , �29�

where � /4 is originated from m=��p�
2 /4. Here, � is the

roughness parameter and ��� ,�� is the collisional frequency
between the wall and the particles. The expression � is as-
sumed to be

���,�� = �g����1/2, �30�

where the prefactor is absorbed in the roughness parameter.
On the other hand, the energy balance on the wall can be
expressed by

n · q = − usl · P · n − ���,�� , �31�

where ��� ,�� is the energy loss rate by the inelastic colli-
sions between particles and the wall, which may be repre-
sented as

���,�� =
�

4
����,��� =

�

4
��g����3/2. �32�

Here � is the hardness parameter of the wall. In our simu-
lation we adopt �=0.20 and �=0.24 as fitting parameters.

The reason why we adopt the boundary condition by
Johnson and Jackson �48� is that their condition is simple.

TABLE I. The dimensionless transport coefficient by Jenkins
and Richman.

p���= 1
2��1+ �1+e��g����

����= 1
�2�

�1+e��2g���

����=��

2 � 1
7−3eg���−1+

�1+e��3e+1�

4�7−3e� �+ � �1+e��3e−1�

8�7−3e� + 1
� ��1+e��2g����

����=�2�� 1
�1+e��19−15e�g���−1+

3�2e2+e+1�

8�19−15e� �+ � 9�1+e��2e−1�

32�19−15e� + 1
2� �

� �1+e��2g����
����=−��

2

3e�1−e�

16�19−15e� �4g���−1+3�1+e��� 1
�

d��2g����

d�
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The more precise treatment for the boundary condition can
be seen in Ref. �49�. When we adopt Jenkins’ boundary con-
dition, the number of fitting parameters may be reduced.

When we represent these boundary conditions as

Fb1��,�y�� = 0 �33�

and the formal solution of this discrete equation can be for-
mally solved as

�N = Fb2��N−1,�N−2� , �34�

where N=� /2� is the grid number on the boundary at y
=� /2� with symbolic functions Fb1 and Fb2. From the con-
sideration of the symmetry in the y direction, we have ��y�
=��−y�, ��y�=��−y�, and u�y�=−u�−y�. Thus, it is enough to
discuss the boundary condition at y=� /2. From Eq. �29� we
may obtain the x component of the velocity field

ux;N =
ux;N−2 + 4�h�N−1g��N−1�/���N−1�

1 + 4�h�N−1g��N−1����N−1�
, �35�

where the area fraction �N on the boundary is assumed to be

�N = 2�N−1 + �N−2 �36�

to suppress the gradient of the density field. Similarly, Eq.
�31� becomes

�N =
�N−1���N−1���N−2 − �N�

���N−1�

+ 2h
���1 − ux;N�2 − ��N−1��N−1g��N−1�

���N−1�
. �37�

It is obvious that y component of the velocity field satisfies

uy;N = 0. �38�

C. The result of numerical simulation for the complete set of
hydrodynamic equations

For the initial condition to simulate hydrodynamic equa-
tions we fit the data of DEM at t=20 in the dimensionless
unit. Each fitting curve is approximated by a polynomial of y
�Fig. 5�. The reason why we adopt the initial condition at t
=20 instead of t=0, we are interested in the slow evolution
of hydrodynamic variables after the total kinetic energy is
relaxed to be a constant.

As shown in Figs. 6 and 7 the results of the simulation of
hydrodynamic equations well agree with those of DEM.
These agreements in the behavior between hydrodynamic
equations and DEM mean that the renormalization procedure
by Yoon and Jenkins �13� gives us the accurate results.
Amongst hydrodynamic variables the amplitude of y compo-
nent of the velocity field in the simulation of hydrodynamic
equations has much larger than that of DEM though the pro-
file itself is similar with each other. The other variables in
hydrodynamic simulation are almost the same as those in
DEM �Fig. 7�.

It should be noted that the transient dynamics of a granu-
lar shear flow has been discussed by Babic �23� but his sys-
tem is relaxed to be an USF in a small system size with small

inelasticity. On the other hand, ours will not reach USF.

D. Simulation of a simplified set of equations

To understand the qualitative behavior of phase separa-
tions, we need to reduce the degree of freedom of hydrody-
namic equations. It is reasonable to deduce the terms propor-
tional to the bulk viscosity is not important. In addition, the
advection term u ·�u in hydrodynamic equations may not
play important roles in the plane shear problem. The cou-
pling between the spatial gradient and the terms proportional
to 1−e2 are also negligible, because the kinetic theory can be
applied to cases for small inelasticity.

Thus, we may reduce the set of hydrodynamic equations
to

�t� = − �y��uy� , �39�

�tux = �y�����
2

�1/2�yux� , �40�

FIG. 5. The initial conditions of hydrodynamic equations �solid
lines� and the corresponding data of DEM �open circles� at t=20,
where �, �, ux, uy, and y are all dimensionless quantities �see text�.
The solid lines for � and � are the polynomials of even powers of y
until y6, while the lines for ux and uy are the polynomials of the odd
powers of y until y5.

FIG. 6. The comparison of the data for the area fraction for �̄
=0.121 obtained by DEM �open circles� at t=20 �label 1�, 60 �label
3�, and 380 �label 5�, and the result of hydrodynamic equations
�25�–�27� �solid lines�. Here y is the dimensionless coordinate.
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�tuy = �y������1/2�yuy − p����� , �41�

�t� = − uy�y� − �−1�����1/2��yux�2 + 2�−1�����1/2��yuy�2

− 2�−1�y������1/2�y�� − �2��1 − e2��g����3/2. �42�

For further simplification, we may assume �t�=0 in Eq. �42�.
However, this approximation does not cause any simplifica-
tion in the numerical treatment, because we still need to
solve the ordinary differential equation of Eq. �42� with �t�
=0 in each time step. Although uy becomes zero in the steady
state, we still keep Eq. �41� in the unsteady region, because
both simulations of DEM and hydrodynamics suggest that
the relaxation of uy is an important process in the slow dy-
namics. Thus, we believe that the set of equations �39�–�42�
is the simplest set of hydrodynamic equations to describe
phase separations.

Figure 8 shows the growth of hydrodynamic variables
based on Eqs. �39�–�42�. Although the quantitative behavior
is a little deviated from the result of DEM or the full set of

hydrodynamic equations �25�–�27�, the qualitative behavior
of this simplified model is similar to those in more accurate
treatments. In the steady state both hydrodynamic models
reduce to equivalent results.

V. THEORETICAL DESCRIPTION OF THE STEADY
STATE

In the steady state, the hydrodynamic variables depend
only on y. Thus, the variables are

� = ��y�, ux = ux�y�, uy = 0, � = ��y� . �43�

It is obvious that any hydrodynamic variable � satisfies
Dt�=�t�=0. Thus, the equation of mass conservation is
automatically satisfied. The relevant equations of motion be-
come

0 =
d

dy
Pxy , �44�

0 =
d

dy
Pyy , �45�

0 = Pyx
d

dy
ux +

d

dy
qy + � . �46�

Thus, the normal stress and the shear stress are uniform

p � Pyy = const, � � Pyx = const. �47�

From the definition of the pressure tensor we obtain

� = −
����

2
�1/2dux

dy
, �48�

p =
1

2
��1 + �1 + e��g����� . �49�

Thus, we obtain the expressions for � and dux /dy as func-
tions of p, � and �. Substituting them into the last equation of
�46� we obtain

d

dy
�F���

d�

dy
� = G��� , �50�

where

FIG. 7. The time evolution of the dimensionless temperature �a�, the dimensionless velocity fields ux �b� and uy �c� in hydrodynamic
simulations shown in solid lines, where the data in �a� and �b� are obtained by DEM. The numbers 1,3,5 in these figures correspond to results
at t=20, 60, and 380, respectively. The DEM data with the solid squares and open circles correspond to the result at t=20 and 60,
respectively. Note that comparison of the theory and DEM in the steady values of � and ux will be shown in the next section, while we do
not include DEM data for uy because of the disagreement in the scale �see Fig. 4�.

FIG. 8. The time evolution of the area fraction �a�, dimension-
less temperature �b�, the dimensionless velocity fields ux �c� and uy

�d� in the simulation of a simplified model �42� of hydrodynamic
equations. The numbers 1,3,5 in these figures correspond to the data
at t=20, 60, and 380, respectively.
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F��� =
1

����3/2�1

2
+ r

d

d�
��2g������

����
− ����� , �51�

G��� =  
2����1/2

����
− �1 − e�

����
����3/2 �52�

with  = �� / p�2 and ����=2/ ���1+ �1+e��g�����.
It is well established how to solve a second order ordinary

differential equation such as Eq. �50�. Introducing H��� as
dH��� /d�=F��� and the multiplying dH /dy in both sides of
Eq. �50�, and thus integrate the equation from y=0 to y we
obtain

1

2
dH

dy
�2

= �
��0�

��y�

d�F���G��� , �53�

where we use the symmetric condition d� /dy=dH /dy=0 at
y=0.

±�
��0�

��y� F���

�2�
��0�

�

F����G����d��

d� = y . �54�

Thus, we obtain the equation of y as the function of �.
To draw the actual profile of �, we start from a trial �1�0�

to integrate Eq. �54� and calculate I1=	−�/2
�/2 �1�y�dy, where

the suffix 1 represents the first trial function. Then we re-
place �1�0� by �2�0� to reduce the deviation between I1 and
�̄. We repeat this relaxation procedure to obtain the con-
verged result IM → �̄ until Mth trial. Once we obtain �, we
can determine � and dux /dy by Eq. �48�.

To compare � and dux /dy with the result of DEM we use
a fitting parameter  = �� / p�2, while we need two fitting pa-
rameters ��=−0.0017 and p=0.1 for nonrotational cases and
�=−0.0017 and p=0.06 for rotational cases� to determine ux
and �. It should be noted that p and � are determined by the
boundary condition, but the boundary condition in Eqs. �29�
and �31� with Eq. �32� contains two undetermined param-
eters. Thus, p and � cannot be determined within our theory.

Figure 9 is the comparison of our theoretical result with the
result of DEM without the tangential contact force in the
interaction between particles for �̄=0.121. The agreement
between the theory and DEM is good. Figure 10 is the com-
parison of our theoretical result with the result of DEM with
the tangential interaction for �̄=0.121. We again obtain a
fairly good agreement between the theory and the simulation.

The reason why we can use the kinetic theory is that
collisions between particles are almost binary even in the
dense cluster. Actually, we find that contacted particles are
about 1.014% of all particles at an instance, and only 2.4%
of contacts are multibody contacts among all contacts for �̄
=0.121. Therefore, the kinetic theory can be used even in the
dense cluster in which particles are almost motionless.

In principle, we can measure both the normal stress and
the shear stress from the data of DEM. However, we only
obtain the results with large errors. It seems that there is a
tendency to have too small p in the direct measurement,
though observed � is similar to the fitting value.

Thus, we confirm that �i� the kinetic theory by Jenkins
and Richman �12� can reproduce the profiles of hydrody-
namic variables to describe the steady state of the granular
fluid though the fitting values of the stresses are included and
�ii� the renormalization scheme proposed by Yoon and Jen-
kins �13� is accurate. Although the setup of our simulation
seem to be similar to that by Xu et al. �29�, our result for
hydrodynamic variables is much heterogeneous than that by
Xu et al. in the presence of a streamwise flow. In fact, our
system is separated into two regions which are a compact
cluster and the very dilute region. The particles within the
cluster is almost motionless, but the particles in the dilute
region have large kinetic energy. On the other hand, the
steady state obtained by Xu et al. �29�. is similar to USF.
Thus, the result strongly depends on whether there is a
stream flow.

VI. DISCUSSION

Let us discuss our results. One of the main purposes of
this paper is to clarify whether Bagnold’s scaling is universal

FIG. 9. The comparison be-
tween theory �solid lines� and
DEM simulation without the tan-
gential interaction �open circles�
for area fraction �a�, dimension-
less temperature �b�, and ux �c�.
The mean area fraction is �̄
=0.121.

FIG. 10. The comparison be-
tween theory �solid lines� and
DEM simulation with the tangen-
tial interaction �open circles� for
area fraction �a�, dimensionless
temperature �b�, and ux �c�. Here
we use e=0.798 and the mean
area fraction �̄=0.121.
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in granular flows. Our result is one of counter examples of
Bagnold’s scaling in sheared granular fluids because the
shear rate strongly depends on the position but the shear
stress is uniform.

One of most important points is that our system does not
contain any external body force. In physical situations, to
remove the effect of gravity is difficult. In the presence of an
external field, the energy is directly supplied to particles
where the heat conduction does not play any role, while the
energy is transferred from the boundary in terms of the heat
conduction in our system. As a result, Bagnold’s scaling for
systems in the presence of an external body force seems to
be valid �6,8,64�. On the other hand, the heat conduction is
important for our system in which Bagnold’s scaling is not
satisfied. We can stress that particles are almost motionless in
the bulk region where the influence of the heat conduction is
small.

Even when the system is compressed by the external pres-
sure, the main fraction of the energy is transferred not by the
heat conduction but by the elastic wave. Therefore, Bag-
nold’s scaling may be observed in some parameter regions
even in such systems. As indicated in Introduction, however,
recent papers and references cited therein �10,11� of sheared
granular materials under a constant pressure produce a state
of “granular liquid” has a new scaling region. This is because
the pressure and the stiffness of grains which becomes im-
portant because of multiple contacts of particles produce an-
other time scale. Thus, the behavior can depend on the shear
rate.

On the other hand, the situation of granular shear flows
confined in a periodic boundary condition which satisfies
Lees-Edwards boundary condition is more controversial.
Since a nonuniform shear flow produces a heat conduction,
Bagnold’s scaling may not be satisfied if the USF is unstable.
The stability of the USF under the Lees-Edwards boundary
condition has been studied by many authors �50–60�. These
results suggest that USF is almost always unstable but �a� if
the system is confined in a small system near e→1 and �b� if
the gas system is in the dilute limit or in the almost dense
limit, stable USF can be observed. These results may suggest
that Bagnold’s scaling is only applicable in the limited cases
for plane shears.

In this paper, we used the set of hydrodynamic equations
at Navier-Stokes order which does not have any normal-
stress differences. Although such differences may be related
to the existence of Burnett or super-Burnett order terms
�58,61,62�, we cannot evaluate how large higher order terms
are because of large errors in the direct measurement of
stresses in our simulation. However, such higher order terms
should not be important in our system, because our analysis
without including higher order terms recovers the profile of
hydrodynamic variables.

From our analysis, we confirm that the effects from the
contraction of phase volume in collisions in the inelastic
Boltzmann-Enskog equation are also small. The effects of
tangential contact force and the rotation of particles are also
not important in the bulk behavior of hydrodynamics. There-
fore, the kinetic theory by Jenkins and Richman �12� gives us
sufficiently accurate results to describe the hydrodynamics.

Santos et al. �9� and Tij et al. �63� indicate that the trans-
port coefficients in Couette flow depend on the dimension-

less shear rate. However, in our system the shear rate only
determines the time scale and thus the qualitative behavior
should not depend on the shear rate. There is room for dis-
cussion on the role of the shear rate in granular gases as an
open problem.

VII. CONCLUSION

In this paper, we have confirmed the validity of hydrody-
namic equations derived from the kinetic theory by Jenkins
and Richman �12�. We also confirmed the relevancy of the
renormalization method of the restitution constant by Yoon
and Jenkins �13�. This result may be surprising because the
system includes a dense cluster whose packing fraction is
close to the maximum value, and the particles in the cluster
are almost motionless. Since USF is unstable under a plane
shear with the physical boundary, we cannot use Bagnold’s
scaling to characterize the granular fluid in this case.
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APPENDIX: THE DERIVATION OF WALTON’S �0

In this appendix, we demonstrate how to derive 0 in
Walton’s expression in Eq. �7� �15� for the tangential restitu-
tion coefficient. Although the theory by Maw et al.
�16,18,65,66� has been used to evaluate , their expression is
complicated and has an implicit form. Therefore, an explicit
expression for Walton’s 0 and the critical angle �c is useful.

Let us consider a collision between identical disks. Fol-
lowing the notation in Sec. II �without suffices i and j for
colliding particles�, the equation of motion for the tangential
direction is described by

ẅt + 2��tẇt + ktwt� = 0, �A1�

when there is no slip during the collision. The factor 2 ap-
pears because the reduced mass is the half of mass of each
particle. The solution of Eq. �A1� is easily obtained as

wt =
wt�0�

b
e−�ttsin�bt� ,

ẇt�t� = wt�0�e−�ttcos�bt� −
�t

b
sin�bt�� �A2�

for �t
2�2kt, where b=�2kt−�t

2.
Since we choose large kt and small �t, the relation �t

2

�2kt should be satisfied. Similarly, the equation of motion in
the normal direction is also described by an equation for a
dumped oscillation. Thus, the duration time td at which wn
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=0 is satisfied and the normal restitution constant are, re-
spectively, given by

td =
2�

�2kn − �n
2
, ē = exp�−

��n

�2kn
2 − �n

2� . �A3�

On the other hand, the restitution constant 0 for the tangen-
tial contact is thus given by

0 = −
ẇt�td�
ẇt�0�

= exp−
�A�t

�n
�2R − 1

�
�� 1

�2Q/A − 1
sin�A�t

�2Q/A − 1

�n
�2R − 1

�
− cos�A�t

�2Q/A − 1

�n
�2R − 1

�� , �A4�

where

A = 1 +
m�2

4I
, R =

�kn

4�n
2 , Q =

�kt

4�t
2 . �A5�

If we substitute the values kn=3.0�103, kt=kn /4, �n=3.0
and �t=�n /2 used in the DEM simulation, we obtain 0
�0.769235. The comparison between the theory �7� with
�A4� and DEM is shown in Fig. 11. Without the introduction
of any fitting parameters, agreement between the theory and
DEM is fairly good. Here the critical angle cot �c= �1
+0�
�1+ ē��1.56734.

�1� I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 �2003�.
�2� Granular Gases, edited by T. Pöschel and S. Luding �Springer-

Verlag, Berlin, 2001�.
�3� N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular

Gases �Oxford University Press, Oxford, 2004�.
�4� J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Phys. Rev. E

58, 4638 �1998�.
�5� R. A. Bagnold, Proc. R. Soc. London, Ser. A 225, 49 �1954�.
�6� O. Pouliquen, Phys. Fluids 11, 542 �1999�.
�7� L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine,

and S. J. Plimton, Phys. Rev. E 64, 051302 �2001�.
�8� N. Mitarai and H. Nakanishi, Phys. Rev. Lett. 94, 128001

�2005�.
�9� A. Santos, V. Garzó, and J. Dufty, Phys. Rev. E 69, 061303

�2004�.
�10� G. D. R. Midi, Eur. Phys. J. E 14, 341 �2004�.
�11� F. da Cruz, S. Eman, M. Prochnow, J.-N. Roux, and F. Chev-

oir, Phys. Rev. E 72, 021309 �2005�.
�12� J. T. Jenkins and M. W. Richman, Phys. Fluids 28, 3485

�1985�.
�13� D. K. Yoon and J. T. Jenkins, Phys. Fluids 17, 083301 �2005�.
�14� P. A. Cundall and O. D. L. Strack, Geotechnique 29, 47

�1979�.
�15� O. R. Walton and R. L. Braun, J. Rheol. 30, 949 �1986�.
�16� W. J. Stronge, Impact Mechanics �Cambridge University Press,

London, 2000�.
�17� L. Labous, A. D. Rosato, and R. N. Dave, Phys. Rev. E 56,

5717 �1997�.
�18� H. Kuninaka and H. Hayakawa, J. Phys. Soc. Jpn. 72, 1655

�2003�.
�19� C. S. Campbell, J. Fluid Mech. 348, 85 �1997�.
�20� R. N. Dave, A. D. Rosato, and K. Bhaswan, Mech. Res. Com-

mun. 22, 335 �1995�.
�21� M.-L. Tan and I. Goldhirsch, Phys. Fluids 9, 856 �1997�.
�22� A. W. Lees and S. F. Edwards, J. Phys. C 5, 1921 �1972�.
�23� M. Babic, Phys. Fluids 9, 2486 �1997�.
�24� L. Popken and P. W. Cleary, J. Comput. Phys. 155, 1 �1999�.
�25� S. R. Kim, Comput. Mater. Sci. 4, 125 �1995�.
�26� M. Y. Louge, Phys. Fluids 6, 2253 �1994�.
�27� J. T. Jenkins, J. Appl. Mech. 59, 120 �1992�.
�28� H. Xu, A. P. Reeves, and M. Y. Louge, Rev. Sci. Instrum. 75,

811 �2004�.
�29� H. Xu, M. Y. Louge, and A. P. Reeves, Continuum Mech.

Thermodyn. 15, 321 �2003�.
�30� J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal.

87, 355 �1985�.
�31� S. Chapman and Cowling, The Mathematical Theory of Non-

uniform Gases, 3rd ed. �Cambridge University Press, Cam-
bridge 1970�.

�32� H. Grad, Commun. Pure Appl. Math. 2, 331 �1949�.
�33� V. Garzó and J. W. Dufty, Phys. Rev. E 59, 5895 �1998�.
�34� J. F. Lutsko, Phys. Rev. E 72, 021306 �2005�.
�35� C. K. K. Lun, J. Fluid Mech. 233, 539 �1991�.
�36� E. Cosserat and F. Cosserat, Theorie des Crops Deformables

�Herrmann, Paris 1960�.
�37� J. S. Dahler and M. Theodosopulu, Adv. Chem. Phys. 31, 155

�1975�.
�38� K. Kanatani, Trans. Jpn. Soc. Mech. Eng., Ser. B 45, 507

�1979�.
�39� M. Babic, Int. J. Eng. Sci. 35, 523 �1997�.
�40� H. Hayakawa, Phys. Rev. E 61, 5477 �2000�.
�41� N. Mitarai, H. Hayakawa, and H. Nakanishi, Phys. Rev. Lett.

88, 174301 �2002�.
�42� J. T. Jenkins and C. Zhang, Phys. Fluids 14, 1228 �2002�.

FIG. 11. The comparison of Eq. �7� with �A4� �solid line� and
the data obtained from DEM with 
=0.2 �open circles�. Here  and
� are respectively the tangential restitution coefficient and the col-
lision angle.

KUNIYASU SAITOH AND HISAO HAYAKAWA PHYSICAL REVIEW E 75, 021302 �2007�

021302-10



�43� C. K. K. Lun and A. A. Bent, J. Fluid Mech. 258, 335 �1994�.
�44� I. Goldhirsch, S. H. Noskowicz, and O. Bar-Lev, Phys. Rev.

Lett. 95, 068002 �2005�.
�45� B. Gefen and M. Alam, J. Fluid Mech. 567, 195 �2006�.
�46� D. Volfson, L. S. Tsimring, and I. S. Aranson, Phys. Rev. E 68,

021301 �2003�.
�47� S. Torquato, Phys. Rev. E 51, 3170 �1995�.
�48� P. C. Johnson and R. Jackson, J. Fluid Mech. 176, 67 �1987�.
�49� J. T. Jenkins, in Ref. �2�, pp. 125–139. See also J. T. Jenkins

and M. W. Richman, J. Fluid Mech. 171, 53 �1986�.
�50� M. Latzel, S. Luding, and H. J. Herrmann, Granular Matter 2,

123 �2000�.
�51� P. R. Nott, M. Alam, K. Agrawal, R. Jackson, and S. Sundare-

san, J. Fluid Mech. 397, 203 �1999�.
�52� M. Alam and P. R. Nott, J. Fluid Mech. 377, 99 �1998�.
�53� M. Alam and P. R. Nott, J. Fluid Mech. 343, 267 �1997�.
�54� M. Babic, J. Fluid Mech. 254, 127 �1993�.

�55� S. A. Kinnas and N. E. Fine, J. Fluid Mech. 254, 151 �1993�.
�56� C. Wang, R. Jackson, and S. Sundaresan, J. Fluid Mech. 308,

31 �1996�.
�57� S. B. Savage, J. Fluid Mech. 241, 109 �1992�.
�58� V. Kumaran, J. Fluid Mech. 506, 1 �2004�.
�59� V. Garzó, Phys. Rev. E 73, 021304 �2006�.
�60� K. Saito and H. Hayakawa �unpublished�.
�61� N. Sela, I. Goldhirsch, and S. H. Noskowicz, Phys. Fluids 8,

2337 �1996�.
�62� N. Sela and I. Goldhirsch, J. Fluid Mech. 361, 41 �1998�.
�63� M. Tij, E. E. Tahiri, J. M. Montanero, V. Garó, A. Santos, and

J. W. Dufty, J. Stat. Phys. 103, 1035 �2001�.
�64� C. Josserand, P.-Y. Lagrée, and D. Lhuillier, Eur. Phys. J. E

14, 127 �2004�.
�65� N. Maw, R. Barber, and J. N. Fawcett, Wear 38, 101 �1976�.
�66� N. Maw, R. Barber, and J. N. Fawcett, ASME J. Lubr. Tech-

nol. 103, 74 �1981�.

RHEOLOGY OF A GRANULAR GAS UNDER A PLANE SHEAR PHYSICAL REVIEW E 75, 021302 �2007�

021302-11


