
Coarsening of bicontinuous structures via nonconserved and conserved dynamics

Yongwoo Kwon,1 Katsuyo Thornton,2 and Peter W. Voorhees1,*
1Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, USA

2Department of Materials Science and Engineering, 2300 Hayward Street, University of Michigan, Ann Arbor,
Michigan 48109-2136, USA

�Received 27 October 2006; published 26 February 2007�

Coarsening subsequent to phase separations occurs in many two-phase mixtures. While unique scaled par-
ticle size distributions have been determined for highly asymmetric mixtures in which spherical particles form
in a matrix, it is not known if a unique scaled structure exists for symmetric mixtures, which yield bicontinuous
structures having intricately interpenetrating phase domains. Using large-scale simulations, we have estab-
lished that unique scaled microstructures exist in symmetric mixtures evolving via nonconserved and con-
served dynamics. We characterize their morphologies by the interfacial shape distribution, a counterpart to the
particle size distribution, and their topologies by the genus. We find that the two dynamics result in unique, but
different, scaled interfacial shape distributions, with conserved dynamics yielding a narrower distribution
around zero mean curvature. In contrast, the two scaled structures are topologically similar, having nearly equal
values of the scaled genus.
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Phase separation occurs in a vast array of systems, from
ferromagnetic materials to polymers, in which a homoge-
neous single phase separates into two phases when cooled
below the critical temperature. When the concentrations in
the two phases are at nearly their equilibrium values, a coars-
ening process ensues. This process is driven by the excess
free energy associated with the presence of interfaces be-
tween phases. This energy can be reduced by decreasing the
total interfacial area of the system, which results in the coars-
ening of structures. It has been established that in certain
cases the coarsening process is self-organizing such that the
interfacial morphology becomes self-similar, i.e., time inde-
pendent when scaled by a time-dependent characteristic
length of the system, after a sufficient coarsening time. This
self-organizing behavior has been investigated extensively
for systems that are composed of a polydisperse array of
particles embedded in a matrix. In this case, Lifshitz and
Slyozov �1�, and Wagner �2� �LSW� predicted that the par-
ticle size distribution will attain a unique time-independent

shape when scaled by the average particle radius R̄.
However, there is a large array of phase separation pro-

cesses that do not yield such particles in a matrix, but instead
result in bicontinuous structures, where phases are interpen-
etrating and intricately connected. Such bicontinuous struc-
tures frequently arise in spin ordering in magnetic materials
�3,4�, spinodal decomposition in binary homopolymer mix-
tures �5–7�, order-disorder transformation �8,9�, phase sepa-
ration �10,11�, and in microemulsions �12�. It has been
known that the morphologies of bicontinuous structures
found in block copolymers are related to those of periodic
surfaces with zero mean curvature, so-called minimal sur-
faces �13–16�. In contrast, in the case of surface-tension
driven dynamics minimal surfaces are unstable to small mor-
phological perturbations �17�, and thus cannot result from a
coarsening process.

The interfacial morphologies of three-dimensional bicon-
tinuous interfaces that are present during coarsening is a mat-
ter of great controversy. In most cases the interfacial mor-
phology has been characterized with indirect measures of the
interfacial structure, such as the two-point spatial correlation
function, or its Fourier transform, the structure function.
While it is well known that the structure function scaled by a

characteristic length l, corresponding to R̄ of the particle
coarsening case, becomes self-similar during coarsening
�18–21�, it is unclear if the interfacial morphologies attain
self-similarity or how they may differ from that of minimal
surfaces. For example, in the simulations by Aksimentiev
�22�, where the interfacial strucuture was characterized for
conserved-order-parameter coarsening, self similarity was
not observed, and while Fiałkowski et al. did observe scaling
of the interfacial curvature for nonconserved-order-
parameter coarsening �23�, Brown and Rikvold claim that
these are transient states �24�. Thus it is necessary to charac-
terize quantitatively the morphology of these two-phase mix-
tures in the very late stages of the transformation process
where scaling may exist. If these structures could be charac-
terized accurately and if the measures used to quantify the
morphologies exhibit scaling, then the counterpart for these
bicontinuous structures to the well-known scaled particle-
size distribution found many years ago by LSW would fi-
nally be known. Furthermore, if such unique structures exist,
one could determine whether the interfacial morphologies
and their evolution depend on the mechanism of coarsening.
These unique structures would also form the basis of com-
parison for future work on systems in which other effects
such as anisotropic interfacial energy, external fields, hydro-
dynamic flows, and asymmetric volume fractions play a role
in the interfacial evolution during coarsening.

We shall examine coarsening following phase separation
by nonconserved and conserved dynamics �model A and
model B, respectively� using a technique for characterizing
the morphologies of highly complex structures
�16,22,25,26�. The bicontinuous structures are obtained by
numerically solving the Allen-Cahn �AC� equation �8� and*Electronic address: p-voorhees@northwestern.edu
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the Cahn-Hilliard �CH� equation �27� for the systems with
nonconserved and conserved dynamics, respectively. The AC
equation is also called the time-dependent Ginzburg-Landau
equation. We examine both conserved and nonconserved dy-
namics because coarsening proceeds via different mecha-
nisms in these two cases. Coarsening via conserved dynam-
ics takes place by long-range diffusion of mass and thus
describes the evolution of a conserved order parameter such
as the concentration. The initial phase separation process in
this case is called spinodal decomposition. On the other
hand, nonconserved dynamics does not require long-range
diffusion of mass and thus describes the evolution of a non-
conserved order parameter such as magnetization or compo-
sitional order. The initial phase separation in this case is
called phase ordering. In both dynamics, the motion of the
interface is related to its mean curvature. In coarsening with
conserved dynamics, the diffusion field at a point is deter-
mined by the mean curvature of the surrounding interfaces.
Therefore the factors influencing the interfacial velocity at
that point are nonlocal. In contrast, the velocity of the inter-
face depends only upon its local mean curvature in the non-
conserved dynamics case.

We choose as simple a model as possible. We examine
only critical quenches that yield equal volume fractions of
two phases in a symmetric phase diagram. The evolution of
the order parameter for a two-phase system with isotropic
interfacial energy is described by the following dimension-
less equation:

��

�t
= − �− �2�p� df

d�
− �2�� , �1�

where � is the order parameter, t is dimensionless time, and
f is the dimensionless free energy density given by
�1/4��2�1−��2. For p=0 we obtain the AC equation and
nonconserved dynamics, whereas for p=1 we obtain the CH
equation and conserved dynamics. The double well free en-
ergy has a well height of 1 /64 at �=1/2 and minima at the
two equilibrium values of the order parameter ��=0,1�,
each representing a phase. The order parameter varies con-
tinuously from one value to another across an interface and
thus yields a finite interfacial thickness; that is, the interface
is diffuse �28�. A flat interface located at x=0 in equilibrium
will yield an order parameter profile, ��x�= �1/2��1
−tanh�x /2�2��. In this simple model, the chemical potential,
the term in the square brackets in Eq. �1�, is the same for
both dynamics and thus the only difference between them is
whether the order parameter is conserved. These equations
are solved using periodic boundary conditions and a finite-
difference algorithm with spatially centered, temporally
forward-Euler scheme implemented on a multiple processor
parallel computing platform. Data are only collected in the
late stages of the coarsening, when the interfacial thickness is
at its equilibrium value and the principal radii of curvatures
are much larger than the interfacial thickness. This, along
with the need to avoid finite size effects, necessitates that
large system sizes be employed with an interface as thin as
possible �29�. We thus use 5123 and 10243 computational
grids for the conserved and nonconserved dynamics, respec-

tively, with a grid spacing of 2�2 which provides three grid
points in the interfacial region where 0.1���0.9. While
the number of mesh points is lower than those employed in a
typical phase-field calculations, we have verified that this
resolution is sufficient by comparing simulations with this
and higher resolutions. We found no significant differences
between the results obtained in the two cases.

Figure 1 shows the bicontinuous structures resulting from
our simulations. Although both interfacial structures are bi-
continuous, their morphologies are different, as evident by
the presence of red regions of strongly positive Gaussian
curvature �interfaces with large curvatures that are concave
or convex but not saddle-shaped� in systems with a noncon-
served order parameter.

The kinetics of the late-stage coarsening process is de-
scribed by temporal power laws for a characteristic length,
l� tn, where n is 1 /2 and 1/3 for nonconserved and con-
served dynamics, respectively. We use 1/SV for l, where SV is
the surface area per volume. While these power laws hold if
the coarsening process is self-similar, the converse is not
true. That is, it is possible that the evolution is not self-
similar even if 1 /SV� tn �30,31�. We find the growth expo-
nents for simulated nonconserved and conserved dynamics to
be n=0.491 and 0.327 with standard errors of 0.003 and
0.001, respectively. These numbers are close to the theoreti-
cal values.

We calculate the mean curvature �H� and Gaussian curva-
ture �K� of the interfaces. We then construct the interfacial
shape distribution �ISD�, P��1 ,�2�, which is defined as the
probability of finding a patch of interface with a certain pair
of minimum and maximum principal curvatures. The princi-
pal curvatures �1 and �2 are determined using the calculated
H, K and the definitions: H= ��1+�2� /2 and K=�1�2. The
ISD is the counterpart for arbitrarily curved surfaces to the
particle size distribution for systems with spherical particles.
If both �1 and �2 have the same sign, the interfacial patch is
parabolic or elliptic. If �1 is negative and �2 is positive, the

FIG. 1. �Color� A small portion of the computational domain
with interfaces colored with the scaled Gaussian curvature, K /SV

2 .
A: Interfacial morphology in a system with a nonconserved order
parameter �model A�, t=1600 �1/SV=101.40�; B: interfacial mor-
phology in a system with a conserved order parameter �model B�,
t=588 800 �1/SV=71.96�. Both portions are cubic domains with
edge lengths of 4�1/SV�. In B, the pair of red regions marked with
arrows is a remnant of a pinched tube. More red regions are ob-
served in the interfacial structure evolving by nonconserved
dynamics.
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patch is hyperbolic or saddle-shaped. Figure 2 shows that
the scaled ISDs evolving by nonconserved dynamics �A-1
and A-2� and conserved dynamics �B-1 and B-2� are inde-
pendent of time. The coarsening process is accompanied
by decreasing curvatures and increasing 1/SV. Without scal-
ing by SV, the ISDs become smaller and their peaks move
toward the origin. The invariance of the scaled ISDs with
time indicates that the morphologies produced by noncon-
served and conserved dynamics are self-similar in the late-
stage coarsening.

More importantly, however, the shapes of the scaled ISDs
of two dynamics are clearly different. Consistent with equal
volume fractions of the two phases, both of the scaled ISDs
are symmetric about the H=0 ��1=−�2� line and the average
of H over the structure is zero. The majority of the interfaces
are hyperbolic, also termed saddle-shaped. The peaks of both
ISDs are near −�1SV

−1	�2SV
−21	1, implying that SV provides

a good order-of-magnitude measure of the interfacial curva-
ture.

The scaled ISD for nonconserved dynamics has a larger
deviation from the H=0 line than that of the conserved dy-
namics. The standard deviations in scaled mean curvature
��
H2� /SV� are 0.94 and 0.34 for nonconserved and con-
served dynamics, respectively. The interfacial velocity for
nonconserved dynamics is local and is solely a function of
the mean curvature at a point. By contrast, the interfacial
velocity for conserved dynamics is nonlocal, governed by
the diffusion field established by mean curvatures of sur-
rounding patches. Therefore the interfacial velocity of an in-
terfacial patch is more strongly coupled with those of sur-
rounding patches in conserved dynamics than in
nonconserved dynamics. The coupling results in rapid evo-
lution of an interfacial patch toward reducing the local cur-
vature variation and thus increases the stablility of regions
with similar curvatures. This nonlocal coupling only exists in
conserved dynamics, which leads to the observed smaller
deviation in the mean curvature and narrower ISDs. Also
evident is the larger fraction of interface with K�0 in the

FIG. 2. �Color� Portions of the interfaces colored with K /SV
2 , such that the edge length of each cube is 4�1/SV�, and ISDs scaled by SV

obtained from the whole simulated structures. A-1: Nonconserved order parameter, t=480 �1/SV=56.79�; A-2: nonconserved order param-
eter, t=4 000 �1/SV=158.93�; B-1: conserved order parameter, t=64 000 �1/SV=35.61�; B-2: Conserved order parameter, t=179 200
�1/SV=77.81�. There are four possible regions in the ISDs, divided by lines where �1=�2 on which spherical patches lie, �1=−�2 on which
patches with zero mean curvature �H=0� lie, and �i=0 �i=1,2; two axis lines� on which cylindrical patches with zero Gaussian curvature
lie. The planar patches ��1, �2=0� lie at the origin. All physically attainable surfaces lie to the left of the �1=�2 line since by our definition
�2��1. Regions 1 and 4 contain patches with positive Gaussian curvature �parabolic or elliptic patches� while regions 2 and 3 contain
patches with negative Gaussian curvature �hyperbolic or saddle-shaped patches�. Note that the color bars of ISDs in A-1 and A-2 are different
from those in B-1 and B-2.
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scaled ISD for nonconserved dynamics than for conserved
dynamics, as seen in the interfacial structures of Figs. 1 and
2. There are more red regions in structures evolving by non-
conserved dynamics. Those red regions have strongly posi-
tive K, mostly appear as pairs separated by a relatively small
distance, and thus are likely remnants of a thin tube-shaped
region of a phase that fissioned into two parts.

By integrating the scaled ISDs over regions 1 and 4, we
find that �20% and �6% of the interfacial area have
K�0 during coarsening by nonconserved and conserved dy-
namics, respectively. Unlike H, the average of K is nonzero
in agreement with results presented by Aksimentiev, Moor-
thi, and Hołyst �22�. However, Aksimentiev et al. did not
find the self-similar evolution in their simulations. The
scaled ISDs shown in Fig. 2 are unique to the corresponding
dynamics during the self-similar evolution of bicontinuous
structures, and thus are the counterparts to the well known
LSW particle-size distribution for a system with spherical
particles.

Pinching of tubes is a topologically singular event, and
thus it changes the topology of the bicontinuous structures.
We use the genus �g�, defined as the number of cuts that can
be made upon a closed surface without separating it into two
disconnected bodies, to quantify the topology of the bicon-
tinuous structures. By this definition, a cube, sphere, and
pyramid are all topologically equivalent �g=0� while a cube
with a handle and a doughnut are equivalent �g=1�. Pinching
of tubes decreases the genus while merging of separated
parts increases the genus. Since the phases are completely
interconnected, the genus per volume, gV, can thus be inter-
preted as the number density of tunnels or tubes in the sys-
tem. Therefore the larger gV the more topologically compli-
cated is its structure. During coarsening of bicontinuous
structures, gV decreases due to the pinching which is needed
for the self-similar growth of bicontinuous networks. We
calculate g using the Gauss-Bonnet �GB� theorem,
g=1− �4��−1�SKdS, where S denotes the interface, to inves-
tigate the evolution of gV.

We find that the genus per unit volume changes with time
as gV� tng where ng=−1.48 and ng=−1.00 with the standard
errors of 0.03 and 0.08 for coarsening in systems with non-
conserved and conserved order parameters, respectively.
Since gV is proportional to 1/V, these exponents agree with
those obtained from the power law for inverse characteristic
volume, �1/SV�3��tn�3. This implies that gVSV

−3� tng+3n,
where ng+3n is 0 for both dynamics, and thus gVSV

−3 is time
independent. We define this dimensionless number, gVSV

−3, as
the scaled genus, representing the genus per characteristic
volume. The simulation indeed shows that the scaled genus
is invariant in time, as shown in Fig. 3. It is remarkable that
the values of the scaled genus for both dynamics are similar,
implying nearly identical numbers of tunnels per unit char-
acteristic volume based on the cube of the surface area per
unit volume.

For structures where g	1, the GB theorem becomes
g
−�4��−1�SKdS. Multiplying both sides by V−1SV

−3, we
obtain gVSV

−3
−�4��−1KavgSV
−2, where Kavg= �VSV�−1�SKdS.

Just like the scaled genus, the scaled average Gaussian cur-
vatures �KavgSV

−2� is time-invariant and similar in both dy-

namics during coarsening. Thus the scaling of morphologies
or ISDs automatically implies the scaling of the topologies.
This similar scaled topology with different scaled morpholo-
gies is due to the fact that the conserved and nonconserved
dynamics result in similar values in KavgSV

−2.
We compare the bicontinuous structures from our simula-

tions with Schoen’s G surface, one of triply periodic minimal
surfaces, having a genus per unit cell of 5. This minimal
surface has been used as a model for the interfacial structure
of the bicontinuous structures in many block copolymer sys-
tems �14–16�. We demonstrate how the bicontinuous struc-
tures from phase separation are topologically and morpho-
logically different from the G surface by means of the scaled
genus and the ISD. We determine the scaled genus of the G
surface with volume fraction of 50:50 and SV of 0.31, based
on the data given by Góźdź et al. �32� and obtain the scaled
genus of 0.17 for the G surface, which is 21% larger than
0.14 found for the self-similar structures resulting from
phase separation. While the difference is modest, it is statis-
tically significant since it is much larger than any fluctuation
in the scaled genus obtained in the simulations, indicating
that the topology of the self-similar structures differs from
that of the G surface. The difference in the ISD is more
dramatic. The approximate minimum value of scaled Gauss-
ian curvature �K /SV

2 = ��1 /SV���2 /SV�� is −1.83 for the G sur-
face �obtained from the histrogram given by Góźdź et al.�
that is much less than −7.84 for structures with conserved
dynamics �obtained from the ISDs in Fig. 2�. The absolute
values of standard deviation of the scaled mean curvature of
the G surface is zero by definition while the standard devia-
tions in H /SV of the self-similar structures given earlier are
clearly nonzero. The scaled genus, the Gaussian curvature,
and the mean curvature all point to the fact that the self-
similar bicontinuous structures originated from phase sepa-
ration and coarsening are quantitatively different not only in
their morphology but also their topology from a minimal
surface, regardless of the mechanism of coarsening.

We investigated the evolution of the interfacial morphol-
ogy and topology during coarsening via nonconserved and
conserved dynamics subsequent to phase separation. In both
dynamics, we find self-similar evolution of topological and
morphological characteristics, the genus and the interfacial

FIG. 3. Genus per characteristic volume �gVSV
−3� vs characteris-

tic length �1/SV�.
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shape distribution, respectively. This result indicates that the
interfacial morphologies that undergo coarsening following
phase separation with equal phase fractions are described by
the interfacial shape distributions given above. However, the
interfacial shape distributions of the self-similar structures of
the two dynamics are different, with conserved dynamics
yielding narrower distribution of interfacial curvature about
zero mean curvature. The difference is attributed to the stron-
ger coupling of interfacial curvatures in the conserved dy-
namics case. In contrast, the two scaled structures are topo-
logically similar, as evident from the similar values of the

scaled genus; thus the connectivities of the two bicontinuous
structures are similar. We also showed that the morphology
and topology of the bicontinuous structures originated from
phase separation differ from that of the well-known Schoen’s
G surface.
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