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We study front propagation in the reaction-diffusion process A↔2A on a one-dimensional lattice with hard
core interaction between the particles. We propose a two-site self-consistent method to make analytic estimates
for the front velocity that are in good agreement with the simulation results for all parameter regimes. We
expect that the simplicity of the method will allow one to use this technique for estimating the front velocity
in other reaction diffusion processes as well.
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Front propagation in reaction-diffusion systems is an im-
portant field of study in nonequilibrium physics. In many
natural phenomena we often encounter propagating fronts
separating different phases �1�. In this paper, we study front
dynamics in the reaction-diffusion system A↔2A, whose
mean field description is given by the following Fisher-
Kolmogorov equation �2� for the local density of A particles
��x , t�: �� /�t=D��2� /�x2�+k1�−k2�2. Here, D is the bare
diffusion coefficient of A particles while k1 and k2 are the
rates of creation and annihilation, respectively. This equation
arises in the macroscopic description of many processes in
natural science and serves as a generic description of front
propagation in a system undergoing transition from unstable
to stable state. The homogeneous steady states of this equa-
tion are �= �k1 /k2� �stable� and �=0 �unstable�. Hence, start-
ing with an initial condition in which both the states coexist,
the stable state invades the unstable one with speed V as a
traveling wave of the form �=��x−Vt�. Such fronts are re-
ferred to as pulled in the sense that the leading edge, where
��1, plays an important role in describing the front dynam-
ics. Such leading edge analysis gives V�V0=2�k1D. For
steep enough initial conditions the minimum velocity V0 is
selected �3�.

In discrete realizations of the process in low dimensions,
with maximum occupancy per site restricted to N, the con-
tinuum description fails to capture the internal fluctuations of
the system and thus the dynamical properties of the front are
much different from that predicted by the continuum equa-
tion �4,5�. However, the mean field results are recovered for
N→�. In this paper, we study the one-dimensional system
for N=1 which displays the largest deviation from the con-
tinuum mean field results.

Motivated by the velocity selection principle, in which the
leading edge plays an important role, we propose a two-site
self-consistent method �TSSCM�. In this method, we de-
scribe the front dynamics by considering the evolution of
occupancy at only two sites: The front site and the site just
behind it. In other words, in the frame moving with the front
we study evolution of occupancy at a site just behind it. By
applying a self-consistent approach �explained later�, we ob-
tain analytic estimates for the front velocity which are in
good agreement with the simulation results for all parameter
regimes. In our simulation we consider a one-dimensional
lattice composed of sites i=1,2 , . . . ,L. Each site can either
be empty or occupied by at most one particle, i.e., hard core

exclusion is taken into account. Initially, we start with the
left half of the lattice filled with A particles while keeping the
right half empty. We update the system random sequentially
where L attempts constitute one Monte Carlo step. During
each update we select a site and one of its neighboring sites
randomly and if the chosen site is occupied the particle at the
site undergoes one of the following microscopic moves: �i� It
diffuses to the neighboring site if the latter is empty with rate
D, �ii� it gives birth to a particle at the neighboring site, if
empty, with rate �, or �3� it gets annihilated with rate W, if
the neighboring site is occupied. Due to these microscopic
processes the rightmost A particle, which is identified with
the front, moves stochastically and we are interested in find-
ing its asymptotic speed. Visualizing the leading particle as a
random walker its velocity is given by �6�

V = � − �1�W − D� . �1�

With �1 denoting the density at the site just behind the lead-
ing particle, the latter moves forward with a rate �+D and
with rate W�1+D�1−�1� in the backward direction.

There is no systematic method to find �1 exactly, how-
ever, several approximations have been proposed. For ex-
ample, in �6�, �1 was taken as the bulk density �̄=� / ��+W�
in the stable phase. This approximation is exact for W=D
and shows reasonable agreement for small values of
�W−D� �7�. However, for larger �W−D�, significant system-
atic deviation is observable �Fig. 1�.

In order to make a better estimate for �1, especially away
from the special point W=D, a method was proposed in �8�
which may be used to systematically improve analytic esti-
mate to the desired degree of accuracy. In this method, evo-
lution of l sites behind the leading particle is written down.
For example, for l=1, we study the states �01, 11� and for
l=2 one has to deal with states �001, 011, 101, 111� with the
rightmost “1” representing the front particle. Assuming the
l+1 site is occupied with probability equal to the bulk den-
sity, a master equation for evolution of the 2l states was
written down and the steady state solution yielded the re-
quired �1. For larger values of �W−D�, we need to include
more states �i.e., larger l� in order to get better analytic esti-
mates, but writing the transition matrix corresponding to the
master equation becomes more difficult since its size in-
creases as 2l�2l. In order to make an analytically tractable
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approximation for �1 and hence the front velocity, a reduced
three particle representation was presented in �8�.

In �9�, Kerstein proposed a two-particle representation for
the reaction-diffusion process A→2A, and studied the evo-
lution of the following infinite set of states: �11, 101, 1001,
10001, ¯� with the rightmost “1” representing the front.
The important point that we note here is that this set of
states is closed under the transitions only if W=0 and thus
is not applicable for W�0. Further, a product ansatz
pj = p0�1− p0� j was used, where pj is the probability of the jth
state with j zeros between the front particle and the next.
This ansatz a priori excludes any spatial density correlations
which is not true in general �Fig. 2�. In fact, this correlation
increases with �W−D� and vanishes for the special point W
=D. The ansatz also assumes that the sites behind the front
are at the same density p0, which is, of course, not true �Fig.
1�. This leads to systematic error in the analytic estimates
which increases gradually with an increasing value of �W
−D�. However, one can get better results by studying the
states having a larger number of particles but the computa-

tional complexity increases exponentially with the number of
particles �10�.

In this paper, we present a simple analytic esimate for �1
and hence of the front velocity which is in good agreement
with the simulation results. We use a self-consistent two-site
scheme, where we write a master equation in the frame mov-
ing with the front particle �as in �8�� for the evolution of two
states �0A ,AA�. Here the rightmost A represents the front
particle. In this truncated representation these two states
make a transition between each other due to the microscopic
processes and thus form a closed set under such transitions.
For example, 0A→AA if the leading particle gives birth to
its left empty site. Diffusion of the front particle to its left
changes the state 0A→AA, provided the second site �F−2�
behind the front particle is occupied and leaves it unchanged
if F−2 is empty. If the probability of occupancy at F−2 is
denoted as �2 then the transition 0A→AA occurs with rate
D�2. Similarly, if the leading particle in the realization AA
gets annihilated, the state changes to 0A if F−2 is empty
with rate W�1−�2�, while it remains unchanged if F−2 is
occupied. Considering all such transitions one can write the
master equation for the state probabilities P0A and PAA as

Ṗ0A = �2D − D�2 + 2W�PAA − �2D�2 + 2� + ��2�P0A,

ṖAA = �2D�2 + 2� + ��2�P0A − �2D − D�2 + 2W�PAA. �2�

Thus we need to know �2 in order to find the steady state
probabilities P0A and PAA. We note that as �→0, �2 as well
as PAA vanish, and hence we may write the former as a
truncated polynomial of the latter �in steady state�:

�2 = aPAA + bPAA
2 . �3�

Thus the steady state value of PAA is determined by �2 which
in turn is related to the former through Eq. �3� and the
method is self-consistent. To determine the coefficients a and
b we note that for W=D all sites behind the front particle are
at bulk density, i.e., �2= PAA= �̄=� / ��+D� and we rewrite
Eq. �3� as

�2 = 	1 −
b�

� + D

PAA + bPAA

2 . �4�

Using this value of �2 in Eq. �2� along with normalization
condition P0A+ PAA=1, we obtain the following equation:

	PAA
3 + 
PAA

2 + �PAA − � = 0, �5�

with

	 = 2b�D + bD2 + b�2,


 = D2 + �2 + 2�D − 4b�D − 2bD2 − 2b�2,

� = 2b�D + �D + �2b + �2 + 2�W + 2WD ,

� = 2�2 + 2�D . �6�

Equation �5� is in terms of two unknowns b and PAA and
hence we must fix b in order to find PAA. It is known that in
the limit D→�, the front moves with Fisher velocity

FIG. 1. Simulation results for the density profile behind the front
for �=0.25, W=0.125 for different values of D. Inset: Density pro-
file for �=0.05, W=0 for D=0.05,0.15,0.30,0.45 from top to bot-
tom. We note that the difference between �1 or �2 with bulk density
increases with increasing �W−D� and for W=D all the sites have
bulk density.

FIG. 2. Simulation results for the spatial density correlation
between a pair of successive sites, C�i�= �n�i�n�i+1��
− �n�i���n�i+1��, for �=0.25, W=0.125 for different values of D.
Inset: C�i� versus i for �=0.05, W=0 for D=0.30,0.15,0.05 from
top to bottom. Here we note that the range and magnitude of cor-
relation increase as �W−D� increases.
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V0=2��D. Also, from Eq. �1�, the front velocity in terms of
�1 is given as V
D�1=DPAA, when D is very large com-
pared to � and W. Equating this with velocity V0, we get
PAA=2�� /D. Substituting this value of PAA in Eq. �5�, we
have an equation which is linear in b and which, in the limit
D→�, gives b=1/4. Substituting this value of b in Eq. �5�
we obtain the following cubic equation in PAA:

��2 + D2 + 2�D�PAA
3 + �2�2 + 2D2 + 4�D�PAA

2 + �5�2 + 6�D

+ 8�W + 8WD�PAA − 8�2 − 8�D = 0. �7�

Solving the above cubic equation, the density at the site just
behind the front particle �1� PAA may be obtained. The
results obtained have been shown in Figs. 3 and 4 and are in
good agreement with the simulation results. We have
also shown the percentage relative error in �1, i.e.,
��1

s −�1
a� /�1

s �100, where �1
s and �1

a correspond to simulation
and analytic results, respectively. Once we know �1, the front

velocity is obtained from Eq. �1� and shown in Figs. 5 and 6.
Here, we also observe very good agreement with the simu-
lation results. For W=0, we have compared the results with
that of Kerstein’s two-particle representation in Figs. 3 and 5.
We notice the interesting fact that the results obtained from
the present work are closer to the simulation results as com-
pared to that obtained using two-particle representation.

To conclude, we have developed a two-site self-consistent
method for the propagating fronts in the reaction-diffusion
system A↔2A. The analytic estimates obtained using this
method are in good agreement with the simulation results for
all parameter regimes. We observe that for W=0, the results
obtained are better than that using Kerstein’s two-particle
representation. We also notice that the present method has an
advantage over Kerstein’s two-particle representation due to
the following key factors. First, TSSCM does not neglect the
spatial density correlation as in Kerstein’s product measure
ansatz. Secondly, TSSCM uses a set of states closed under
transitions due to the microscopic processes for all parameter

FIG. 3. Comparison between simulation and analytic results for
�1 for �=0.05, W=0.0, and for different values of D. The open
circle corresponds to Kerstein two-particle representation while the
closed circle is the result from the present work. We note that the
results of TSSCM are essentially coincident with the simulation
results. Inset: Percentage relative error in �1 as a function of D.

FIG. 4. Comparison between simulation and analytic results for
�1 for �=0.25, W=0.125 and for different values of D. The closed
triangle corresponds to the simulation results while the closed circle
is the results from the present work. We note that the analytic re-
sults are essentially coincident with the simulation results. Inset:
Percentage relative error in �1 as a function of D.

FIG. 5. Comparison between simulation and analytic results for
front velocity V for �=0.05, W=0 and for different values of D.
Open circles correspond to Kerstein’s two-particle representation
while closed circles are the result from the present work. We note
that the results of TSSCM are closer to the simulation results. Inset:
Percentage relative error in V as a function of D.

FIG. 6. Comparison between simulation and analytic results for
front velocity V for �=0.25, W=0.125 and for different values of D.
Closed triangles correspond to simulation results while the closed
circles are the results using TSSCM. We note that the analytic re-
sults are essentially coincident with the simulation results. Inset:
Percentage relative error in V as a function of D. Errors in each data
are of the order of 
0.2%.
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regimes while the two-particle representation does not pro-
vide a closed set for W�0. The simplicity of our analytic
method provides the scope to study the velocity of a propa-
gating front in other reaction-diffusion processes in discrete

lattice models. Lastly, although we have demonstrated the
method for pulled fronts, it should also work for pushed or
nonlinear fronts as well provided the front speed for the cor-
responding continuum equation is known a priori.
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