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Efficient tools to characterize stochastic processes are discussed. Quantifiers originally proposed within the
framework of information theory, like entropy and statistical complexity, are translated into wavelet language,
which renders the above quantifiers into tools that exhibit the important “localization” advantages provided by
wavelet theory. Two important and popular stochastic processes, fractional Brownian motion and fractional
Gaussian noise, are studied using these wavelet-based informational tools. Exact analytical expressions are
obtained for the wavelet probability distribution. Finally, numerical simulations are used to validate our ana-
lytical results.
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I. INTRODUCTION

The aim of this paper is to explore the ability of some
formerly introduced wavelet-based informational quantifiers
to characterize stochastic processes. In that sense, we analyze
two well-known stochastic processes, namely, �1� fractional
Brownian motion �FBM� and �2� fractional Gaussian noise
�FGN� �1,2�. We are mainly interested in Gaussian and self-
similar stochastic processes. Gaussian processes are impor-
tant because they yield the basic model for the analysis of
natural phenomena. A process is called Gaussian if all its
finite dimensional distributions are Gaussian. Furthermore,
considering the ubiquity of Gaussian distributions in prob-

ability theory, it is natural to study Gaussian processes. The
central limit theorem constitutes a cornerstone of our under-
standing of the probabilistic nature of the observable world.
When there are reasons to suspect the presence of a large
number of small perturbations acting both additively and in-
dependently, it is reasonable to assume that the concomitant
observations will be Gaussian-distributed �3�. That is, if the
tails associated to the probability distributions decay fast
enough. On the other hand, self-similar stochastic processes
are invariant in distribution under suitable scaling of time
and space. Formally, a �stochastic� process X�t� is self-
similar with index H if, for any c�0,

X�t�=
d

cHX�c−1t� , �1�

where =
d

is equality in distribution. The self-similarity ap-
pears in a natural way from limit theorems for sums of ran-
dom variables �4–6�. Following the arguments mentioned by
Beran �7�, within the framework of stochastic processes, the
role performed by self-similar ones is equivalent to the role
of stable distributions among distributions.
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New quantifiers based on information theory have been
recently developed within a wavelet framework and applied
to the characterization of brain electrical signals �see �8� and
references therein�, erythrocytes deformation �9�, laser
propagation throughout turbulent media �10,11�, pseudoran-
dom number generators �12�, and quantum-classical limit
�13,14�. The quantifiers are evaluated based on the time-
frequency decomposition of the signal �time series� under
study by recourse to the orthogonal discrete wavelet trans-
form �ODWT� �15–17�. The ODWT makes no assumptions
about the record’s stationarity. In particular, if the entropy is
computed via the wavelet transform, the time evolution of
frequency patterns can be followed with optimal time-
frequency resolution. The only input needed is the time se-
ries itself. The ensuing Shannon entropy-form, based on the
wavelet transform, is called the wavelet Shannon entropy. It
quantifies the degree of order associated with a multi-
frequency signal response. Similarly, the wavelet statistical
complexity provides us with a measure that quantifies aspects
of the intricate structures hidden in the system dynamics. In
this way, thermodynamics’ tools inherit all the important ad-
vantages of wavelet analysis.

In the present work we characterize Gaussian self-similar
stochastic processes via these wavelet-based informational
quantifiers: wavelet entropy and wavelet statistical complex-
ity. The two stochastic processes mentioned, FBM and FGN,
will be used to test the performance of the above-mentioned
wavelet quantifiers. In particular, from these stochastic pro-
cesses and the accompanying orthogonal discrete wavelet
transform we derive a discrete time-scale probability distri-
bution in exact analytical fashion. The wavelet-based infor-
mational tools can be evaluated by using this probability
distribution and enable us to gather important information
about the process under study that is otherwise inaccessible.
The theoretical behavior of the mentioned quantifiers will be
validated on the basis of numerical simulations.

II. ENTROPY AND STATISTICAL COMPLEXITY
MEASURES

López-Ruiz, Mancini, and Calbet �LMC� have proposed a
statistical complexity measure based on the notion of “dis-
equilibrium” as a quantifier of the degree of physical struc-
ture in a time series �18�. Given a probability distribution
P= �pj : j=1, . . . ,Ns� associated with a system’s state, the
LMC statistical complexity measure is given by

C�P� = Q�P� · H�P� , �2�

with H�P� a normalized entropy and Q�P� a distance to the
uniform-equilibrium state. This quantity reflects on the inter-
play between the amounts of information stored in the sys-
tem and its disequilibrium. LMC used the Euclidean distance
in the evaluation of the disequilibrium. Martín, Plastino, and
Rosso �MPR� improved on this measure by modifying the
distance-component �in the concomitant probability space�.
In Ref. �19�, Q�P� is built-up using Wootters’ statistical dis-
tance while H�P� is the normalized Shannon entropy. Thus
the MPR Wootters statistical complexity is given by CW�P�
=QW�P� ·H�P�, where

QW�P� = Q0
�W� · cos−1�	

i=1

Ns

pi
1/2
 1

Ns
�1/2� , �3�

with Q0
�W�=1/cos−1�Ns

−1/2� and 0�QW�1. Regrettably
enough, the ensuing statistical complexity measure is neither
an intensive nor an extensive quantity, although it yields use-
ful results �19�. Any natural improvement should give to this
statistical measure an intensive character. In a recent contri-
bution, Lamberti, Martín, Plastino, and Rosso �20� obtained
a new statistical complexity measure that is �1� able to grasp
essential details of the dynamics, �2� an intensive quantity,
and �3� capable of discerning among different degrees of
periodicity and chaos. For this case, called MPR Jensen-
Shannon statistical complexity, one has CJS�P�
=QJS�P� ·H�P�, where

QJS�P� = Q0
�JS� · 
S� �P + Pe�

2
� −

1

2
S�P� −

1

2
S�Pe�� , �4�

with Q0
�JS�=− 1

2
�� Ns+1

Ns
�−2 ln�2Ns�+ln Ns�, Pe the uniform

probability distribution, and 0�QJS�1. In the above
expression S�·� denotes the Shannon entropy �21� S�P�
=−	 j=1

Ns pj ln pj, and the associated disorder H based on this
measure is H�P�=S�P� /Smax, with Smax=S�Pe�=ln Ns.

It should be noted that the above complexity measures are
not a trivial function of the entropy, in the sense that for a
given H-value, there exists a range of possible statistical
complexity measure values between a minimum Cmin and a
maximum Cmax �18,22,23�. Thus evaluating the statistical
complexity measure provides one with important additional
information regarding the peculiarities of a probability dis-
tribution. A general procedure for obtaining the bounds Cmin
and Cmax corresponding to the statistical complexity family
is given by Martín, Plastino, and Rosso in �23�. In statistical
mechanics one is usually interested in isolated systems char-
acterized by an initial, arbitrary, and discrete probability dis-
tribution. Evolution towards equilibrium is to be described.
At equilibrium, the distribution is the equiprobability distri-
bution. In order to study the time evolution of the statistical
complexity measure, a diagram of C versus H can be used
�in this case, H can be regarded as an arrow of time� �8�.
Also, this kind of diagram could be used to study the system
dynamics changes dependence with the characteristic param-
eters �13,14,20,22,23�.

From the arguments mentioned previously the Martín,
Plastino, and Rosso statistical complexities, CW and CJS, are
suitable “measures of correlation.” In this paper, both are
going to be employed as informational tools for characteriza-
tion of Gaussian self-similar stochastic processes.

III. WAVELET-BASED INFORMATIONAL TOOLS:
A BRIEF DESCRIPTION

Wavelet analysis is one of the most useful tools when
dealing with data samples. Any signal can be decomposed by
using a wavelet dyadic discrete family �� j,k�t�=2 j/2��2 jt
−k��, with j ,k�Z �the set of integers�, of translations �in-
dexed by k�, and scaling �indexed by j� functions based on a
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function �: the mother wavelet �15–17�. In this work j gets a
frequency meaning and k a temporal one. In the case that this
family is an orthonormal basis for L2�R�—the space consist-
ing of finite-energy signals—the concept of energy becomes
linked with the usual notions derived from Fourier’s theory.
The �wavelet� coefficients in that basis are given by Cj�k�
= �S ,� j,k� and the corresponding, associated energy is given
by the squares �Cj�k��2. If the signal is produced via a sto-
chastic process, such origin is attached to the wavelet coef-
ficients. The temporal average energy at each frequency-
resolution j=−1, . . . ,−N is defined by �24�

E j =
1

Nj
	

k

E�Cj�k��2, �5�

where Nj =2 jM represents the number of wavelet coefficients
at resolution j and E stands for the average using some, at
first, unknown probability distribution associated to the co-
efficients. If we know that the set �Cj�k��k corresponds to a
stationary process the above equation reads

E j = E�Cj�k��2. �6�

Since we are using dyadic discrete wavelets the number of
coefficients decreases for the low frequency bands because,
at resolution level j, this number is halved with respect to the
previous one for j+1. Thus the above energy definition em-
phasizes the contribution of the low frequency bands. Sum-
ming over all the available wavelet levels j we obtain the
total energy

Etot = 	
j=−N

−1

E j . �7�

We define the relative temporal wavelet energy �RTWE� as

� j =
E j

Etot
�8�

that supplies us with information about the relative energies
associated to the different frequency bands and enables one
to learn about their relative degree of importance. Since
	 j=−N

−1 � j =1, the distribution ���� j : j=−N , . . . ,−1� can be
thought of as yielding the probability distribution of energies
across the frequency scales. This time-scale probability den-
sity constitutes a suitable tool for detecting and characteriz-
ing specific phenomena in both the time and the frequency
planes �8–14�.

In our numerical simulations we use the orthogonal cubic
spline functions as the mother wavelet. Among several alter-
natives the symmetric and orthogonal wavelet basis obtained
from it has become a recommendable tool for representing
natural signals �25,26�.

A typical thermodynamic concept, the entropy, is intro-
duced within the wavelet theory in order to highlight the
underlying dynamics of the system under study. Thereby, the
wavelet entropy incorporates all the advantages of wavelet
analysis. We define the wavelet Shannon entropy as

S��� = − 	
j=−N

−1

� j log2 � j . �9�

As a consequence, the associated wavelet measure of disor-
der, called the normalized total wavelet entropy �NTWS� will
be

H��� =
S���
Smax

, �10�

where � is the probability defined in the previous section
and Smax=log2 N. We employ base-2 logarithms in the en-
tropy definition so as to take advantage of the dyadic nature
of the wavelet expansion, which simplifies the entropy for-
mulas to be used in this work. As stated, the normalized total
wavelet entropy is a measure of the degree of order �disor-
der� of the signal �8–14�.

Taking as the starting point the time-scale probability den-
sity � together with its corresponding wavelet equiprobabil-
ity distribution, �e= �1/N , . . . ,1 /N�, we can evaluate the
wavelet-based normalized entropy H��� and the so-called
LMC-disequilibrium Q���, which measures the distance of
a given probabilistic distribution to the uniform one. Adopt-
ing the functional product form given by Eq. �2� a family of
wavelet statistical complexity measures gets defined à la
López-Ruiz-Mancini-Calvet by

C���� = Q���� · H��� , �11�

where the index � can adopt the values W or JS, indicating
which disequilibrium is used: Wootters or Jensen-Shannon,
respectively. In the case �=W we refer to that wavelet com-
plexity as the wavelet Martín-Plastino-Rosso with Wootters
disequilibrium �WMPR Wootters�, and when �=JS as the
wavelet Martín-Plastino-Rosso with Jensen-Shannon dis-
equilibrium �WMPR Jensen-Shannon�. These two complex-
ity quantifiers derive from the original one devised by
López-Ruiz, Mancini, and Calvet. We use them because they
solve almost all the problems associated with the original
measure, as shown in Refs. �19,20�.

IV. APPLICATION TO STOCHASTIC PROCESSES

A. Fractional Brownian motion

This is the only family of processes which is �i� Gaussian,
�ii� self-similar, and �iii� endowed with stationary increments
�1,2�. It has been employed as a stochastic model in different
and heterogeneous scientific fields, like atmospheric turbu-
lence �10,11�, econophysics �27,28� and coastal dispersion
�29,30�. The normalized family of these Gaussian processes,
�BH�t� , t�0�, is the one with BH�0�=0 almost surely �with
probability 1�, E�BH�t��=0 �zero mean�, and covariance

E�BH�t�BH�s�� =
1

2
�t2H + s2H − �t − s�2H� , �12�

for s , t�R. Here E�·� refers to the average with Gaussian
probability density. The power exponent H, commonly
known as Hurst parameter or Hurst exponent ��31�, Chap. 8�
has a bounded range between 0 and 1. These processes ex-
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hibit memory, as can be observed from Eq. �12�, for any
Hurst parameter but H=1/2, for which one recovers the clas-
sical Brownian motion. In this case successive Brownian
motion increments are as likely to have the same sign as the
opposite, and thus there is no correlation among them. Pre-
cisely, this Hurst parameter defines two distinct regions in
the interval �0, 1�. When H�1/2, consecutive increments
tend to have the same sign ��31�, Sec. 9.4� so that these
processes are persistent. For H�1/2, on the other hand,
consecutive increments are more likely to have opposite
signs ��31�, Sec. 9.4� and it is said that these are antipersis-
tent. Fractional Brownian motions are continuous but nondif-
ferentiable processes �in the classical sense�. As a nonstation-
ary process, fractional Brownian motion does not possess a
spectrum defined in the usual sense; however, it is possible to
define a generalized power spectrum of the form �32�:

�BH�f� 	
1

�f �

, �13�

with 
=2H+1 and 1�
�3. Remember that this equation
does not represent a valid power spectrum in the theory of
stationary processes since it yields a nonintegrable function
�in the classical sense�.

B. Fractional Gaussian noise

We denoted by �WH�t� , t�0� the process derived from the
increment of fractional Brownian motion, namely

WH�t� = BH�t� − BH�t + 1� . �14�

We face a stationary Gaussian process with mean zero and
covariance given by

��k� = E�WH�t�WH�t + k��

=
1

2
��k + 1�2H − 2k2H + �k − 1�2H�, k � 0. �15�

The last expression has the following asymptotic behavior as
k→� �7�

��k�
H�2H − 1�k2H−2 → 1. �16�

Therefore when H�1/2 this correlation decays to zero so
slowly that the sum 	k=−�

k=� ��k�=� diverges �7�; this subfam-
ily of processes has long-memory. On the other hand, for
H�1/2 the correlations of the increments are summable �7�,
and this subfamily exhibits short-memory. Equation �16� also
allows one to corroborate the assertions about the persistent
or antipersistent behaviors mentioned above. Note that for
H=1/2 all correlations at nonzero lags vanish and
�W1/2�t� , t�0� is white noise. Naturally, time series of
Gaussian white noise cumulatively constitute a sample of
classical Brownian motion. The power spectrum associated
to fractional Gaussian noise reads

�WH�f� 	
1

�f �

, �17�

with 
=2H−1 and −1�
�1.

C. Time-scale probability distribution

We have obtained an analytical expression for the mean
wavelet energy at resolution level j and time sample k for the
two stochastic processes detailed above:

E�Cj

�k��2 = 2cH

2 2−j
�
0

�

�−
�
����2d� , �18�

where −1�
�1 �fractional Gaussian noise� or 1�
�3
�fractional Brownian motion�, and cH is calculated from the
value of 
. See Appendix A for further details about this
result. Notice that it is independent of k, and thus stationary.
Therefore the relative temporal wavelet energy is obtained
replacing the above expression in Eqs. �6�–�8�, that is

� j = 2−�j+1�
 1 − 2


1 − 2N
 , �19�

with −1�
�3. By continuity we have added the value 

=1, it corresponds to a constant Gaussian process �almost
surely� ��6�, p. 3�. In the following we will use this power-
law behavior, with different 
’s for the two stochastic pro-
cesses under analysis, unifying both into a single framework.
According to its possible values, the coefficient 
 can be
attached to one or the other of the two processes.

D. Remarks on the effects of the time-scale probability density

It is important to understand the effect that the transfor-
mation defined by Eq. �5� has in this approach. As a starting
point, we have a continuous stochastic process—the signal
S—defined on the real line, which is associated to a continu-
ous probability distribution. This transformation maps it to a
discrete process, a random variable, whose probability is de-
fined by Eq. �8�. Obviously, because of the sampling only a
finite set of resolution levels are available, so in a pragmati-
cal sense we get a finite time-scale probability �. The result-
ing process thus has a finite range. On the other hand, know-
ing all the information of the process, i.e., all the details,
produces a countable �infinite� distribution, with N as the
support set.

This mapping can be of interest for many physical appli-
cations. Also the informational tools here derived—
entropies, complexity measures, etc.—exhibit rather different
properties vis-a-vis those of their continuous counterparts.
We refer to Pérez et al. �33� for details about these proper-
ties. We have also shown that, assuming an ideal infinite
resolution �N→��, the stochastic processes analyzed here
�FBM and FGN� are mapped to a geometrically distributed
random variable.

V. SIMULATIONS AND RESULTS

We study the performance of the wavelet-based informa-
tional tools described above and obtain the exact analytical
expression associated to these quantifiers for the two families
of stochastic processes described in detail in Sec. IV. In order
to evaluate the normalized total wavelet entropy and wavelet
statistical complexity measures, the relative wavelet energy
for a finite data sample given by Eq. �19� is used. Accord-
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ingly, a close form for the normalized total wavelet entropy
is easily derived from Eq. �10� �34�

H��� = H�N,
� =



log2 N

 1

1 − 2−
 −
N

1 − 2−N
�
−

1

log2 N
log2
 1 − 2


1 − 2N
� . �20�

Now, using this entropy we can obtain the WMPR Wootters
and WMPR Jensen-Shannon complexities, Eq. �11�, from
their associated disequilibria:

QW��� = QW�N,
� =
1

cos−1�N−1/2�
cos−1�N−1/2
 1 − 2−


1 − 2−
N�1/2

� 
1 − 2−
N/2

1 − 2−
/2 �� �21�

and

QJS��� = QJS�N,
� = −
1

log2 N
	

j=−N

−1

�� j + 1/N�log2�� j + 1/N�

+ H��� +
2

log2 N
− 1. �22�

Notice that these analytical expressions for wavelet quantifi-
ers do not depend only on the parameter 
. A functional
dependence with the number of wavelet levels N considered
also exists.

In order to validate the previous analytical result we com-
pare them with numerical simulations. In relation to simula-
tion processes, Coeurjolly �35,36� has evaluated several al-
gorithms to simulate fractional Brownian motion. From such
a study we adopted the Davies-Harte algorithm �37�, im-
proved recently by Wood and Chan �38�, which is both exact
and fast. Actually, this method simulates fractional Gaussian
noise and gets samples of fractional Brownian motion by
evaluating cumulated sums of the sequential data points ob-
tained and by setting BH�0�=0. For each value of 
�1
within the interval �−0.8,2.8� with step 0.2 we simulated 50
realizations with M =5000 data points in each time series.
Note that for 
=1 �the limit between processes and noises�
we do not have a simulation. For each set we estimate the
average and mean �1� normalized total wavelet entropy and
�2� wavelet statistical complexity quantifiers by using time
windows of length L=512 data. See Appendix B for details
about these two—average and mean—independent ap-
proaches to obtain quantifiers for the whole time series. The
record length M =5000 data was chosen according to the
value discussed in previous works �10,11,34�. However,
when this M value is increased and the wavelet quantifiers
are estimated for the same values �N=9 and L=512 data� the
agreement between theoretical behavior and simulations re-
sults increases.

Figure 1 compares the analytical expression for the nor-
malized entropy, Eq. �20� for N=9 �j=−9, . . . ,−1�, against

the estimated temporal average, �H�, and mean, H̃ �normal-
ized total wavelet entropy�. Figure 2 shows estimated wave-

let statistical complexity measures �CW� and C̃W together
with their theoretical expressions, also for N=9. Similarly,
Fig. 3 depicts values for CJS. It is clear from Figs. 1–3 that
mean values give better results than their temporal average
counterparts.

Note that theoretical curves, for both wavelet quantifiers,
normalized total wavelet entropy and wavelet statistical com-
plexity measures are symmetric with respect to 
=0. In par-
ticular, for 
=0 �white noise� we have H=1 and C�=0 ��
=W ,JS�, which is consistent with the hypothesis advanced in
Sec. III. By inspection of Figs. 2 and 3 we conclude that
wavelet statistical complexity measures exhibit a maximum
value in the neighborhood of the transition point between
fractional Gaussian noise and fractional Brownian motion
given �
=1�. As usual, boxplots �39� illustrate lower and
upper lines at the lower quartile �25th percentile of the

FIG. 1. �Color online� Comparison between analytical
expressions—continuous line—for NTWS with N=9, Eq. �20�, and

estimated temporal average �H� �top� and mean H̃ �bottom� NTWS
for FGN, −1�
�1, and FBM, 1�
�3. Boxplots are obtained
from 50 independent realizations with M =5000 data points each for
a given 
. The temporal window length was L=512 data points.
Outliers are marked by plus signs.
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sample� and upper quartile �75th percentile of the sample�,
respectively, while the line in the middle of the box is the
sample median. The whiskers are lines extending from each
end of the box indicating the extent of the rest of the sample.
Outliers are marked by plus signs. These points may be con-
sidered the result of either a data entry error or a poor mea-
surement.

Finally, Fig. 4 depicts the C̃JS�H̃ plane. A similar graph
is obtained by using the mean WMPR Wootters statistical
complexity measure. This graph is a parametric plot which
allows one to visualize the behavior of the two stochastic
processes with 
 as the parameter. As mentioned in Sec. II,
the corresponding values are bounded by Cmax and Cmin
curves �23� �evaluated for N=9�. Their values are displayed
in this figure using continuous lines. Only values in the in-
terior of the region defined by these two limit curves can be
numerically obtained. It should be stressed that the trajectory

described by short- and long-memory fractional Gaussian
noises, −1�
�0 and 0�
�1, respectively, do overlap.
This is due to the symmetric behavior around 
=0 of both
informational quantifiers, H̃ and C̃JS, see Figs. 1 and 3. Also,
notice that the right-side extremes of both theoretical results
and the simulated values match with the white noise �H̃
�1 and C̃JS�0� ones.

From inspection of Fig. 4 it is clear that our introduced
wavelet-based informational tools are able to distinguish be-
tween the two stochastic processes under study. In particular,
fractional Brownian motion is characterized by low-medium
entropies �middle-left of the graph� and fractional Gaussian
noise by medium-high entropic values �middle-right of the
graph�. That is, fractional Gaussian noise is more disordered
than its corresponding stochastic process, the fractional
Brownian motion. Also, fractional Gaussian noise exhibits
decreasing �increasing� values of wavelet statistical complex-
ity measures for parameters −1�
�0 �0�
�1� corre-
sponding to short-memory �long-memory�. The case 
=0
corresponds to white noise and a maximum value of entropy

FIG. 2. �Color online� The estimated and analytical results for
the MPR Wootters complexity with N=9—continuous line. Tempo-

ral average �CW� �top� and mean C̃W �bottom� WSCM for FGN,
−1�
�1, and FBM, 1�
�3. Boxplots are obtained from 50
independent realizations with M =5000 data points each for the
given 
. The temporal window length was L=512 data points. Out-
liers are marked by a plus sign.

FIG. 3. �Color online� Same as Fig. 2 but for the MPR Jensen-
Shannon complexity. The estimated and analytical results for the
WSCM with N=9—continuous line. Temporal average �CJS� �top�
and mean C̃JS �bottom� WSCM.
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together with a minimum value of complexity are jointly
reached. In the case of fractional Brownian motion, wavelet-
based quantifiers also distinguish between the subfamilies of
short- and long-memory processes. The first, 1�
�2, is
more disordered �higher entropy� and more complex than the
second one, 2�
�3. Thus antipersistent processes turn out
to be more complex than persistent ones. In the latter in-
stance we are able to predict “future” behaviors. It should be
noted that the two opposite extremes of complete random
�white noise� and totally predictive �
→3� processes have
minimum complexity.

VI. CONCLUDING REMARKS

Two well-known and widely used stochastic processes,
fractional Brownian motion and fractional Gaussian noise,
have been characterized by using quantifiers properly defined
within a wavelet framework. All the advantages of wavelet
theory are therewith inherited and the initial continuous
probability distribution associated with the stochastic pro-
cesses under study gets mapped into a new, discrete one. Our
results agree with the popular conception of maximum en-
tropy and zero complexity for the white noise �
=0�. Noises
with short- and long-memory display a symmetric behavior
around this particular case. Thus they cannot be discrimi-
nated in the C�H plane. However, this plane is able to
discriminate the FBM processes.

As is well known, the Shannon entropy is restricted to
extensive systems. For systems which have long-range cor-
relations and fractal properties a nonextensive information

measure should work better. A nonextensive entropy �40�
used, for instance, in �41–45� has been shown to exhibit a
good performance in describing fractal and multifractal sys-
tems. Work in progress analyzes fractal stochastic processes,
like fractional Brownian motion and fractional Gaussian
noise, by using this nonextensive entropy within the wavelet
framework. New alternative definitions of statistical com-
plexity measures would ensue.
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APPENDIX A: TIME-SCALE PROBABILITY
DISTRIBUTION. THEORETICAL RESULTS

In this appendix we revise and extend the methodology
developed in Pérez et al. �34�. Given any Wiener space, gen-
eralized random variables X���, with � one element of the
statistic ensemble, can be defined through the formal sum,
called chaos expansion �46�

X��� = 	
�

c�H���� with c�
2 = E�XH��/�!. �A1�

Here �!=�1!�2!¯�n! is the factorial of the finite
non-negative integer multiindex �, while H����
=�i=1

n H�i
���i ,��� represents the stochastic component of the

process, and it is built-up through the Itô integrals ��i ,�� of
Hermite functions:

�n�x� =
e−x2/2Hn−1�x�

�2n−1�n − 1�!�1/2
, n = 1,2, . . . , �A2�

with Hn the Hermite polynomials. This is an orthogonal ba-
sis, and thus fulfills

	
n=1

�

�n�x��n�x�� = ��x − x�� . �A3�

In particular, Gaussian processes attain the simplest chaos
expansion, i.e.,

X��� = 	
n=1

�

cnH�n
��� , �A4�

where �n= �0,0 , . . . ,0 ,1 ,0 , . . . � with 1 on the nth entry, and
0 otherwise, so H�n

���= ��n ,��. Furthermore, their second
moments have a simple expression through the expansion
coefficients ��46�, p. 43�:

FIG. 4. C̃JS�H̃ space for N=9. The parametric plot of �C̃JS ,H̃�
in terms of the parameter 
 for the two stochastic processes, FBM
and FGN, is shown here. The dashed line represents the theoretical
expression with N=9. The continuous lines display the bound
curves Cmax and Cmin associated to the maximum and minimum
values of complexity for a fixed value of the normalized entropy.
Vertical dash-dot lines define regions associated to the subfamilies
of stochastic processes under analysis. Also, different marks are
used to distinguish the numerical estimated values for these
subfamilies.
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E�X�2 = 	
n=1

�

�cn�2. �A5�

There is a particular Wiener space for fractional Brownian
processes where a stochastic calculus can be developed for
the complete range of the Hurst parameter. Elliott and van
der Hoek �47� were the first to introduce it, and we will use
it through this section. Processes within this Wiener space
are built around the self-adjoint operator MH defined as

MH�̂��� = cH���1/2−H�̂��� , �A6�

where the hat stands for the Fourier transform, cH
2 =��2H

+1�sin��H�, and � is any function such that MH�̂
�L2�R�. In particular, the chaos expansion for FBM results
in

BH�t,�� = 	
n=1

�

�MH1�0,t�,�n�H�n
��� , �A7�

see Ref. �47� for further details. Since � is fixed, whenever
its presence is unnecessary it will be omitted. Since the op-
erator MH is self-adjoint,

�MH1�0,t�,�n� = �1�0,t�,MH�n� = �
0

t

dsMH�n�s� .

Henceforth, the fractional white noise has the expansion

d

dt
BH�t� = 	

n=1

�

MH�n�t�H�n
��� = WH�t� . �A8�

Whether our signal is an FBM or FGN process their
wavelet transform can be calculated accurately, but with
slightly different procedures. First, let us assume that the
signal is an FBM process, S�t�=BH�t�. Its wavelet coeffi-
cients are calculated from the orthonormal wavelet basis
�� j,k� j,k�Z as

Cj
BH

�k� = �BH,� j,k� = �
R

2−j/2��2−js − k�BH�s�ds

=
d

2�1/2+H�j�
R

��s�BH�s + k�ds , �A9�

for the last step we used the self-similar property of FBM,
Eq. �1�. Hence, using the chaos expansion Eq. �A7� we ob-
tain an expansion for its wavelet coefficient

Cj
BH

�k� = 	
n=1

�

dn
BH

�j,k�H�n
��� �A10�

and

dn
BH

�j,k� = 2�1/2+H�j�
R

�MH1�0,s+k�,�n���s�ds . �A11�

The evaluation of the coefficients dn
BH

�j ,k� follows from
definition �A6� and the fact that �R��t�=0:

dn
BH

�j,k� = − cHi−n2�1/2+H�j�
R

sgn ����−�1/2+H�
���

� �n���e−ik�d� , �A12�

where sgn�·� is the sign function and 
���= �̂���. Now, from
the second moment expansion for Gaussian variables, Eq.
�A5�, and the orthogonality of the Hermite functions, Eq.
�A3�, we have

E�Cj
BH

�k��2 = cH
2 2�1+2H�j�

R
���−�1+2H��
����2d�

= 2��2H + 1�sin��H�2�1+2H�j

��
0

�

�−�1+2H��
����2d� . �A13�

On the other hand, if the signal is a fractional white noise,
S�t�=WH�t�, the expansion for the coefficients is just

Cj
WH

�k� = �WH,� j,k� = 	
n=1

�

�MH�n,� j,k�H�n
���; �A14�

and thus we are free to work with the individual coefficients

dn
WH

�j,k� = �MH�n,� j,k� = cH�
R

���1/2−H�̂n����̂ j,k���d� ,

�A15�

since the Fourier transforms of the Hermite functions

and the wavelet are �̂n���= i1−n�n��� and �̂ j,k���=2−j

�exp�−i2−jk���̂�2−j��, respectively. The evaluation of the

coefficients dn
WH

�j ,k� is straightforward:

dn
WH

�j,k� = cHi1−n2−�H−1/2�j�
R

���1/2−H
����n�2 j��e−ik�d� .

�A16�

Again, using Eq. �A5� and the orthogonality expressed in Eq.
�A3� we obtain the fractional white noise’s second moment

E�Cj
WH

�k��2 = cH
2 2−j�2H−1��

R
���−�2H−1��
����2d�

= 2��2H + 1�sin��H�2−j�2H−1�

��
0

�

�−�2H−1��
����2d� , �A17�

for any 
 decaying fast enough. Finally, these two expres-
sions, i.e., Eqs. �A13� and �A17�, can be combined into the
one simple expression Eq. �18� written in terms of the power

.

APPENDIX B: TIME EVOLUTION

When a realization of the signal S�t� is sampled, as de-
tailed in Sec. III, a finite data series results. There are two
strategies to obtain the wavelet quantifiers discussed so far;
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that is, the relative temporal wavelet energy, the normalized
total wavelet entropy, and the wavelet statistical complexity
measures. From the M data points of the sampled signal it is
possible to obtain only N=log2 M resolution levels, and at
each one of these levels there will be 2 jM wavelet coeffi-
cients. Now, subdividing the data series into nonoverlapping
�temporal� windows of length L �i=1, . . . ,NT, with NT
=M /L� will also divide the wavelet coefficients series into
NT sets. The minimum length of the temporal window should
include at least one wavelet coefficient at each level, and so
j=−NL , . . . ,−1, for NL=log2 L. Now, for each interval i the
different quantifiers are evaluated as follows. The wavelet
energy at resolution level j for the time window i is given by

Ê j
�i� =

1

Nj
�i� 	

k=�i−1�·L+1

i·L

E�Cj�k��2 with i = 1, . . . ,NT,

�B1�

and Nj
�i� represents the number of wavelet coefficients at

resolution level j corresponding to the time window i. Now,

the total energy in this time window is Êtot
�i� =	 j�0Ê j

�i�. Ob-
serve that as the process �Cj�k�� results in being stationary
the latter equation is an unbiased estimator of the temporal
average energy defined in Eq. �6�.

Therefore we define local versions, for the window i, of
the wavelet quantifiers: the relative temporal wavelet energy
at resolution level j

�̂ j
�i� =

Ê j
�i�

Êtot
�i�

�B2�

gives the local time-scale probability density �̂�i����̂ j
�i� : i

=1, . . . ,NT�, the generalized disorder �NTWS�

H�i� = H��̂�i�� = −
1

log2 NL
	

j=−NL

−1

�̂ j
�i� log2 �̂ j

�i�, �B3�

and the family of wavelet statistical complexity measures
�WSCM�

C�
�i� = C���̂�i�� = Q���̂�i�� · H��̂�i�� , �B4�

with �=W or JS.
Now, in order to obtain quantifiers for the full time series

two independent paths can be followed. We can just average
each one of the quantities above; that is, take the temporal
average of normalized total wavelet entropy

�H� =
1

NT
	
i=1

NT

H�i�, �B5�

and the wavelet statistical complexity measures

�C�� =
1

NT
	
i=1

NT

C�
�i�. �B6�

Also, we can take the average of the wavelet energy at reso-
lution level j,

�E j� =
1

NT
	
i=1

NT

Ê j
�i�, �B7�

with j=−1, . . . ,−NL, and also an averaged total wavelet en-
ergy �Etot�=	 j=−NL

−1 �E j�. In this way we are able to define a

new probability distribution �̃���̃ j : j=−1, . . . ,−NL� where

�̃ j =
�E j�
�Etot�

, �B8�

and again 	 j=−NL

−1 �̃ j =1: the mean relative temporal wavelet

energy. With respect to this new probability distribution �̃
we define the mean normalized total wavelet entropy

H̃ = H��̃� = −
1

log2 NL
	

j=−NL

−1

�̃ j log2 �̃ j , �B9�

and the following wavelet statistical complexity measures

C̃� = C���̃� = Q���̃� · H��̃� �B10�

with �=W or JS.

�1� B. B. Mandelbrot and J. W. Van Ness, SIAM Rev. 4, 422
�1968�.

�2� G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian
Random Processes: Stochastic Models with Infinite Variance
�Chapman and Hall/CRC, London, U.K., 1994�.

�3� A. Papoulis, Probability, Random Variables, and Stochastic
Processes �McGraw-Hill, New York, 1991�.

�4� J. Lamperti, Trans. Am. Math. Soc. 104, 62 �1962�.
�5� W. Vervaat, Properties of General Self-Similar Processes, Bull.

Internat. Statist. Inst. 52 �Book 4�, 199–216 �1987�.
�6� P. Embrechts and M. Maejima, Selfsimilar Processes �Prince-

ton University Press, Princeton, NJ, 2002�.
�7� J. Beran, in Monographs on Statistics and Applied Probability

�Chapman and Hall, London, 1994�, Vol. 61.

�8� O. A. Rosso, M. T. Martin, A. Figliola, K. Keller, and A.
Plastino, J. Neurosci. Methods 153, 163 �2006�.

�9� A. M. Korol, R. J. Rasia, and O. A. Rosso, Physica A 375, 257
�2007�.

�10� L. Zunino, D. G. Pérez, M. Garavaglia, and O. A. Rosso, Frac-
tals 12, 223 �2004�.

�11� L. Zunino, D. G. Pérez, M. Garavaglia, and O. A. Rosso,
Physica A 364, 79 �2006�.

�12� C. M. González, H. A. Larrondo, and O. A. Rosso, Physica A
354, 281 �2005�.

�13� A. M. Kowalski, M. T. Martín, A. Plastino, A. N. Proto, and O.
A. Rosso, Phys. Lett. A 311, 180 �2003�.

�14� A. M. Kowalski, M. T. Martín, A. Plastino, and O. A. Rosso,
Int. J. Mod. Phys. B 19, 2273 �2005�.

CHARACTERIZATION OF GAUSSIAN SELF-SIMILAR… PHYSICAL REVIEW E 75, 021115 �2007�

021115-9



�15� I. Daubechies, Ten Lectures on Wavelets �SIAM, Philadelphia,
1992�.

�16� S. Mallat, A Wavelet Tour of Signal Processing �Academic
Press, New York, 1998�.

�17� V. Samar, A. Bopardikar, R. Rao, and K. Swartz, Brain Lang
66, 7 �1999�.

�18� R. López-Ruiz, H. L. Mancini, and X. Calbet, Phys. Lett. A
209, 321 �1995�.

�19� M. T. Martín, A. Plastino, and O. A. Rosso, Phys. Lett. A 311,
126 �2003�.

�20� P. W. Lamberti, M. T. Martín, A. Plastino, and O. A. Rosso,
Physica A 334, 119 �2004�.

�21� C. E. Shannon, Bell Syst. Tech. J. 27, 379 �1948�.
�22� X. Calbet and R. López-Ruiz, Phys. Rev. E 63, 066116 �2001�.
�23� M. T. Martín, A. Plastino, and O. A. Rosso, Physica A 369,

439 �2006�.
�24� L. Zunino, D. G. Pérez, M. Garavaglia, and O. A. Rosso,

Physica A �to be published�.
�25� M. Unser, IEEE Signal Process. Mag. 16, 22 �1999�.
�26� P. Thévenaz, T. Blu, and M. Unser, IEEE Trans. Med. Imaging

19, 739 �2000�.
�27� E. Bayraktar, H. Vincent Poor, and K. Ronnie Sircar, Int. J.

Theor. Appl. Finance 7, 615 �2004�.
�28� A. Carbone, G. Castelli, and H. E. Stanley, Physica A 344,

267 �2004�.
�29� P. S. Addison and A. S. Ndumu, Fractals 7, 151 �1999�.
�30� B. Qu, P. S. Addison, and T. Mead Christopher, Coastal Eng.

45, 139 �2003�.
�31� J. Feder, Fractals �Plenum Press, New York, 1988�.

�32� P. Flandrin, IEEE Trans. Inf. Theory IT-35, 197 �1989�.
�33� D. G. Pérez, L. Zunino, and O. A. Rosso �unpublished�.
�34� D. G. Pérez, L. Zunino, M. Garavaglia, and O. A. Rosso,

Physica A 365, 282 �2006�.
�35� J.-F. Coeurjolly, Ph.D. thesis, Laboratoire de Modélisation et

Calcul-Institut d’Informatique et Mathématiques Appliquées
de Grenoble, 2000 �unpublished�.

�36� J.-F. Coeurjolly, J. Stat. Software 5, 1 �2000�.
�37� R. B. Davies and D. S. Harte, Biometrika 74, 95 �1987�.
�38� A. T. A. Wood and G. Chan, J. Comput. Graph. Stat. 3, 409

�1994�.
�39� J. W. Tukey, Exploratory Data Analysis �Addison-Wesley,

Readins, MA, 1977�.
�40� C. Tsallis, J. Stat. Phys. 52, 479 �1988�.
�41� P. A. Alemany and D. H. Zanette, Phys. Rev. E 49, R956

�1994�.
�42� C. Tsallis, Fractals 3, 541 �1995�.
�43� C. Tsallis, C. Anteneodo, L. Borland, and R. Osorio, Physica A

324, 89 �2003�.
�44� H. Huang, H. Xie, and Z. Wang, Phys. Lett. A 336, 180

�2005�.
�45� L. Borland, Europhys. News 36, 228 �2005�.
�46� H. Holden, B. Øksendal, J. Ubøe, and T. Zhang, Stochastic

Partial Differential Equations: A Modeling, White Noise Func-
tional Approach, Probability and Its Applications �Birkhäuser,
Boston, 1996�.

�47� R. J. Elliott and J. van der Hoek, Math. Finance 13, 301
�2003�.

ZUNINO et al. PHYSICAL REVIEW E 75, 021115 �2007�

021115-10


