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The wait-and-switch stochastic model of relaxation is presented. Using the “random-variable” formalism of
limit theorems of probability theory we explain the universality of the short- and long-time fractional-power
laws in relaxation responses of complex systems. We show that the time evolution of the nonequilibrium state
of a macroscopic system depends on two stochastic mechanisms: one, which determines the local statistical
properties of the relaxing entities, and the other one, which determines the number �random or deterministic�
of the microscopic and mesoscopic relaxation contributions. Within the proposed framework we derive the
Havriliak-Negami and Kohlrausch-Williams-Watts functions. We also discuss the influence of the random-walk
characteristics of migrating defects on the homogeneous and heterogeneous relaxation scenarios and show the
origins of the stretched-exponential integral kernel in the integral representation of the ensemble-averaged
relaxation function.
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I. INTRODUCTION

Experimental investigations have established the relax-
ation response of various materials �amorphous semiconduc-
tors and insulators, polymers, molecular solid solutions,
glasses, etc.� to be nonexponential in nature �1–4�. Relax-
ation data, obtained by different experimental techniques, ap-
pear to be characterized well enough by the frequency-
domain Havriliak-Negami �HN� function

�HN
* ��� =

1

�1 + �i�/�p�a�b , �1�

and the time-domain Kohlrausch-Williams-Watts �KWW� re-
laxation function

�KWW�t� = exp�− ��pt�a� , �2�

where �p is the material characteristic constant and 0
�a ,ab�1. By means of the well-known frequency-time-
domain relation

�*��� = �
0

�

exp�− i�t�d„1 − ��t�… , �3�

it is easy to show that while both empirical functions share a
common, short-time power-law property

f�t� = − d��t�/dt = ���pt�ab−1 for HN,

��pt�a−1 for KWW,
�4�

their long-time asymtoptics are considerably different:

f�t� = − d��t�/dt = ���pt�−a−1 for HN,

exp�− ��pt�a� for KWW.
�5�

As a consequence, in theoretical attempts to modeling the
dielectric �also magnetic or mechanical� relaxation phenom-
ena, it has been unanimously assumed that the above unique
properties of the response function f�t�, independent of any
special details of the examined systems, reflect a kind of a
general behavior of the relaxing materials. This idea has
stimulated the proposal of several relaxation models that dif-
fer mainly in mathematical interpretations �5–11� of the re-
laxation function ��t�; i.e., a function in terms of which the
experimental evidence is analyzed. While different theoreti-
cal approaches can lead to the KWW and Cole-Cole �a spe-
cial case of the HN function when b=1� functions, for a long
time they have failed in modeling the HN relaxation func-
tion. The latter has been recently obtained within the cluster
model �12,13� and in the diffusion framework by introducing
a new fractional Fokker-Planck operator �14� and a new type
of “clustered” continuous time random walk �15�. These re-
sults are, however, insufficient for understanding the origins
of the two, short- and long-time, power laws observed in a
majority �2–4� of the physical systems studied. The empiri-
cal facts call hence for a completely novel approach to re-
laxation phenomena and, to some extent, also photoconduc-
tion, photoluminescence, and chemical reaction kinetics �4�.

In the framework of probabilistic attempts to study the
origins of the universal power-law properties of nonexponen-
tial relaxations, the idea of a complex system �16� that is
characterized through a large diversity of elementary units
and strong interactions between them is of special impor-
tance. The main feature of all dynamical processes in such
systems is their stochastic background. Hence, it is natural to
expect that the universal behavior of complex systems is
governed by “averaging principles” like, e.g., the law of
large numbers. However, it turns out to be very difficult to
develop this intuition in concrete examples of stochastic sys-
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tems. The difficulty lies in a rigorous mathematical descrip-
tion of the relationship between the local random character-
istics of a complex system and the intrinsic random behavior
of the system as a whole �5,8,9�. The need to understand the
connections between the experimentally observed power
laws and the statistical properties of individual molecular
contributions requires the introduction of advanced stochas-
tic methods into relaxation theory �9,10�. As shown in �9�, a
general formalism of limit theorems of probability theory
plays an important role in constructing tools to relate the
random properties of the entities contributing to the macro-
scopic relaxation response, regardless of the specific nature
of the system considered.

It is commonly accepted that the most natural attempt to
model relaxation is based on diffusion of defects in the sys-
tem under consideration �17,18�. In this approach, vacancies
such as microscopic cavities or random orientation of crys-
tallites diffuse within the system and when they meet an
imposed direction of a dipole moment �in general, an ini-
tially prepared excited state� the latter is allowed to relax. On
the other hand, to interpret the nonexponential relaxation be-
havior of complex dipolar, hydrogen-bounded liquids a
“wait-and-switch” relaxation mechanism has been proposed
�19�. This idea, verified by computer simulation studies of
water �20,21�, is based on the assumption that the reorienta-
tion of a dipole moment follows an activated jump mecha-
nism. At any given time the direction of the dipole moment
corresponds to an energy minimum; different dipole orienta-
tions are separated by potential energy barriers. A dipole of
the network waits �in general, for a random period of time�
until a favorable condition for reorientation exists—i.e., until
an additional neighbor is in a suitable position. The transition
of the dipole from its initial state is hence determined by the
period in which the additional neighbor approaches.

Following both ideas, we introduce a mathematically rig-
orous wait-and-switch model for the random transition of an
object in the medium of migrating defects and relate it to the
behavior of a relaxing complex system. We propose a sto-
chastic mechanism of relaxation based on the well-known
assumption �17� that the transition of a dipole from its initial
state occurs instantaneously when one from a set of migrat-
ing defects reaches the dipole for the first time. We show
how the random characteristics of the surrounding medium
and the spatiotemporal jump parameters of the diffusing de-
fects influence the properties of the random relaxation rate of
a single dipole and, in consequence, the behavior of the mac-
roscopic dipolar system.

The proposed formalism, based on limit theorems of
probability theory, clarifies why the universal response
should exist at all. Our approach provides stochastic schemes
underlying the asymptotic short- and long-time properties of
the relaxation responses. Within the proposed framework we
derive the HN and KWW functions. In Sec. II we introduce
the notion of the relaxation function as the probability of the
first passage of the system. We emphasize the importance of
this concept as a basic mathematical tool by means of which
the rigorous description of the stochastic transition of a com-
plex system is possible. In Sec. III we discuss the defect-
diffusion origins of the statistical properties of a relaxing
dipole. In Sec. IV we discuss the physical meaning of the

domain of attraction of completely asymmetric Lévy-stable
laws and explain its relation to the homogeneous and hetero-
geneous scenarios of relaxation introduced recently in
�22,23�. In this context we clarify the role of the stretched-
exponential kernel in the integral representation of the
ensemble-averaged relaxation function. We show that this
form cannot be responsible for the homogeneous and hetero-
geneous scenarios as assumed in �22,23�. We also show that
the relaxation properties of an entire system may be repre-
sented by a random effective relaxation rate which contains
information on the internal stochastic nature of the investi-
gated system. In Secs. V and VI, we present the powerful
formalism of limit theorems of probability theory which al-
lows us to derive explicit formulas even with restricted in-
formation on local properties of the system. We relate the
statistical conditions, yielding the well-known empirical HN
and KWW functions, to the spatiotemporal scaling properties
of a relaxing system.

II. IRREVERSIBLE STOCHASTIC TRANSITION
OF A MACROSCOPIC SYSTEM

To formulate the wait-and-switch stochastic model of re-
laxation, we need to introduce the notion of the relaxation
function defined as the survival probability of a nonequilib-
rium initial state of a relaxing system.

Let us consider a macroscopic complex system undergo-
ing irreversible transition from the initial state A, imposed at
time t=0, to the relaxed state B at a random instant of time.
The initial and relaxed states differ in some physical param-
eter, so that the transition A→B is defined as a time-
dependent change of this particular parameter �note that
changes in all other parameters may also influence the tran-
sition�. Let �A�t��t denote the time-dependent probability
that the system as a whole will undergo the transition from
state A during the time interval �t , t+�t� if the transition has
not occurred before time t. The probability �A�t��t, ex-

pressed in terms of a random waiting time 	̃ for the system’s
transition, reads

�A�t��t = Pr�t 
 	̃ � t + �t�	̃ � t� + o��t� ,

where o��t� is the probability of two or more transitions of
the system in the time interval �t , t+�t�. The above condi-
tional probability can be rewritten as

�A�t��t = −
Pr�	̃ � t + �t� − Pr�	̃ � t�

Pr�	̃ � t�
+ o��t� ,

where Pr�	̃� t� denotes the probability that the system as a
whole will not make a transition from its original state for at
least time t after entering it at t=0. In the limit of �t→0 we
get the differential kinetic equation fulfilled by the relaxation

function ��t�=Pr�	̃� t�:

d��t�
dt

= − �A�t���t� , �6�

where �A�t� is a transition rate of the relaxing system.
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Let the considered system contain N identical objects,
each waiting for transition from the initial state for a random
time interval. For the ith object �1
 i
N� we denote this
time interval by 	iN=AN	i, where AN is the system’s charac-
teristic size-dependent scaling constant. We assume that the
nonnegative waiting times �	1 ,	2 , . . . 	 form a sequence of
independent and identically distributed �i.i.d.� random vari-
ables. The objects change their initial states in a certain order
that can be expressed by means of order statistics 	�1�
 ¯


	�N�, which is a nondecreasing rearrangement of waiting
times 	iN �24�. Note that the first-order statistics of the
sample, 	1N , . . . ,	NN, equals 	�1�=min�	1N , . . . ,	NN� and de-
notes the waiting time for transition of the fastest relaxing
object. The notion of the order statistics allows us to write
explicitly, for a fixed size N of the system, the random num-
ber ��t�of individual transitions that have occurred in the
system up to time t. Namely, the event that no single transi-
tion has happened prior to time t reads

���t� = 0	 = �	�1� 
 t	 .

Similarly, the event that the number of transitions equals k
reads

���t� = k	 = �	�k� 
 t,	�k+1� 
 t	, for k = 1, . . . ,N − 1,

and the event that all N objects have changed their initial
states reads

���t� = N	 = �	�N� 
 t	 .

It follows that the probability Pr�	N
˜� t� of not a single

transition occurring in the considered system up to time t can
be expressed as

Pr�	N
˜ � t� = Pr„��t� = 0…

= Pr�	�1� � t�

= Pr„ANmin�	1, . . . ,	N� � t… , �7�

where 	N
˜ denotes the waiting time for the system’s transi-

tion. In practice, the survival probability of the macroscopic
system may be approximated by the following weak limit:

Pr�	̃ � t� = lim
N→�

Pr�	˜N � t� . �8�

As a consequence, the relaxation function

��t� = Pr�	̃ � t� = lim
N→�

Pr„ANmin�	1, . . . ,	N� � t…

= lim
N→�



i=1

N

Pr�	i � t/AN� �9�

is equal to the probability that the first passage of the system
as a whole from its initial state has not happened prior to
time t. The normalizing constants AN introduced beforehand
ensure the convergence in Eq. �9�.

The above probabilistic representation of the relaxation
function shows a rigorous dependence of the effective relax-
ation response on two mechanisms: one, which determines
the individual survival probability Pr�	i� t�, and the other

one, which determines the number N �deterministic or ran-
dom� of the relaxation contributions.

III. STATISTICAL PROPERTIES OF THE INDIVIDUAL
WAITING TIMES

As has been shown recently �25�, the transition of a single
dipole from its initially imposed state depends on random
characteristics of the surrounding medium and the statistical
properties of the spatiotemporal jump parameters of diffus-
ing defects. This result is based on the well-known “target”
assumption �17� that relaxation of a dipole occurs as soon as
one from a set of defects, moving along the defect-dipole
direction, reaches the dipole for the first time. Using extreme
value theory �26� and the “random-variable” formalism
�15,27,28� of the continuous-time random walk �CTRW�
�29�, we have shown �25� that the individual survival prob-
ability Pr�	i� t� equals the weighted average of a stretched
exponential decay function with respect to the distribution
FL�l� of the distance L, which has to be traveled by the
defects to reach the dipole:

Pr�	i � t� = �
0

�

exp�− Ct��l−��dFL�l� = �exp�− Ct��Li
−��� ,

�10�

where C= t0
−��bR

�. The power-law exponents � and �� are
determined by the spatiotemporal properties of the investi-
gated CTRW. The result �10� is valid if we take the following
two forms of the CTRW as a model of the defect diffusion.

�I� A random walk with a heavy-tailed distribution of
jump sizes Rj,

Pr�Rj � r� 

r→�

�r/bR�−�, for some 0 � � � 1, bR 
 0,

�11�

and a finite-mean distribution of interjump waiting times Tj,

�Tj� = �T � � . �12�

�II� A random walk with heavy-tailed distributions of
both, jump sizes Rj and interjump waiting times Tj,

Pr�Rj � r� 

r→�

�r/bR�−�, for some 0 � � � 1, bR 
 0,

Pr�Tj � t� 

t→�

�t/bT�−�, for some 0 � � � 1, bT 
 0.

�13�

The exponent ��, introduced in formula �10�, takes the val-
ues ��=1 for type I and ��=� for type II of the CTRW. The
heavy-tailed distributions assumed for the jump sizes and the
interjump waiting times yield infinite expected values of the
corresponding random variables.

As is clear from Eq. �10�, the stretched exponential kernel
in this formula reduces to the exponential one if the diffusion
of defects follows a biased Lévy flight �10�—i.e., type I of
the CTRW. Observe that also in the more general case II,
when ��=�, the stretched-exponential integral kernel in Eq.
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�10� can be reduced to the exponential one. Using the well-
known formula �30,31� for the Laplace transform of a com-
pletely asymmetric Lévy-stable distribution Sa�x�,

exp�− Cta� = �
0

�

exp�− C1tx�dSa�x�

= �exp�− C1Sat��, for some 0 � a � 1,

�14�

we have

Pr�	i � t� = �exp�− Ct��Li
−��� = �exp�− C1Li

−�/��S��t�� ,

�15�

where C= t0
−��bR

� and C1=C1/��. Now, the survival probability
Pr�	i� t� of the ith object can be written as the weighted
average of an exponentially decaying function with respect
to the distribution of the random variable �i, having the
meaning of a relaxation rate with physical dimension �s−1�:

Pr�	i � t� = �exp�− �it�� . �16�

The explicit form of the individual relaxation rate reads

�i = C1Li
−�/��S�� �17�

and contains information on the stochastic nature of the in-
vestigated complex system. Namely, it reflects the local ran-
dom characteristics of the medium and the spatiotemporal
properties of the anomalous diffusion processes.

IV. HOMOGENEOUS AND HETEROGENEOUS PATTERNS
OF RELAXATION

It follows from formulas �9� and �16� that the system’s

waiting time 	̃ is determined by the individual relaxation
rates �i:

Pr�	̃ � t� = lim
N→�



i=1

N

Pr�	i �
t

AN
�

= lim
N→�

�exp�− �1
t

AN
� � ¯ � exp�− �N

t

AN
��

= lim
N→�
�exp�− �

i=1

N
�i

AN
t�� .

As a consequence, the relaxation function ��t� can be writ-

FIG. 1. Illustration of two different relaxation patterns of the KWW relaxation response. The left panels outline a heterogeneous
relaxation scenario in which the relaxation rates of individual contributions are distributed according to a heavy-tailed Pareto distribution,
and the ensemble-averaged behavior represents a Lévy-stable distribution of effective relaxation rate. Both responses share a common
short-time power-law property but their long-time asymptotics are considerably different. The right panels refer to a homogeneous scenario
in which the distribution of all individual relaxation rates is identical with the Lévy-stable distribution of the effective one. Both responses
share common short- and long-time asymptotic properties.
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ten in a form similar to that given by Eq. �16�:

��t� = Pr�	̃ � t� = �exp�− �̃t�� , �18�

where �̃ denotes the effective relaxation rate and is equal to
the sum of the individual relaxation rates �i of all N contri-
butions to the relaxation process,

�̃ = lim
N→�

1

AN
�
i=1

N

�i. �19�

The same result can be derived even if the set of contribu-
tions does not contain a deterministic number N but a ran-
dom number �N of relaxing entities. In this case we have a
more general formula

�̃ = lim
N→�

1

AN
�
i=1

�N

�i. �20�

The deterministic number N of contributions in Eq. �19� may
be treated as a special case of the random number �N in Eq.
�20�, in the sense that its probability density function is of
the �-Dirac form.

According to limit theorems of probability theory �32�,
the existence of the limiting rate �̃ is determined �33� by the
following asymptotic property of the distribution FL�l�:

FL�l� 
 �l/bL��, as l → 0, �21�

for some �
0. As a consequence, the random variable Li
−�

belongs to the domain of attraction of a one-sided Lévy-
stable law S� with the index of stability � determined by
parameters � and �: namely, �=min�� /� ,1	. For
���—i.e., for �=1—the distribution of an appropriately
normalized sum of Li

−� becomes degenerate, which yields a
constant value of random variable Li

−� with probability 1.
The distribution of the individual relaxation rates defined in
Eq. �17� is then heavy tailed and belongs to the domain of
attraction of a completely asymmetric Lévy-stable distribu-
tion �30,31�. Let us remark that the distribution of a Lévy-
stable random variable is heavy tailed itself and hence a
Lévy-stable random variable belongs to its own domain of
attraction �30,34�. Consequently, if �i belongs to the domain

of attraction of a completely asymmetric Lévy-stable random
variable, then the heterogeneous pattern of relaxation is re-
alized; however, if �i is itself a Lévy-stable random variable,
then the homogeneous pattern holds. From the physical point
of view, the relaxation pattern is considered to be homoge-
neous if the local and the ensemble-averaged dynamics are
the same �22,23�. Using the notion of relaxation rates, we
conclude that in the homogeneous case the effective relax-
ation rate has to be distributed according to the same prob-
ability law as the individual relaxation rates.

Note that the idea of dynamical heterogenity �22,23� has
been associated with the form of the kernel h�t ,�� in the
integral representation of the ensemble-averaged relaxation
function

��t� = �
0

�

g���h�t,��d� , �22�

where g��� is the relaxation time probability density func-
tion. According to this, the purely heterogeneous picture fol-
lows from the exponential kernel h�t ,��=e−t/�, whereas the
purely homogeneous picture from the kernel h�t ,�� propor-
tional to the relaxation function ��t�. The latter holds if
the probability density g��� of the effective relaxation time
is of the �-Dirac form. As an example, the KWW function
��t�=exp�−�t /��a� and the integral kernel h�t ,��
=exp�−�t /��aintr� �with 0�a�1 and a
aintr�1� have been
considered in �22,23�. In this particular case the degree of
heterogeneity was measured by the parameter �= �aintr

−a� / �1−a�, chosen in such a way that it vanishes in the
homogeneous limit �since aintr=a� and is equal to 1 in the
heterogeneous limit �since aintr=1�. As a conclusion, it has
been suggested �22,23� that other nonexponential forms of
the relaxation function may be alternatively given by other
forms of the “intrinsic” function h�t ,��. However, as shown
in Sec. III, the form of the kernel in the integral representa-
tion of the relaxation function �18� results naturally from the
defect-diffusion scenario and, in general, is of a stretched-
exponential form. Moreover, using the relationship �14� we
can easily interchange the stretched-exponential intrinsic
function with the exponential one. Hence, the dynamical ho-
mogeneity and heterogeneity of the relaxation process cannot

TABLE I. Relaxation functions for a system with a fixed number of relaxation contributions. The influ-
ence of the defect-diffusion mechanism on the homogeneous scenario of relaxation is shown �note the role of
the stable distribution in the individual relaxation rates�.

��=1 ��=�

��� ��� ��� ���

�i

distribution
a-stable with

a= �
�

�-Dirac
function

a-stable with
a=�

�
�

a-stable with
a=�

Pr�	i� t� KWW D KWW KWW

�̃
distribution

a-stable with
a= �

�

�-Dirac
function

a-stable with
a=�

�
�

a-stable with
a=�

Pr�	̃� t� KWW D KWW KWW

System type homogeneous homogeneous homogeneous homogeneous
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be connected with the form of the kernel in Eq. �22�. The
different scenarios of relaxation are rather determined by the

stochastic structure of the effective relaxation rate �̃. To
clarify this point, in the next section we derive the KWW
relaxation function within both the homogeneous and hetero-
geneous scenarios.

V. FIRST PASSAGE OF A MACROSCOPIC SYSTEM WITH
A FIXED NUMBER OF RELAXATION CONTRIBUTIONS

In this section we consider a system with a deterministic
number of contributing entities. It is a rigorous result �9� that
the only possible probability distributions for the effective
relaxation rate �19� are completely asymmetric Lévy-stable
laws, with the parameter 0�a�1, leading to the KWW re-
laxation function �2�. The corresponding response function
fKWW�t�=−d�KWW�t� /dt exhibits the short-time power-law
property ��pt�−n, n=1−a, determined by the long-tail expo-
nent a of the individual relaxation rates distribution. Taking
now into account the properties of distributions belonging to
the domain of attraction of completely asymmetric Lévy-
stable laws, we come to the conclusion that in the proposed
framework the stretched-exponential function can be derived
in two ways, representing the homogeneous �a� and hetero-
geneous �b� patterns of relaxation.

�a� The homogeneous relaxation—i.e., the scenario in
which “all local contributions are identical to the ensemble

average” �22,23�—is realized if the relaxation rate �17� is a
positive Lévy-stable random variable. For this scenario the
random variable Li

−� in Eq. �17� has to be a positive Lévy-
stable variable S� �including the degenerate case when �

=1�. In such a case the effective relaxation rate �̃ for each N
is of the form

�̃ =
1

AN
�
i=1

N

�i, �23�

which yields

�̃

d

S���, �24�

and consequently the KWW relaxation function �2� with the
stretching parameter a=���. In this scenario �see Fig. 1� the
stretched-exponential survival probabilities �16� of all local
relaxation contributions are identical with the one of the en-
semble average �18�.

�b� On the other hand, if the distribution of the individual
relaxation rates �17� is heavy tailed—i.e., it belongs to the
domain of attraction of a completely asymmetric Lévy-stable
law, but �i is not a Lévy-stable random variable itself—the
heterogeneous scenario occurs. For this scenario it is suffi-
cient that Li

−� is a heavy-tailed random variable with the
exponent equal to �. In such a case the effective relaxation
rate of the form

�̃ = lim
N→�

1

AN
�
i=1

N

�i. �25�

yields the effective relaxation rate

�̃

d

S���, �26�

which leads to the KWW relaxation function with the
stretching parameter a=���, the same as in the homoge-
neous scenario. In this scenario �see Fig. 1� the macroscopic
relaxation �18� follows the stretched-exponential pattern
while the local relaxation contributions �16� do not. How-
ever, both local contributions and the ensemble average share
a common short-time asymptotic property determined by the

TABLE II. Relaxation functions for a system with a fixed number of relaxation contributions. The
influence of the defect-diffusion mechanism on the homogeneous and heterogeneous scenarios of relaxation
is shown �note the role of the heavy-tailed distribution in the individual relaxation rates�.

��=1 ��=�

��� ��� ��� ���

�i

distribution
heavy tail
with a= �

�

�-Dirac
function

heavy tail
with a=�

�
�

a-stable with
a=�

Pr�	i� t� other/not
KWW

D other/not
KWW

KWW

�̃
distribution

a-stable with
a= �

�

�-Dirac
function

a-stable with
a=�

�
�

a-stable with
a=�

Pr�	̃� t� KWW D KWW KWW

System type heterogeneous homogeneous heterogeneous homogeneous

TABLE III. Microscopic stochastic scenarios leading to the em-
pirical HN relaxation response.

�i

distribution
Heavy tail with

a=� /�
Heavy tail with

a=�� /�
Heavy tail with

a=�

Ni

distribution
Heavy tail with

a=� /�
Heavy tail with

a=�� /�
Heavy tail with

a=�

Mj

distribution
Heavy tail with

a=b
Heavy tail with

a=b
Heavy tail with

a=b

Relaxation
function
�*���

HN
with parameters

� /� and b

HN
with parameters

�� /�and b

HN
with parameters

� and b
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domain of attraction of a completely asymmetric Lévy-stable
law. The long-time differences depend on the limiting prop-
erties of the choosen individual relaxation rate distribution.

The above analysis leads to a conclusion that both sce-
narios of the KWW relaxation do not follow from the inte-
gral representation of the relaxation function. A particular
scenario is determined by the stochastic structure, Eqs. �23�
and �25�, of the effective relaxation rate �̃. All special cases
depending on values of the model parameters are collected in
Tables I and II.

VI. FIRST PASSAGE OF A MACROSCOPIC SYSTEM
WITH A RANDOM NUMBER OF RELAXATION

CONTRIBUTIONS

In Sec. V the simplest case of a system with a fixed num-
ber of independent relaxation contributions has been dis-
cussed. As a result, the KWW response, characterized by the
short-time power law only, has been obtained. It is natural to
expect, however, that in a complex system the number of
objects directly engaged in a relaxation process is random
and that the random number of contributions may have an
impact on the relaxation pattern. Hence, in this section, we
discuss the first passage of a macroscopic system with a ran-
dom number of relaxation contributions. From a mathemati-
cal point of view, the number of contributions may be deter-

mined either directly, given an explicit distribution of �N,
e.g., Poisson, geometric, negative-binomial, etc., or indi-
rectly, given a stochastic scenario determining the distribu-
tion of �N. As has been recently shown �12,13,25� both ap-
proaches may yield the long-time power-law property of the
relaxation response f�t�.

If one considers a system in which the random number �N
of relaxation contributions to the effective relaxation rate
�20� is determined by the negative-binomial law �35�, hence
introducing aggregation of the considered contributions �for
details see �25,36��, then the following form of the relaxation
function �18� is obtained:

�B�t� =
1

�1 +
1

c
�At�a�c

, �27�

where A
0, 0�a�1 and c
0 are related to the Lévy-
stable and negative-binomial laws, respectively. The above
function is equal to the tail �1−FB�t�� of the well-known �35�
Burr distribution FB�t�, in this case the system’s transition
time distribution. The Burr formula �27� is a generalization
of relaxation functions proposed to describe the relaxation
phenomena in which the long-time Nutting law �11,37� has

FIG. 2. Frequency-domain comparison of the HN and Burr relaxation functions with the same power-law characteristics. Parameters a,
b, and c are chosen in such a way that the long-time �i.e., low-frequency� power-law exponent �−m−1� is equal to 0.5 and the short-time
�i.e., high-frequency� exponent �n−1� is increasing from 0.4 �top left� to 0.9 �bottom right�.

WAIT-AND-SWITCH RELAXATION MODEL:… PHYSICAL REVIEW E 75, 021114 �2007�

021114-7



been observed. The response function fB�t� corresponding
Eq. �27� obeys the universal two power-law relation

fB�t� = ��At�a−1 for t → 0,

�At�−ac−1 for t → � ,
�28�

if only c�1/a. Observe that in this approach, the random-
ness in the number of relaxation contributions, reflected by
the parameter c, does not influence the short-time system
evolution but yields the slowing down in the long-time be-
havior. Additionally, as a limiting case �for c→�� we obtain
the KWW relaxation function �KWW�t�.

To determine the distribution of the random number of
relaxation contributions leading to the HN function the
correlated-cluster stochastic scheme �12,13,25� may be used.
Within this scheme, a system consisting of a large fixed num-
ber N of objects, divided into a random number KN of ran-
domly sized clusters, is considered. The size of the ith cluster
is assumed to be equal to the number Ni of interacting enti-
ties in the cluster, and its relaxation behavior is represented
by the relaxation rate �i. In such a system, the cluster sizes,
if represented by i.i.d. random variables N1 ,N2 , . . ., deter-
mine the random number of clusters. Namely, the number KN
of clusters is equal to the smallest index k for which the sum
N1+N2+ ¯ +Nk of k cluster sizes exceeds the system size N.
As a consequence, the distribution of the random number of
clusters can be derived from the distribution of cluster sizes.
If we additionally assume that the relaxation of clusters ex-
hibits collective behavior �2,4�, then the appearance of LN
mesoscopic, randomly sized regions of correlated clusters
can be expected. The size of the jth“supercluster” is assumed
to be equal to the number Mj of interacting clusters in the
region, and its relaxation behavior is represented by the re-
laxation rate � j. Repeating the above arguments, we con-
clude that the sizes of those regions, represented by i.i.d.
random variables M1 ,M2 , . . ., determine the number LN of
mesoscopic regions. It is equal to the smallest index l for
which the sum M1+M2+ ¯ +Ml of l region sizes exceeds
KN, the number of clusters in a system of size N. The relax-
ation rate � j of the jth region, containing Mj clusters, is
defined by the normalized sum of individual relaxation con-
tributions �1 /AN ,�2 /AN , . . . . Thus, the relaxation rate of a
supercluster reads

� j = �
i=1

Mj

�i/AN �29�

and, consequently, the effective rate �̃, representing the re-
laxation behavior of the entire system, consists of the contri-
butions �1 ,�2 , . . . of all LN mesoscopic regions—i.e.,

�̃ = lim
N→�

�
j=1

LN

� j . �30�

The effective relaxation rate �30� can be rewritten in a
form similar to Eq. �20�, where the random number of com-
ponents, determined by the number and sizes of correlated
cluster regions, is given by the following formula

�N = �
j=1

LN

Mj . �31�

The proposed scheme requires dealing with stochastically
independent sequences of random variables Ni, Mj, and �i.
Each sequence has to consist of i.i.d. random variables, the
distributions of which can be either heavy tailed or with a
finite expected value. An appropriate combination of differ-
ent statistical properties of the cluster sizes Ni and their re-
laxation rates �i, and also the correlated region sizes Mj,
leads to the well-known HN, CC, CD, and KWW empirical
responses �for details, see �12,13��. The complete scenario
leading to the HN function �1� in the proposed wait-and-
switch stochastic framework is given in Table III. Let us note
that in contrast to former results, present considerations bring
into light different defect-diffusion origins of the HN power-
law exponents.

VII. CONCLUSIONS

Extensive studies of relaxation processes for a wide range
of materials have made clear that complex systems exhibit
nonexponential behavior characterized well enough by the
HN and KWW functions. However, the justification of these
functions has been provided rather by their applicability as
fitting functions than by theoretical investigations.

In this paper we present a probabilistic, “random-
variable” attempt to modeling the HN and KWW cases of
relaxation. In the proposed model we combine the relaxation
mechanism, based on a diffusion of defects in the system
under consideration, with the wait-and-switch scenario of
random transitions of its elements from their initial excited
states. The basic mathematical tool required in this approach
is the formalism of limit theorems of probability theory,
which provides a rigorous link between the microscopic sta-
tistical properties of real objects forming the system and the
macroscopic world of relaxation phenomena. This link takes
the form of the effective relaxation rate, in general, equal to
a random sum of independent and identically distributed in-
dividual relaxation rates. Such a stochastic structure of the
effective relaxation rate follows from the notion of the relax-
ation function as the probability of the first passage of the
system from its nonequilibrium state. Within this framework
we show how the local characteristics of the medium and the
spatiotemporal jump parameters of the diffusing defects in-
fluence the properties of the individual rates and, in conse-
quence, the relaxation behavior of the entire complex
system.

In the KWW case, the short-time power law of this re-
sponse results from both spatial �reflected by parameters �
and �� and temporal �reflected by ��� characteristics of the
diffusion scheme. As the number of relaxing contributions is
deterministic in this case, the long-time power-law response
is not obtained. In order to find stochastic schemes yielding
also the long-time power-law response, observed in the ma-
jority of dielectric materials, we have to introduce random-
ness in the number of relaxation contributions. Depending on
the distribution of the number of contributions, we derive the
time-domain Burr and the frequency-domain HN functions
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�see Fig. 2�. The corresponding response functions in
both cases exhibit the short- and long-time power-law as-
ymptotics; however, the origins of them are different.

In the framework of the wait-and-switch model, we show
that the first passage survival probability simply equals the
weighted average of an exponentially decaying function.

This relation clarifies the origins of the exponential kernel in
this historically oldest definition of the nonexponential relax-
ation function. It also follows that homogeneous and hetero-
geneous scenarios of relaxation are not determined by the
form of the kernel function but by the stochastic structure of
the effective relaxation rate.
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