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I. INTRODUCTION

The time it takes for a random walker to go from a start-
ing site to a target site, the so called first-passage time �FPT�,
is an especially important quantity that underlies a wide
range of physical processes �1,2�. Indeed, numerous real situ-
ations, such as diffusion limited reactions �3� or animals
searching for food �4�, can be rephrased as first-passage
problems. In all these situations, the FPT is a limiting factor.
As a consequence, it is crucial to determine how this quantity
depends on the parameters of the problem.

Among these parameters, geometrical factors turn out to
be determining. For example, the mean first-passage time
�MFPT� between a starting site and a target site for a two-
dimensional �2D� random walker is infinite if the walk is not
bounded. On the contrary, it becomes finite as soon as the
walk is confined. But how does the MFPT depend on the
confining surface? In fact, the answer to this general question
appears as a difficult task, because explicit determinations of
FPT are most of the time limited to very artificial geometries,
such as 1D and spherically symmetric problems �2�.

However, in most of the real situations, the searcher per-
forms a random walk in more general confining geometries.
This is, for example, the case in biology, where biomolecules
often follow a complicated series of transformations, which
are located at precise parts of the cell. Determining the in-
fluence of the shape of the cell on the FPT actually appears
as a first step in the understanding of the global kinetics of
the process.

This question of determining first-passage properties in
general confined geometries has raised growing attention
�see, for example, �5–15��. Two important results have nota-
bly been obtained. First, in the case of discrete random
walks, an expression for the mean first-passage time �MFPT�
between two nodes of a general network has been found
�16�. However, no quantitative estimation of the MFPT was
derived in this paper. Second, the leading behavior of MFPT
of a continuous Brownian motion at a small absorbing win-
dow of a general reflecting bounded domain has been given
�17,18�. These studies have even been extended to a situation
with a deep potential well, leading to a generalization of the
Kramers formula �19�. In the case when this window is a

small sphere within the domain, the behavior of MFPT has
also been derived �20�. This result is rigorous, but does not
give access to the dependence of the MFPT with the starting
site.

Very recently �21�, we have proposed a different approach
which allowed us to propose accurate estimations of first-
passage times of discrete random walks in confined geom-
etry. Preliminary results concerning a continuous Brownian
motion have also been announced. The main purpose of this
paper is to provide a detailed analysis of this continuous
case, relevant to many real physical situations. In addition,
we extend our previous work in several directions, for both
discrete and continuous cases: the complete distribution of
FPTs is obtained; extra quantities, as conditional MFPT in
the case of several targets or mean exit times by a small
aperture of a general reflecting bounded domain, are derived.

The paper is structured as follows. In Sec. II, we first
present the computation method of FPTs in the case of ran-
dom walks on discrete lattices. This study includes the ob-
tention of the MFPT, a comprehensive derivation of the ex-
pression of the higher-order moments as well as the complete
distribution of the FPT, whose physical meaning is exten-
sively analyzed. The situation with two competitive targets is
also studied, and we compute MFPT, splitting probabilities,
and conditional MFPT.

In Sec. III, we extend all these results to the case of a
continuous Brownian motion, and detail the specific difficul-
ties encountered in this case.

The explicit results obtained in Secs. II and III involve
pseudo-Green functions of a Laplace type operator, with
given boundary conditions. Appendix A is devoted to the
evaluation of these pseudo-Green functions. For several do-
main shapes, an exact formula can be obtained, which gives,
for the quantities computed in the paper, exact explicit ex-
pressions in the discrete case, or accurate approximations in
the continuous case. For other domain shapes, basic approxi-
mations are proposed.

These results are briefly summarized in Sec. IV, with a
discussion of the important parameters to take into account
and of the qualitative behavior of the MFPT.
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II. RANDOM WALKS ON DISCRETE LATTICES

A. Mean first-passage time

Let us consider a point performing a random walk on an
arbitrary bounded lattice with reflecting boundaries. We want
to compute the MFPT �T� of the random walker at target site
T, starting from a site S at time 0. We summarized this com-
putation in a previous paper �21�.

However, since it is the basis of all the developments
explained in this paper, we found it useful to give it here in
full detail, with the addition of several necessary precisions.

Our method is based on a formula given by Kac �22�,
concerning irreducible graphs, such that at any point can be
reached from any other point. An irreducible graph admits a
unique stationary probability ��r� to be at site r �physically,
this is the probability for a particle which has been in the
domain for a long time to be at site r. If the transition prob-
abilities are symmetric this stationary probability is uni-
form.� We consider random walks starting from an arbitrary
point of a subset � of the lattice, chosen with probability
��r� /����, where ����=�r����r�. Then, Kac’s formula as-
serts that the mean number of steps needed to return to any
point of �, i.e., the mean first-return time �MFRT� to � is
1 /����. A simple proof of this result and of its extension to
higher-order moments, which will be used later on, is given
in Appendix D.

Kac’s formula can be used to derive the MFPT �T� by
slightly modifying the original lattice �see Fig. 1�: we sup-
press all the original links starting from the target site T, and
add a new one-way link from T to the starting point S,
whereas all other links are unchanged. In this new lattice,
any trajectory starting from T goes to S at its first step, so
that the MFRT to T is just the MFPT from S to T in the
former lattice, plus 1.

An exact, formal expression for the MFPT can thus be
derived for the most general finite graph. Consider N points
at positions r1 , . . . ,rN in an arbitrary space. The transition

rates from point j to point i are denoted wij. If we assume
that one transition takes place during each time unit we have

�
i

wij = 1. �1�

Let rT be the position of the target site, rS be the position of
the starting site, and ��r� be the stationary probability of the
modified lattice. We write ��rT�=J. According to Kac’s for-
mula, the MFRT to T on the modified graph is 1 /J, so that
the MFPT from S to T in the original graph is �T�=1/J−1.
All we need to find is the stationary probability �. It satisfies
the following equation:

��ri� = �
j

wij��r j� + J�iS − JwiT, �2�

where � is the Kronecker symbol. To solve this equation, we
define the auxiliary function ��, such that ���ri�=��ri�
−J�iT. It satisfies

���ri� = �
j

wij���r j� + J�iS − J�iT �3�

so that �� has the following expression:

���ri� = �1 − J��0�ri� + JH�ri�rS� − JH�ri�rT� , �4�

where �0 is the stationary probability of the original lattice,
and H is the discrete pseudo-Green function �23�, which sat-
isfies the two following equations:

H�ri�r j� = �
k

wikH�rk�r j� + �ij −
1

N
, �5�

�
i

H�ri�r j� 	 H̄ , �6�

where H̄ is independent of j. Moreover, if wij is symmetric,
which will be the case in all the practical cases considered, H
will also be symmetric in its arguments. The pseudo-Green
function can be seen as a generalization of the usual infinite-
space Green function to a bounded domain. Indeed, Eq. �5�
without the −1/N term corresponds to the definition of the
infinite-space Green function, which would not have any so-
lution for a finite domain with reflecting boundary condi-
tions: it is necessary in this case to compensate the source
term �ij, and the simplest way to do so is to add the −1/N
term. The properties of this function are further discussed in
Appendix F. We can thus see that the solution �4� satisfies
Eq. �3�, and ensures that � is normalized.

The condition ���rT�=0 allows us to compute J and to
deduce the following exact expression:

�T� =
1

�0�rT�
�H�rT�rT� − H�rT�rS�� . �7�

If wij is symmetric, and we will consider that this is the case
in the rest of the paper, we simply have �0=1/N, and we get
the simpler formula:

�T� = N�H�rT�rT� − H�rT�rS�� . �8�

Target site

Starting site

FIG. 1. Modifications of the original lattice: arrows denote one-
way links.

CONDAMIN, BÉNICHOU, AND MOREAU PHYSICAL REVIEW E 75, 021111 �2007�

021111-2



This result may be obtained by an alternative and comple-
mentary approach. We consider that in the domain there is a
constant flux J of particles per time unit entering the domain
at the source point S. The particles are absorbed when they
reach the target, and, since all particles are eventually ab-
sorbed, we have an outcoming flux J at the target. The aver-
age number of particles in the domain satisfies N=J�T�,
which will allow the determination of �T�. Indeed, the aver-
age density of particles ��r� satisfies the following equation:

��ri� = �
j

wij��r j� + J�iS − J�iT. �9�

The three terms of the equation correspond, respectively, to
the diffusion of particles, the incoming flux in S, and the
outgoing flux in T. This is exactly the same equation as Eq.
�3�, with the same condition ��rT�=0, and thus admits a
similar solution, with the difference that the total number of
particles in the domain is not fixed a priori. The solution is
thus

��ri� = �0 + JH�ri�rS� − JH�ri�rT� �10�

which gives, with the condition ��rT�=0 and the relation
J�T�=N=N�0, the same result as before for the mean first-
passage time, namely Eq. �8�. This formula is equivalent to
the one given in �16�, but is expressed in terms of pseudo-
Green functions. One advantage of the present method is that
it may be easily extended to more complex situations, as it
will be shown. Another advantage is that, although the
pseudo-Green function H is not known in general, it is well
suited for approximations when the graph is a bounded regu-
lar lattice. The simplest one in this case is to approximate the
pseudo-Green function by its infinite-space limit, the “usual”
Green function: H�r �r��
G0�r−r��, which satisfies

G0�r� =
1

�
�

r��N�r�

G0�r�� + �0r, �11�

where N�r� is the ensemble of neighbors of r, and � is the
coordination number of the lattice. The value of G0�0� and
the asymptotic behavior of G0 are well known �24�. For in-
stance, for the 3D cubic lattice, we have G0�0�
=1.516 386. . . and G0�r�
3/ �2�r� for r large. For the 2D
square lattice, we have G0�0�−G0�r�
�2/��ln�r�
+ �3/��ln 2+2� /�, where � is the Euler gamma constant,
and �3/��ln 2+2� /�=1.029 374. . .. These estimations of G0

are used for all the practical applications in the following. In
some cases �especially in three dimensions when the target is
far from any boundary�, approximating H by G0 will give
accurate results �see Fig. 2�. The small correction is due to
boundary effects, which are further discussed in Sec. IV. In
other cases it will only give an order of magnitude. In the
case of a rectangular or parallepipedic domain an exact ex-
pression of H is known �26�, and the FPT from any point to
any other point in the domain can be computed exactly. This
exact result and simple approximations, which can be used in
other cases, are given in Appendix A.

B. Application: Absorbing opening in a reflecting boundary

Another situation that may arise and can easily be dealt
with is the case of an absorbing opening in a �locally� flat
reflecting boundary of a bounded domain: we are interested
in the mean time a particle takes to exit from the domain, if
it may only exit by this opening �see Fig. 3�. We only con-
sider regular lattices of dimension d=2 or 3. We can define a
target site, just behind the flat boundary. The problem here is
that the pseudo-Green function for the domain plus the target
site is difficult to compute, whereas the pseudo-Green func-
tion near a flat boundary can be easily evaluated, and is even
known exactly if the domain is rectangular or parallepipedic.
To solve this problem, we will call the site next to the target
the approach site A. We indeed have to go through this ap-
proach site in order to reach the target site. We will call �T�ST

the average time to reach the target site, starting from the
source; �T�SA is the average time to reach the approach site,
still starting from the source; �T�AA is the average time to
return to the approach site, assuming the random walk does
not go to the target site after exiting the approach site; �T�AT

is the average time to reach the target site, starting from the
approach site. We have the following equations:

FIG. 2. �Color online� Three dimensions: Influence of the dis-
tance between the source and the target. Red diamonds: simula-
tions; blue dashed line: evaluation of the FPT with H=G0. The
domain is a cube of side 41, the target being in the middle of it. All
the simulation points correspond to different positions of the source.

FIG. 3. Opening in a flat reflecting boundary
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�T�ST = �T�SA + �T�AT, �12�

since the random walk has to go through the approach site,
and

�T�AT =
2d − 1

2d
��T�AA + �T�AT� +

1

2d
. �13�

Once the random walker is at the approach site, it may either
go directly to the target site �probability 1

2d , where d is the
dimension of the lattice� or go another way, in which case it
has to go back to the approach site before finding the target
site. Thus

�T�AT = �2d − 1��T�AA + 1. �14�

To compute �T�AA, we have to remember that, if the bound-
ary was fully reflecting, we would have the average return
time: it is given by Kac’s formula, and is N. We then have,
with arguments similar to Eq. �13�:

N =
2d − 1

2d
�T�AA +

1

2d
. �15�

We then have

�2d − 1��T�AA = 2dN − 1 �16�

and thus

�T�AT = 2dN . �17�

As for the average time needed to reach the approach site,
starting from the starting site, it is exactly the same as in the
case where the boundary is totally reflecting:

�T�SA = N�H�rA�rA� − H�rA�rS�� , �18�

and finally

�T�ST = N�2d + H�rA�rA� − H�rA�rS�� , �19�

To evaluate H, we have to take into account the effect of
the boundary. Since the boundary is flat, the simplest way to
check the boundary condition is to write H�r �r��
G0�r
−r��+G0�r−s�r���, where s�r� is the point symmetrical to r
with respect to the boundary. We will use this approximation
in the following �cf. Appendix A for a discussion of this
approximation�. We note that G0�1�=G0�0�−1, the Green
function for the sites surrounding the origin, and notice that
T is symmetrical to A with respect to the boundary. The
mean exit time is then

�T�ST 
 N�2d + G0�0� + G0�1� − G0�rS − rA� − G0�rS − rT�� .

�20�

C. Higher-order moments

Moreover, we are able to evaluate the higher-order mo-
ments and distribution of the FPT in the 3D case, provided
the domain is not too elongated, i.e., the typical distance
between a point and a boundary is N1/3. The computation of
the moments is detailed in Appendix B 1. However, we can-
not compute the higher-order moments and distribution of

the FPT in two dimensions, or with a much too elongated 3D
domain. The computational reasons behind this are explained
in Appendix B 1, but we will also explain it later from a
physical point of view. We obtain the following result for
higher-order moments:

�Tn�i = n!Nn��H�rT�rT� − H�rT�ri���H�rT�rT� − H̄�n−1

+ O�nN−2/3�� , �21�

where H̄ is defined by Eq. �6�.
To check these results, we computed the moments with a

numerical simulation �cf. Appendix E for the simulation
method�, and found �see Fig. 4� a good agreement with the
theoretical estimation �21�, where H is approximated by G0,

and H̄ is approximated by its value for a spherical domain,

computed in the continuous limit, H̄= �18/5�
��3/ �4���2/3N−1/3 �cf. Eq. �A10� for the computation�.

The study of the distribution in the limit of large N will
enable us to go even further. Indeed, if we neglect the cor-
rections in nN−2/3 in Eq. �21�, the moments of T /N are those
of the following probability density p:

p�t� = 
H�rT�rT� − H�rT�rS�

�H�rT�rT� − H̄�2 �exp
−
t

H�rT�rT� − H̄
�

+
H�rT�rS� − H̄

H�rT�rT� − H̄
��t� . �22�

The large-N limit of this probability density is rigorous
�since the corrections to the moments vanish�. In this limit,

H�rT �rT� tends to G0�0�; H̄ tends to 0. Thus the probability
density of T /N tends to the following probability density, the
relative position of i and T being fixed:

FIG. 4. �Color online� Three dimensions: Relative difference
between the simulations and the theoretical prevision �21�. The do-
main is a cube of side 51 centered on the target at �0,0,0� and the
source at �2,2,1�. The order of magnitude of the relative difference
is indeed nN−2/3.
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p�t� = 
G0�0� − G0�rT − rS�
G0

2�0�
�exp
−

t

G0�0��
+

G0�rT − ri�
G0�0�

��t� . �23�

These results have been confronted to numerical simulations
�Fig. 5�. We computed the exact distribution for several do-
main sizes, and may notice that the curve divides in two at
short times. This is due to the fact that, at short times, the
parity of the step is important: as long as the walk does not
touch the boundary, the distance between the starting point
and the walker has the same parity as the time elapsed. The
time needed for the two curves to collapse into one shows
very well the time needed to erase the memory of the starting
position. The curves before this time correspond to the Dirac
part of the probability density �22�; however, we can see that,
once the two curves have collapsed, the resulting curves fit
very well the theoretical prediction �22�, which is indeed
more accurate than the limit probability density �23�.

To analyze the physical meaning of this result, we may
first notice that, if the probability density �22� is averaged on
the starting point, the Dirac part of the density vanishes, and
we simply have an exponential distribution of the first-
passage time. This property sheds a different light on the
quasichemical approximation �18�, which assumes that if a
particle starts randomly in a volume, and may only exit
through a small hole, it has a constant probability to exit at
each time step. This approximation leads to an exponential

distribution of the exit times. If we consider that the target
site is the exit point for a particle, then the exit time is ex-
actly the FPT. Thus we have an evaluation of the accuracy of
the quasichemical approximation �or at least of its moments�
in this case.

The interpretation of the probability density �22� is the
following: the first part of the density, which decays expo-
nentially, corresponds to the decay of the probability distri-
bution of the FPT if the particle starts randomly in the set of
points. The second part corresponds to a particle reaching the
target in a time negligible with respect to N. Here we must
remember that a free 3D walk is transient: the particle may
never reach the target in infinite space. Thus one can inter-
pret the Dirac term as the probability to reach the target
without touching the boundaries. For N large enough it is
equivalent to the probability to reach the target at all in infi-
nite space. And, for this kind of trajectory, the probability
distribution of the FPT does not depend of N, and thus the
probability density of T /N will tend to ��0� for large N. On
the other hand, if the particle does reach the boundary �it
happens after a typical time N2/3, since the boundaries are at
a typical distance N1/3, and the typical time needed to cross a
distance r is r2�, its position will become random in a time
negligible with respect to N, and thus the probability density
of T /N will be the same as if the particle started in a random
position in this latter case. This argument fails for an elon-
gated domain, which can be seen as a physical reason why
we are not able to compute the FPT distribution in this case.
We can check that the probability to reach the origin for a

random walk in infinite space is indeed
G0�r�

G0�0� �24,25�.
Here we can see an important physical difference between

the 2D and 3D cases: in two dimensions the random walk is
recurrent. We can thus conclude that the large-N limit prob-
ability density of T /N will be a simple delta function, since,
in the limit of infinite space, the particle almost certainly
reaches the target in a finite time, even if the MFPT is infi-
nite! However, the probability distribution for finite N will be
much more difficult to compute: indeed, there will also be
two regimes, of low T /N, when the particles have not
touched the boundary and thus the distribution is the same as
in free space and the regime of high T /N, where the distri-
bution decays exponentially �since the system has lost the
memory of its starting point�. The transition between the two
regimes happens at a finite T /N �since the time needed to
reach the boundaries is of order N�. Thus the low T /N re-
gime will have a much stronger influence on the values of
the moments than on the 3D case, which may explain why
the computation of the moments and distribution is much
more delicate in this case. We can see in Fig. 6 typical prob-
ability distributions for different domain sizes. One can very
well see that the transition between the two regimes takes
place at a finite T /N no matter the size of the domain, and
that the long-time regime indeed corresponds to an exponen-
tial decay.

D. Case of two targets

We can now assume that the lattice contains not one but
two target points T1 and T2. The problems that may arise in

FIG. 5. �Color online� Simulation of the probability distribution
of the FPT, rescaled as a probability density, with different domain
sizes. In both cases, the target is in the middle of a cube at position
�0,0,0� and the source is in �1,2,2�. We plot the estimated density
�22� vs numerical simulations for different domain sizes. The dark
blue �simulation� and cyan �estimated density� curves correspond to
a cube of side 11 �N=1331�; the red �simulation� and orange �esti-
mated density� correspond to a cube of side 21 �N=9261�; the green
dashed curve corresponds to the high-N limit �23� of the probability
density. For both domain sizes, the simulated distribution splits into
two parts for short times and cannot be distinguished from the the-
oretical density afterwards. The labels a and b correspond to domain
sizes of 11 and 21, and the high-N limit is labeled c.
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this case are the mean time needed to reach one of the two
targets, which we will call mean absorption time and note
�T�, and the splitting probabilities, i.e., the probabilities P1

to reach T1 before T2 and P2 to reach T2 before T1. This
model corresponds to the case of a diffusing particle which
may be absorbed either by the target T1 or the target T2. We
can also, even if it will be less straightforward, study the
conditional mean absorption time, i.e., the mean absorption
time �T1� �respectively, �T2��, for particles which are ab-
sorbed by the target T1 �respectively, T2�. This is relevant in
many chemical applications �3�, and may be useful in biol-
ogy to determine to which extent cellular variability may be
controlled by diffusion �27�.

To compute these quantities, it is more convenient to use
the alternative approach presented in Sec. II A �after Eq. �8��:
we consider a constant incoming flux of particles J, and we
have an average outcoming flux of particles J1 in T1, and J2
in T2. Since all particles are eventually absorbed, J1+J2=J.
The probability to reach the target i is then Pi=Ji /J. The
total number of particles N in the domain satisfies N=J�T�,
and the mean density of particles satisfies the following
equation:

��ri� = �
j

wij��r j� + J�iS − J1�iT1
− J2�iT2

. �24�

We then get

��ri� = �0 + JH�ri�rS� − J1H�ri�rT1
� − J2H�ri�rT2

� , �25�

then, writing ��rT1
�=��rT2

�=0, we get the following set of
equations:

��0 + JH1s − JP1H01 − JP2H12= 0

�0 + JH2s − JP2H02 − JP1H12= 0

P1 + P2 = 1,
� �26�

where H12=H�rT1
�rT2

� and, for i=1 or 2, His=H�rTi
�rS�,

H0i=H�rTi
�rTi

�. From this set of equations we can deduce P1,
P2 and �0=J�T� /N. We thus get exact expressions for the
mean absorption time and the splitting probabilities, respec-
tively:

�T� = N
�H01 − H1s��H02 − H2s� − �H12 − H2s��H12 − H1s�

H01 + H02 − 2H12
,

�27�

� P1 =
H1s + H02 − H2s − H12

H01 + H02 − 2H12

P2 =
H2s + H01 − H1s − H12

H01 + H02 − 2H12
.� �28�

This result can be extended if necessary to more than two
targets; if there are n targets, we have n+1 unknown vari-
ables ��0 and the n probabilities Pk�, with n+1 equations,
namely �Pk=1 and the n equations ��rTk

�=0, which is
enough to determine all the unknown variables. However,
this may quickly become computationally expensive for a
large number of targets.

We compared the two-target results to simulations �Fig.
7�. Note that if we use the exact value for H, which we can
compute for a cube �cf. Appendix A�, it is indeed impossible
to see a difference between the theoretical predictions and
the simulations.

It is interesting to underline an important qualitative dif-
ference between the 2D and 3D cases. In three dimensions,
the furthest target always has a significant probability to be
reached first, since the most important terms in the probabili-
ties Pi are H01 and H02. In two dimensions, if a target is
much closer to the source than the other, it will almost cer-
tainly be reached first, since H�ri �r j� scales as ln�ri−r j�. Ac-
tually, the probability for the furthest target to be reached
first decreases logarithmically. These properties are related to
the transient character of the infinite 3D walk, and the recur-
rent character of the 2D walk: indeed, an infinite 2D walk
explores all the sites of the lattice, whereas an infinite 3D
walk does not; we may thus consider that the 2D walk will
explore most of the sites surrounding the source before going
much further, whereas the 3D walk will not, which qualita-
tively explains the difference of behavior.

We can also determine the conditional absorption times
�T1� and �T2�. For this, we will compute Nk, the average
number of particles in the domain which will eventually be
absorbed by Tk. We have Nk=Jk�Tk�, which will allow us to
compute �Tk�. To compute Nk, we can simply notice that the
density of particles that will eventually be absorbed by Tk at
the point i is simply ��ri�Pk�ri�, where Pk�ri� is the probabil-
ity to be absorbed by Tk if the walk starts from i. We thus
have

FIG. 6. �Color online� Simulation of the distribution of the FPT
in the 2D case, rescaled as a probability density. The domains are
squares of different size; the target is in the middle of the squares at
position �0,0� and the source is in �2,3�. The side of the squares are
21 �red curve �a��, 41 �orange curve �b��, 81 �yellow curve �c��, and
161 �green curve �d��. The semilogarithmic scale shows the long-
time exponential decay. The splitting of the curves for short times is
due to parity effects.
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Nk = �
i

��ri�Pk�ri� . �29�

This equation is exact but may prove quite difficult to com-
pute, especially in two dimensions if H is not known exactly.
However, in three dimensions, we may use the same kind of
approximations as for the computation of the high-order mo-
ments of the FPT �with the same limitations, i.e., the 3D
domain should not be too elongated� to estimate the condi-
tional probabilities. If we note HiS=H�ri �rs� and Hik

=H�ri �rTk
�, we have

N1 = �
i

�Hi1 − Hi2 + H02 − H12���0 + JHiS − J1Hi1 − J2Hi2�
H01 + H02 − 2H12

.

�30�

We use the properties �iH�ri �r j�=NH̄ �cf. Eq. �6�� and
�iH�ri �r j�H�ri �rk�=O�N1/3� �cf. Eq. �B12�� to write

N1 = N
�H02 − H12��0 + O�N−2/3�

H01 + H02 − 2H12
. �31�

And we can conclude

�T1� =
1

P1

H02 − H12 + O�N−2/3�
H01 + H02 − 2H12

�T� . �32�

The expression for �T2� is of course equivalent. This expres-
sion is not exact, but is very accurate: the relative difference
between the numerical simulations �see Fig. 8� and the ex-
pression �32� is of about 0.01%, for a domain of size N
=513.

Finally, we have a wide range of quantities which can be
computed exactly, or with very good accuracy, provided we
know the pseudo-Green function H. Unfortunately, there are
only a few cases in which it can be computed exactly. Oth-
erwise, we will have to use approximations, which, of
course, give less accurate results. Both exact results and ap-
proximations are detailed in Appendix A.

III. BROWNIAN MOTION ON CONTINUOUS MEDIA

We may consider a similar problem in a continuous me-
dium �see Fig. 9�: if we have a Brownian motion whose
diffusion coefficient is D, how much time does it take to
reach a target? A difference with the discrete case is that the
target has a finite size a which is an important parameter of
the problem. We will consider a spherical target T, of radius
a, centered in rT. The Brownian motion starts from the start-
ing point S �its position is denoted by rS�. It is restricted to a
domain D of volume V �for 2D domains we will call the area
A�, and we denote D* the domain deprived of the target. We
will derive the same quantities as in the discrete case, but the
results are this time only approximate; we can thus add some

FIG. 7. �Color online� Three dimensions: two-target simula-
tions. Simulations �red crosses� vs theory with the approximation
H=G0 �solid line�. One target is fixed in �−5,0 ,0�; the source is
fixed in �5,0,0�; the other target is at �x ,3 ,0�. The domain is a cube
of side 51, the middle is the point �0,0,0�.

FIG. 8. �Color online� Three dimensions: two-target simula-
tions. The conditions are identical to those of Fig. 7; we show the
conditional absorption times �T1� �respectively, �T2��. The blue
crosses �respectively, red pluses� show the results of the numerical
simulations, the cyan �a� �respectively, orange �b�� dashed line
shows the theoretical expression �32� with H=G0, the green �c�
�respectively, brown �d�� solid line shows the theoretical expression
with the exact value of H �Eq. �A3��.
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refinements to the method, in order to increase the accuracy.
These refinements are given in Appendix C, and are used in
practical computations of the MFPT in Appendix A when the
target is close to a boundary. It should be emphasized that, in
the cases where the pseudo-Green function is known, such as
the case of a spherical domain, the method gives accurate
explicit expressions for all the MFPT and the other quantities
studied here.

A. Mean first-passage time

The mean first-passage time �MFPT� �T�rs�� at the target
satisfies the following equations �28�:

D��T�rs�� = − 1 if rs � D*, �33�

�T�rs�� = 0 if rs � �abs, �34�

�n�T�rs�� = 0 if rs � �refl, �35�

where �abs �respectively, �refl� stands for the surface of the
absorbing target sphere �respectively, the reflecting confining
surface� and �n denotes the normal derivative. The bound-
aries have to be regular enough �twice continuously differ-
entiable is sufficient, but not necessary� for these definitions
to make sense.

To solve this problem, we introduce the following Green
function G�r �r�� defined by

− �G�r�r�� = ��r − r�� if r � D*, �36�

G�r�r�� = 0 if r � �abs, �37�

�nG�r�r�� = 0 if r � �refl. �38�

Note that this Green function may also be seen as the sta-
tionary density of particles if there is a unit incoming flux of
particles in r�, and the diffusion coefficient is set to 1. It
should not be confused with the free Green function G0, and
is rather the continuous equivalent of the average density of
particles � defined in Eq. �9� with J=1. It depends implicitly
on the target position through Eq. �37�.

Using Green’s formula,

�
D*

��T�r���G�r�r�� − G�r�r����T�r���ddr

= �
�abs+�refl

��T�r���nG�r�r�� − G�r�r���n�T�r���dd−1r ,

�39�

we easily find that the MFPT is given by

�T�rS�� =
1

D
�

D*
G�r�rS�ddr . �40�

To approximate G�r �rS� we can use a direct transposition
to the continuous case of Eq. �10�:

G�r�rS� 
 �0�rS� + H�r�rS� − H�r�rT� , �41�

where �0 is defined by G�r �rS�
0 if r��abs and H�r �r�� is
the pseudo-Green function �23�, which satisfies

− �H�r�r�� = ��r − r�� −
1

V
if r � D , �42�

�nH�r�r�� = 0 if r � �refl, �43�

H�r�r�� = H�r��r� , �44�

�
D

H�r��r�ddr� 	 VH̄ , �45�

H̄ being independent of r. This latter equation can be easily
deduced from the three previous ones.

The choice �41� of G�r �r�� is the simplest one which
satisfies formally Eqs. �36� and �38�. However, Eq. �37� can
only be approximately satisfied. To take into account this
latter equation, we will approximate, on the target sphere,
H�r �rS� by H�rT �rS� and H�r �rT� by G0�r−rT�+H*�rT �rT�,
where G0 is the well-known free Green function
��2��−1 ln�r� in two dimensions, 1 / �4�r� in three dimen-
sions�, and H* is defined by

H*�r�r�� 	 H�r�r�� − G0�r − r�� . �46�

Note that H*�r �rT� has no singularity in rT. Thus on the
surface of the target sphere we have

�0�rS� + H�rT�rS� − G0�a� − H*�rT�rT� = 0, �47�

where G0�a� is the value of G0�r� when �r�=a. We can now
compute

�T�rS�� =
1

D
�

D*
��0�rS� + H�r�rS� − H�r�rT��ddr . �48�

Since the target is small compared to the domain, the integral
over D* is almost equal to the integral over D, the relative
order of magnitude of the correction being a3 /V in three
dimensions and a2 /A in two dimensions. Using the property
�45�, we can then compute the integral, and find the result:

FIG. 9. �Color online� Continuous problem.
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�T�rS�� =
V�0�rS�

D
=

V

D
�G0�a� + H*�rT�rT� − H�rT�rS��

+ O
adG0�a�
D

� . �49�

This equation is very close to �8�, with the correspondence
H�r �r�→G0�a�+H*�r �r�, but one should pay attention to the
fact that this is only an approximation! One may expect de-
viations from this expression when the variations of H�r �rS�
or H*�r �rT� will not be negligible over the target sphere; it
corresponds to the cases when the target is either near the
source or near a boundary. However, if we compare the ex-
pression obtained with simulations �see Fig. 10� when the
target is near the source, we see no such deviation; this is
justified in Appendix C. On the other hand, there is indeed a
deviation near the boundaries. This deviation scales as a /d in
two dimensions, or a /d2 in three dimensions, where d is the
distance between the target and the boundary. It is possible to
compute a correction, which is given in Appendix C, and
used in practical applications in Appendix A.

The exact value of H is known analytically for disks and
spheres �23�; we will detail this in Appendix A. This is why
we will test the expressions we obtain in such geometries. If
no exact expression is known, the simplest approximation of
H is simply H=G0. More accurate approximations are also
discussed in Appendix A. We give the estimations of �T�rS��
with the basic approximation, to show the order of magni-
tude:

�T�rS�� =
V

4�D

1

a
−

1

R
� �three dimensions� , �50�

�T�rS�� =
A

2�D
ln

R

a
�two dimensions� , �51�

R being the source-target distance. This already improves the
�exact� asymptotic results of Pinsky �20�, which only give
the leading term in a.

B. Higher-order moments

The higher-order moments and density of the FPT in the
three-dimensional case can also be computed. The computa-
tion is detailed in Appendix B 2; the results are quite similar
to the results obtained in the discrete case, and the physical
interpretation is essentially the same. The results obtained
are the following:

�Tn�rS�� =
n!Vn

Dn ��G0�a� + H*�rT�rT� − H�rT�rS���G0�a�

+ H*�rT�rT� − H̄�n−1 + O�nV−2/3a2−n�� . �52�

We may also deduce from this information about the prob-
ability density of the absorption time p�t�: If we drop the
term O�nV−2/3a2−n�, we have

p�t� =
D

V

G0�a� + H*�rT�rT� − H�rT�rS�

�G0�a� + H*�rT�rT� − H̄�2

�exp
 − Dt

V�G0�a� + H*�rT�rT� − H̄�
�

+
H�rT�rS� − H̄

G0�a� + H*�rT�rT� − H̄
��t� . �53�

In the limit a→0, with the position of rS fixed, the H terms
are constant since they only depend on the shape of the do-
main, and G0�a� tends towards infinity. The probability den-
sity then simply becomes exponential:

p�t� =
4�aD

V
exp
−

4�aDt

V
� . �54�

In the limit a→0, with the quantity R /a fixed, H�rS �rT�
�G0�R�, and the probability density becomes

p�t� =
4�Da

V

1 −

a

R
�exp
−

4�aDt

V
� +

a

R
��t� . �55�

We did not test these results with a numerical simulation,
since the continuous simulation method �see Appendix E� is
not adapted to the computation of the FPT density, and
would require a large computation time to give accurate re-
sults. Furthermore, the approximations made �cf. Appendix
B� are the same as on the discrete case, and the discrete
results have been successfully compared to an exact numeri-
cal simulation �cf. Fig. 5�.

C. Case of two targets

For the case of two targets, we will compute the same
quantities as in the discrete case; however, we may notice
that the radius a1 and a2 of the two targets may differ, which
adds another parameter to the problem. With two targets, we
will use the same Green function as before, but �abs=�1
+�2 will be the reunion of the surfaces of the two absorbing
target spheres. The mean absorption time �T�rS�� satisfies
Eq. �40�; the splitting probability P1�rS� satisfies the follow-
ing equations �1�:

FIG. 10. �Color online� Brownian motion on a 2D disk of radius
25 centered on �0,0�; the source is in �0,1� and the target of radius 1
is on �x ,0�. Red crosses: simulations; black solid line: estimation
�49� with the exact function H for a sphere given by Eq. �A6�.
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�P1�r� = 0, �56�

P1�r� = 1 if r � �1, �57�

P1�r� = 0 if r � �2, �58�

�nP1�r� = 0 if r � �refl. �59�

Using Green’s formula, we get

P1�rS� = − �
�1

�nG�r�rS�dr . �60�

The expression for P2 is of course similar. Note that the
normal derivative is oriented towards the inside of the target.
A simple approximation of G, equivalent to the discrete Eq.
�25�, is

G�r�rS� = �0�rS� + H�r�rS� − P1�rS�H�r�rT1
� − P2�rS�H�r�rT2

� .

�61�

This expression satisfies Eqs. �36�, �38�, and �60�, and �0, P1,
and P2 are set in order to satisfy Eq. �37� approximately. We
use the same approximations as in the one-target case, which
gives the following set of equations:

��0�rS� + H1s − P1H01 − P2H12 = 0

�0�rS� + H2s − P2H02 − P1H12 = 0

P1 + P2 = 1,
� �62�

where H12=H�rT1
�rT2

� and, for i=1 or 2, His=H�rTi
�rS�,

H0i=G0�ai�+H*�rTi
�rTi

�. These equations are exactly identi-
cal to the discrete equations, only the meaning of the H0i
changes. We thus can deduce, using the same relation be-
tween �0 and �T� as in Eq. �49�,

�T�rS�� =
V

D

�H01 − H1s��H02 − H2s� − �H12 − H2s��H12 − H1s�
H01 + H02 − 2H12

,

�63�

� P1 =
H1s + H02 − H2s − H12

H01 + H02 − 2H12

P2 =
H2s + H01 − H1s − H12

H01 + H02 − 2H12
.� �64�

We show in Figs. 11 and 12 the results of the numerical
simulations. We can see that they are accurate, with a small
correction �the relative correction scales as �a /d�ln�d /a� in
two dimensions or a2 /d2 in three dimensions, d being the
distance between the two targets� when the two targets are
close �an explicit correction is given in Appendix C�, and
when one target is near a boundary �exactly as in the one-
target case�.

The curves themselves deserve a few qualitative remarks.
Unsurprisingly, the splitting probability P2 is maximal when
T2 is the closest to the source. When the two targets have
different sizes, an interesting phenomenon appears �Fig. 12�:
the probability to hit the largest target �T2� has a second
maximum when it is close to the other target. One can un-

derstand this by a scaling argument. If the two targets are far
away, P1 will be about a1 / �a1+a2�. If the two targets touch
one another, and a1	a2, then the target T1 covers a surface
�a1

2 of the target T2. It can thus be expected that the prob-
ability P1 will scale as a1

2 /a2
2, and thus be much lower than if

the two targets were far away. These arguments are for the
3D case, but the qualitative behavior would be the same in
the 2D case. However, the behavior of the splitting probabili-
ties when one target is much further than the other from the
source will be different in two dimensions and three dimen-
sions, for the same reasons as in the discrete case. In the
figures the domain is not large enough to make the difference
obvious. The mean absorption time has a similar qualitative
behavior in both cases: an unsurprising minimum when the
moving target is close to the source, maxima when the mov-
ing target is near a boundary, due to boundary effects, and a
maximum when the two targets are close, which deserves a
few more comments. This could indeed be predicted directly
from Eq. �63�, but, physically, this comes from the fact that,
if the two targets are close, a particle undergoing a Brownian
motion, which reaches one target, often would have reached
the other shortly afterwards in a single target situation. Thus
the mean time gained, compared to the single target situa-

FIG. 11. �Color online� Brownian motion on a 2D disk of radius
25 centered on �0,0�; D=1; the source is in �−5,2� and the two
targets of radius 1 are on �5,2� �T1� and �x ,0� �T2�. Red crosses:
simulations; black solid line: estimations �63� and �64� with the
exact function H for a disk �A6�.
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tion, will be much lower when the two targets are close. To
analyze the values themselves, one should keep in mind that
the times are normalized by V /D; the order of magnitude of
the normalized times will then be G0�a�−G0�R�, which ex-
plains the values around 0.05 obtained in the 3D case.

As for the conditional FPTs �T1�rS�� and �T2�rS��, we
have the following relations �1�:

D��P1�r��T1�r��� = − P1�r� if r � D*, �65�

P1�r��T1�r�� = 0 if r � �abs, �66�

�n�P1�r��T1�r��� = 0 if r � �refl, �67�

and of course the equivalent relations for �T2�r��. We use as
usual Green’s formula, and obtain

P1�rS��T1�rS�� = �
D*

G�r�rS�P1�r�dr . �68�

This equation is very similar to the discrete Eq. �29� and the
following calculations for the 3D case are exactly identical,
and give

�T1�rS�� =
1

P1�rS�
H02 − H12 + O�aV−2/3�

H01 + H02 − 2H12
�T�rS�� . �69�

We show in Fig. 13 the result of numerical simulations.
The noise is more important than in other simulations, espe-
cially for �T1�. This is due to the fact that the probability P1

is often small, which reduces the number of processes on
which the time is averaged, and thus increases the noise.

We thus are able to compute first-passage times, splitting
probabilities, and absorption times with good accuracy �es-
pecially with the improvements given in Appendix C�, pro-
vided we know the pseudo-Green function H. The computa-
tion of H is discussed extensively in Appendix A and more
briefly in the following.

IV. DISCUSSION

The computation of the pseudo-Green function can be a
difficult problem. Indeed, there are a few cases when it can
be computed exactly �see Appendix A 1�, namely in the dis-
crete case for a rectangular or parallepipedic domain or for
periodic boundary conditions, and in the continuous case
when the domain is a disk, a sphere, or the surface of a
sphere. Otherwise, we have to use an approximation, the
simplest ones being presented and discussed in Appendix A.

In the following we present a synthetic and qualitative
description of the important parameters which have to be
taken into account when it comes to computing the mean
first-passage time.

The first and most important parameter is the size of the
domain. Indeed, the MFPT is proportional to the size of the
domain, both in two and three dimensions. The second es-
sential parameter is the size of the target for the continuous
case: once we have these two parameters we already have a
rough order of magnitude of the MFPT. The third important
parameter is the distance between the source and the target.
In three dimensions this parameter is important as long as it

FIG. 12. �Color online� Brownian motion on a 3D sphere of
radius 25 centered on �0,0,0�; D=1; the source is in �−5,2 ,0� and
the two targets are on �5,2,0� �T1, of radius 0.5� and �x ,0 ,0� �T2, of
radius 1.5�. Red crosses: simulations; black solid line: estimations
�63� and �64�, with the exact function H for a sphere �A7�.

FIG. 13. �Color online� Two-target simulations. The conditions
are identical to those of Fig. 12; we show the conditional absorption
times �T1� �respectively, �T2��. The blue Xs �respectively, red +s�
show the results of numerical simulations; The green �a� �respec-
tively, brown �b�� solid line shows the theoretical estimation �69�
with the exact function H for a sphere �A7�.
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is of the same order of magnitude as the target size; its in-
fluence is inversely proportional to the source-target dis-
tance. In two dimensions this parameter will be important at
any distance, since the MFPT depends logarithmically on
this distance. Once these parameters have been taken into
account we have a good approximation of the MFPT �Eqs.
�51� and �50�� if both source and target are far from any
boundary. To see what far means in this case, a good crite-
rion is that any correction involving a boundary �see below�
is negligible. Otherwise we have an order of magnitude, and
to proceed further we will have to take into account the pre-
cise position of the boundaries.

The qualitative effect of the boundary is to increase the
MFPT when the target is near a boundary, and to decrease it
when the source is near a boundary �it can be seen in the
following equations�. The first effect is much more important
than the second: in three dimensions, with a flat boundary, a
basic approximation gives

�T� =
1

4�

1

a
−

1

�rS − rT�
+

1

�rT − s�rT��
−

1

�s�rS� − rT�� ,

�70�

where s�r� denotes the point symmetrical to r with respect to
the boundary. One can see that the influence of the boundary
is inversely proportional to the distance between the target
and the boundary. This is also true if the source is near a
boundary, which is why the most important parameter is in-
deed the position of the target. One may note, however, that
if the target or the source lies in a corner, these effects are
amplified.

In two dimensions the influence of the position of the
boundary is more important, and the position of the source is
a relevant parameter: a basic approximation with a flat
boundary gives

�T� =
1

2�

ln

�rS − rT�
a

+ ln
�s�rS� − rT�
�s�rT� − rT�� . �71�

If the target is much closer to the boundary than the source
the effect can be to double the MFPT; on the other hand, if
the source only is near a boundary, the related correction is
bounded. The corners also have an amplifying effect in two
dimensions.

The quantitative estimates thus obtained are generally
more accurate in three dimensions than in two dimensions,
due to the fact that the effect of the boundaries on the
pseudo-Green function is essentially local in three dimen-
sions. In two dimensions there is still room for improvement,
but an extensive discussion would be beyond the scope of
this paper.

V. CONCLUSION

In this paper we managed to compute the mean first-
passage times, the splitting probability and the full probabil-
ity density of the first-passage time �in three dimensions�
with a good accuracy for spherical or rectangular domains.
For other shapes �with a regular enough boundary�, we gave
the basic tools to approximately estimate these quantities.
These results are especially important in the analysis of
diffusion-limited reactions: The first-passage time corre-
sponds to the reaction time if one of the reactants is static,
and the reaction rate is infinite. Two promising extensions of
our work would be to take into account finite reaction rates,
which would increase the relevance of our work to reaction-
diffusion processes; and to study the same problem with
anomalous diffusion, which is relevant in many physical
situations.
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APPENDIX A: EVALUATION OF THE PSEUDO-GREEN
FUNCTION

1. Exact formulas

a. Periodic boundary condition and rectangular domains
for a discrete pseudo-Green function

There are two specific cases where the discrete pseudo-
Green function H may be computed exactly: when the do-
main is rectangular �parallepipedic in three dimensions� or
when the boundary conditions are periodic �26�. These re-
sults are interesting in themselves, but, moreover, for a do-
main which is almost rectangular or parallepipedic, they will
give a good approximation for H. For periodic boundary
conditions, if we consider a domain with X sites in the x
direction, Y sites in the y direction, and Z sites in the z
direction, a straightforward Fourier analysis gives

H�r�r�� =
1

N
�
m=0

X−1

�
n=0

Y−1

�
p=��m,n��0,0�

Z−1
exp�2im��x − x��/X + 2in��y − y��/Y + 2ip��z − z��/Z�

1 −
1

3
�cos�2m�/X� + cos�2n�/Y� + cos�2p�/Z��

. �A1�

In two dimensions, we have a similar formula for H:

H�r�r�� =
1

N
�
m=0

X−1

�
m=�n0

Y−1
exp�2im��x − x��/X + 2in��y − y��/Y�

1 −
1

2
�cos�2m�/X� + cos�2n�/Y��

. �A2�
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For a parallepipedic domain we get a slightly more complicated expression, and we have to use semi-integer coordinates for
the points x�respectively, y and z� varies between 1/2 and X�respectively, Y and Z� −1/2. The result is the following:

H�r�r�� =
8

N
�
m=1

X−1

�
n=1

Y−1

�
p=1

Z−1
cos�m�x�/X�cos�n�y�/Y�cos�p�z�/Z�cos�m�x/X�cos�n�y/Y�cos�p�z/Z�

1 − �1/3��cos�m�/X� + cos�n�/Y� + cos�p�/Z��

+
6

N
�
m=1

X−1

�
n=1

Y−1
cos�m�x�/X�cos�n�y�/Y�cos�m�x/X�cos�n�y/Y�

1 − �1/2��cos�m�/X� + cos�n�/Y��
+

6

N
�
p=1

Z−1
cos�p�z�/Z�cos�p�z/Z�

1 − cos�p�/Z�

+
6

N
�
m=1

X−1

�
p=1

Z−1
cos�m�x�/X�cos�p�z�/Z�cos�m�x/X�cos�p�z/Z�

1 − �1/2��cos�m�/X� + cos�p�/Z��
+

6

N
�
n=1

Y−1
cos�n�y�/Y�cos�n�y/Y�

1 − cos�n�/Y�

+
6

N
�
n=1

Y−1

�
p=1

Z−1
cos�n�y�/Y�cos�p�z�/Z�cos�n�y/Y�cos�p�z/Z�

1 − �1/2��cos�n�/Y� + cos�p�/Z��
+

6

N
�
m=1

X−1
cos�m�x�/X�cos�m�x/X�

1 − cos�p�/Z�
. �A3�

In two dimensions the expression is slightly less imposing:

H�r�r�� =
4

N
�
m=1

X−1

�
n=1

Y−1
cos�m�x�/X�cos�n�y�/Y�cos�m�x/X��cosn�y/Y�

1 − 1/2�cos�m�/X� + cos�n�/Y��
+

4

N
�
m=1

X−1
cos�m�x�/X�cos�m�x/X�

1 − cos�m�/X�

+
4

N
�
n=1

Y−1
cos�n�y�/Y�cos�n�y/Y�

1 − cos�n�/Y�
. �A4�

These formulas have the advantage of being exact, which enables us to compute exactly all the quantities studied in this
paper for such geometries. However, the computation of H may be computationally expensive for large domains. In the
continuous case, the same method can be applied, but H can only be expressed as an infinite series �23�. We give the result for
a 2D rectangle X�Y:

H�r�r�� =
4

XY
�
m=1




�
n=1



cos�m�x�/X�cos�n�y�/Y�cos�m�x/X�cos�n�y/Y�

�m�/X�2 + �n�/Y�2 +
2

XY
�
m=1



cos�m�x�/X�cos�m�x/X�

�m�/X�2

+
2

XY
�
n=1



cos�n�y�/Y�cos�n�y/Y�

�n�/Y�2 . �A5�

b. Disks and spheres for the continuous pseudo-Green functions

In the continuous case there is, however, a case where the
pseudo-Green function is known exactly: if the domain is a
disk or sphere of radius b. We will simply give the results;
the detailed computation can be found in �23�.

In both formulas, we use the image of r�, that we note r̃�,
which is aligned with r and the center of the disk or sphere

O, and at a distance r̃�=b2 /r�. We note R= �r−r��,
R̃= �r− r̃��, and �=cos �, � being the angle between r and r�
�see Fig. 14�. In two dimensions, the result is the following:

H�r�r�� =
1

2�
ln
b

R
+ ln

b

R̃
+ ln

b

r�
+

r2 + r�2

2b2 � . �A6�

The first term corresponds to G0, the second to the image of
r�, the third term is needed to ensure the symmetry of H, and
the last term corresponds to the −1/V term in the definition
of the pseudo-Green function. The three-dimensional result
is a bit more complicated, with a logarithmic term whose
physical signification is unclear:

H�r�r�� =
1

4�� 1

R
+

b

r�R̃
−

1

b
ln
 r�R̃

b2 + 1 −
rr��

b2 �
+

r2 + r�2

2b3 � . �A7�

These results are very useful by themselves, but they will
FIG. 14. �Color online� Schematic picture of the quantities used

in the computation of H�r �r��.
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also be useful to approximate H near a curved boundary, as
we will see in the following. The result for a sphere can also

be used to estimate H̄ when one uses the approximation H
=G0 in nonelongated 3D domains. Indeed the exact result
enables one to take into account the corrections to G0, which
are negligible when the source and the target are close, but

give a substantial correction to the value of H̄. To compute

H̄, one can use Eq. �45�, and choose for r the center of the
sphere. We have in this case

H�r��r = 0� =
1

4�

 1

R
+

R2

2b3� . �A8�

A constant �1−ln�2�� / �4�b� has been suppressed, in order to
have a final result relevant for the approximation H=G0.
From this expression of H it is straightforward to get an

expression for H̄

H̄ =
3

5

 3

4�
�2/3

V−1/3. �A9�

If one wants to use this result in the discrete case, it should
be noted that the continuous limit of the discrete model cor-
responds to D=1/2d and not D=1. This diffusion coefficient
is included in the discrete pseudo-Green function, and the

discrete estimation of H̄ is thus

H̄ =
18

5

 3

4�
�2/3

N−1/3. �A10�

c. Surface of spheres

Another case where we can compute exactly H is the case
of the surface of a sphere. Indeed in this case we have ex-
actly

H�r�r�� = −
1

2�
ln�r − r�� . �A11�

Since H is isotropic in this case it simplifies things: G0�a�
+H*�rT �rT� can be replaced by H�a� in Eq. �49�. This gives
back the result obtained by a straightforward computation of
the FPTs in a sphere �29�. Moreover, this will give good
approximations of all the two-target quantities. This result is
not used elsewhere in the paper, but is, however, important
due to the physical relevance of the diffusion on the surface
of a sphere.

2. Use of the approximations

The next step is to study cases where no exact formula for
H is known. The simplest approximation to H is the infinite-
space Green function G0, but this approximation is often
unsatisfying. We thus present a few ways to improve it. Be-
fore we present them, it must be emphasized that, in general,
all the H terms should be derived with the same approxima-
tion: H is defined up to a constant, and this constant depends
of the approximation used! However, for complicated ex-
pression involving H, this constraint can be relaxed: if the
expression can be decomposed into terms of the form

�H�r1 �r2�−H�r3 �r4��, these terms may be computed with
different approximations, since they do not depend on the
constant up to which H is defined. For example, in the two-
target problem, we have P1=

H1s+H02−H2s−H12

H01+H02−2H12
. We can use, if

necessary, two approximations, one accurate around T1,
which we note H�1�, and another accurate around T2, which
we note H�2�. Then, to compute P1, we use them the follow-
ing way:

P1 =
H1s

�1� + H02
�2� − H2s

�2� − H12
�1�

H01
�1� + H02

�2� − H12
�1� − H12

�2� . �A12�

This trick can be especially useful if one has to deal with two
targets near two different boundaries.

3. Approximations

The most basic approximation is already known: it is the
approximation H=G0. Its physical meaning is to ignore the
presence of the boundaries, as far as the pseudo-Green func-
tion is concerned. To improve this approximation, there are
essentially two ways: the first is to take the boundaries into
account locally, and to satisfy the boundary conditions at the
nearest boundary, we will see how in the following. The
second one is to take the boundaries into account globally, by
taking into account the terms −1/N or −1/V in the definition
of H. The order of magnitude of the related correction will
be about �r−r��2 /N in the discrete case, or �r−r��2 /4A in
the 2D continuous case, �r−r��2 /6V in the 3D continuous
case. It is thus much weaker in three dimensions �the maxi-
mal relative correction scales as N−1/3 or a /V1/3� than in two
dimensions �where the maximal relative correction scales as
1 / ln�N� or 1/ ln�V /a3��. A more detailed discussion of this
kind of corrections would be technical and beyond the scope
of this paper, but the above order of magnitude can be a good
evaluation of the accuracy of the following boundary ap-
proximation.

This approximation takes explicitly into account a planar
boundary, and ignores all the others. It can be used both in
the continuous and in the discrete case. If we note s�r� the
point symmetrical to r with respect to the boundary, then the
local approximation

H�r�r�� = G0�r − r�� + G0�r − s�r��� �A13�

satisfies the boundary conditions on the flat boundary, and is
symmetric. It thus can be a good approximation for the
pseudo-Green function.

Figures 15 and 16 show the efficiency of this approxima-
tion in two different cases: in a 2D discrete domain, and in a
3D continuous domain. In both cases the approximation im-
proves the basic approximation H=G0, but when the source
is near another boundary, a systematic deviation appears, due
to the influence of the other boundary.

The curvature of the boundary may be taken into account
by approximating the pseudo-Green function by the pseudo-
Green function inside a circle �A6� or a sphere �A7�, or out-
side a circle or a sphere �it can be found in �23��.
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APPENDIX B: COMPUTATION OF THE HIGHER-ORDER
MOMENTS

1. Discrete case

In this part we will compute the higher-order moments of
the FPT. To do this, we start from an extension of Kac’s
formula �see Appendix D�, which is the relation between the
Laplace transforms of the FRT to the subset �, averaged on
�, and of the FPT to this subset, the starting point being

averaged over the complementary subset �̄.

������e−sT�� − e−s� = �1 − ������e−s − 1��e−sT��̄. �B1�

Both averages are weighted by the stationary probability �,
in the following sense:

���T��� =
1

���� �
i��

��ri��
t=1




pi�T = t���t� , �B2�

���T���̄ =
1

1 − ���� �
i��

��ri��
t=1




pi�T = t���t� , �B3�

where pi�T= t� is the probability for the FRT �or the FPT,
according to whether the point i belongs to � or not� to be t,
if the random walk starts from the point i. To apply Eq. �B1�
to the determination of the FPTs, we may notice that the FPT
from any point of the graph �except target� is the same on the
original graph and on the modified graph: indeed, the behav-
ior of a random walk is exactly the same on both lattices as
long as they do not reach T, and what happens afterwards
does not matter. Moreover, the FRT to T is still the FPT from
S to T, plus 1. Thus if we apply the formula �B1� to the
modified graph, � being reduced to T, we get the following
relation between the Laplace transform of the FPT from S
and the FPT averaged over the whole set of points �without
T�:

J��e−sT�S − 1� = �1 − J��1 − es��e−sT��̄; �B4�

J is still ��rT�. We have to pay attention to one thing: the

average over �̄ is weighted by the weights for the stationary
distribution of the modified lattice. To go further we will
have to consider all the modified lattices with T as the target
point, the starting point being any point of the set. We will
denote �i the stationary distribution associated with the
modified graph whose starting point is i, and Ji=�i�rT�. Thus
we may note

Ji��e−sT�i − 1� = �1 − es��
j�T

�i�r j��e−sT� j . �B5�

From this, we may deduce the recurrence equation for the
moments:

FIG. 15. �Color online� Discrete random walk: Influence of the
position of the source; the domain is a 2D square of side 41 cen-
tered on �0,0,0�, the target is at �−18,0�, and the source is at
�x−20,0�; blue dashed line: approximation H=G0; black solid line:
local approximation taking into account the boundary.

FIG. 16. �Color online� 3D Brownian motion: the domain is an
eight of sphere; the sphere is of radius 25, centered on �0,0,0�, and
the domain is reduced to positive coordinates. The target is in
�10,10,2�, and the source is in �x ,x ,3�. Red crosses: numerical
simulations; blue dashed curve: basic approximation H=G0; solid
black curve: approximation �C7� with H taking into account the
nearest boundary �Eq. �A13��.
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�Tn�i =
1

Ji
�
m=1

n

�
j�T

�− 1�m+1
 n

m
��i�r j��Tn−m� j . �B6�

We may thus compute explicitly the second moment,

�T2�i =
1

Ji
�
j�T

�i�r j��2�T� j − 1� . �B7�

If we replace � and �T� by their values, we get

�T2�i =
2N

Ji
�
j�T


1 − Ji

N
+ JiH�r j�ri� − JiH�r j�rT��

��H�rT�rT� − H�rT�r j�� −
1 − Ji

Ji
. �B8�

We then may use the value of 1−J
J , which we know:

�T2�i = 2N�
j�T

�H�rT�rT� − H�rT�ri� + H�r j�ri� − H�r j�rT��

��H�rT�rT� − H�rT�r j�� − N�H�rT�rT� − H�rT�ri�� .

�B9�

This equation is exact, but it is difficult to evaluate properly
in the general case. We will thus use approximations to
evaluate this expression in the case of a 3D regular lattice,
with N large and the boundaries far from the target, at a
typical distance N1/3. We can thus neglect the term
N�H�rT �rT�−H�rT �ri�� in the right-hand side of Eq. �B9�. If
we develop the rest of the formula, we get

�T2�i = 2N
NH2�rT�rT� − NH�rT�rT�H�rT�ri�

+ H�rT�rT��
j�T

�H�r j�ri� − 2H�rT�r j��

+ H�ri�rT��
j�T

H�rT�r j� − �
j�T

H�rT�r j�H�r j�ri�

+ �
j�T

H2�rT�r j�� . �B10�

We can now drop the least important terms in this formula by
evaluating the order of magnitude of the various sums over j.
We have �cf. Eq. �6��

1

N
�

j

H�ri�r j� = H̄ . �B11�

Since G0�r��1/r in three dimensions, and the corrections
are, in the worst case, of the same order of magnitude, we

can see that H̄ scales as N−1/3. If we consider the sums
� jH

2�rT �r j� and � jH�rT �r j�H�r j �ri�, we may first notice that

�
j

H�rT�r j�H�r j�ri� 
 
�
j

H2�rT�r j��
j

H2�ri�r j��1/2
.

�B12�

We thus only need to consider the case of �1/N�� jH
2�ri �r j�.

And, for the same reasons as above, we can see that it scales
as N−2/3. Putting all this together, we have

�T2�i = 2N2��H�rT�rT� − H�rT�ri���H�rT�rT� − H̄� + O�N−2/3�� .

�B13�

It is possible to generalize this expression to higher-order
moments; we will obtain the following result, for a given n:

�Tn�i = n!Nn��H�rT�rT� − H�rT�ri��

��H�rT�rT� − H̄�n−1 + O�N−2/3�� . �B14�

We can prove this by recurrence: if this is true for m�n,
then

�Tn�i =
n

Ji
�
j�T

�i�r j��Tn−1� j . �B15�

The other terms are negligible �their relative order of mag-
nitude is at most 1 /N�, and we will thus ignore them. We
replace everything by its value, which gives

�Tn�i = n!Nn−1�
j�T


 H�rT�rT� − H�rT�ri�
+ H�r j�ri� − H�r j�rT�

�
�
 H�rT�rT�

− H�rT�r j�
� 
�H�rT�rT� − H̄�n−2

+ O�N−2/3�
� .

�B16�

Using exactly the same approximations as above �the com-
putation is identical�, we get

�Tn�i = n!Nn��H�rT�rT� − H�rT�ri��

��H�rT�rT� − H̄�n−1 + O�N−2/3�� . �B17�

As for the dependence with n of the correction, since we
perform exactly the same operation at each step n→n+1, the
correction will be proportional to n, which may help estimate
the validity of the approximation.

This computation fails for elongated domains: two main
hypotheses are not satisfied in this case, namely that the
boundaries are at a typical distance N1/3, and that the correc-
tions to G0 have the same order of magnitude. The method
cannot either be applied to the 2D case, since the terms
1/N� jH

2�ri �r j� are no longer negligible.

2. Continuous case

In the continuous case we can perform a similar compu-
tation. The higher-order moments of the FPT at the target
satisfy the following equations �28�

D��Tn�r�� = − n�Tn−1�r�� if r � D*, �B18�

�Tn�r�� = 0 if r � �abs, �B19�

�n�Tn�r�� = 0 if r � �refl. �B20�

Using a new time the Green function defined by Eqs.
�36�–�38� and the Green formula, we have

�Tn�rS�� =
n

D
�

D*
G�r�rS��Tn−1�r��ddr . �B21�
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With the knowledge of G�r �r�� for all starting points r, it
is possible to compute the full distribution. In three dimen-
sions, it is possible to find an expression for �Tn� similar to
the one found in the discrete case. We will start from Eq.
�49�. We can now compute the second moment, using the
values for �T� and �0:

�T2�rS�� =
2V

D2�
D*

�G0�a� + H*�rT�rT� − H�rT�rS� + H�r�rS�

− H�r�rT���G0�a� + H*�rT�rT� − H�r�rT��ddr .

�B22�

To compute this, we will use the two following equations,
equivalent to Eqs. �B11� and �B12� for discrete random
walks:

�
D*

H�r0�r�d3r = VH̄ + O�a2� , �B23�

�
D*

H�r1�r�H�r2�r�d3r = O�V1/3� . �B24�

This gives

�T2�rS�� =
2V2

D2 ��G0�a� + H*�rT�rT� − H�rT�rS��

��G0�a� + H*�rT�rT� − H̄� + O�V−2/3�� .

�B25�

This result may be extended by recurrence to higher-order
moments, in exactly the same way as that in the discrete
case, which gives

�Tn�rS�� =
n!Vn

Dn ��G0�a� + H*�rT�rT� − H�rT�rS��

��G0�a� + H*�rT�rT� − H̄�n−1 + O�nV−2/3a2−n�� .

�B26�

APPENDIX C: REFINEMENT OF THE CONTINUOUS
THEORY

In this appendix we will see how to improve the results of
Sec. III, provided we know the pseudo-Green function H.
The results we obtained in Sec. III are not perfectly satisfy-
ing for three reasons: �i� When the source and the target are
close, the approximation works better than one could naively
expect, given that it does not satisfy Eq. �37� very accurately.
It would be interesting to understand why. �ii� The approxi-
mation lacks accuracy when the target is near a boundary.
�iii� In the two-target case the accuracy is not very good
when the two targets are close. We will treat the first point in
detail, and give the corrections, and the method used to com-
pute them, for the second and third points.

1. A better evaluation of G

To understand this, we will first notice that the Green
function we use could also be used in an electrostatic prob-

lem: the source is equivalent to a point charge, and the ab-
sorbing spheres are equivalent to conducting spheres set at a
null potential. We can thus apply the well-known method of
images �30� to our problem. If we have an image charge q

q�rS� = �−
a

�rS − rT�
	 −

a

R
in three dimensions

− 1 in two dimensions,
� �C1�

placed on i�rS�, located on the line between the center of the
sphere and the source, at a distance R�=a2 /R of the target,
where R is the source-target distance, then the solution

G�r�rS� = �0�rS� + G0�r�rS� − G0�r�rT�

+ q�rS��G0�r�i�rS�� − G0�r�rT�� �C2�

satisfies exactly the boundary condition �37� on the target
sphere: we have, for r��abs,

G0�r�rS� − G0�r�rT� + q�rS��G0�r�i�rS�� − G0�r�rT��

= G0�rS�rT� − G0�a� . �C3�

However, this solution does not satisfy the reflecting bound-
ary conditions, and we will rather use the solution

G�r�rS� = �0�rS� + H�r�rS� − H�r�rT�

+ q�rS��H�r�i�rS�� − H�r�rT�� �C4�

which approximately satisfies Eq. �37�, provided that we ne-
glect the variations of H*�r �rS� and H*�r �rT� on the target
sphere. With this approximation we get

�0�rS� = G0�a� − H�r�rS� + H*�rT�rT�

+ q�rS��H*�i�rS��rT� − H*�rT�rT�� . �C5�

Note that the last term q�rS��H*�i�rS� �rT�−H*�rT �rT�� can be
neglected, since the variations of H* over the target sphere
are neglected. Finally, to find Eq. �49�, the only condition is
to neglect the variations of H* over the target sphere, which
will be a good approximation as soon as the target is far from
any boundary. If this condition is satisfied, the approximation
for the MFPT is accurate, even if the source is near the
target.

2. Influence of a boundary

If the target is near a boundary, however, H* can no longer
be considered as a constant over the target sphere. To have a
good approximation of H, one has to decompose the function
one step further:

H�r�r�� = G0�r�r�� + G0�r�s�r��� + H**�r�r�� , �C6�

where s�r� is the point symmetrical to r with respect to the
boundary. This simply makes explicit the image charges due
to the boundary, which themselves have images on the target
sphere. The real and image charges are depicted in Fig. 17.

If we take into account all these charges, it is possible to
obtain the following expression for the MFPT, valid as long
as the target sphere does not touch the boundary:
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�T�rS�� =
V

D
�G0�a� − H�rT�rS�

+ H*�rT�rT� − K�rS� − K�s�rS�� + K�s�rT��� ,

�C7�

where K�r�=q�r��H*�i�r� �rT�−H*�rT �rT��.

3. Two close targets

The two-target case can be treated likewise: by consider-
ing the images of T1 and T2 on the other sphere, it is possible
to compute corrections to the terms H01, H02, H1s, and H12
used in Eqs. �63� and �64�. These corrections are

H1s = H�rT1
�rS� + q2�rS��H�rT1

�i2�rS�� − H�rT1
�rT2

�� ,

�C8�

H01 = G0�a1� + H*�rT1
�rT1

�

+ q2�rT1
��H�rT1

�i2�rT1
�� − H�rT1

�rT2
�� , �C9�

H12 = H�rT1
�rT2

� , �C10�

and similar corrections for H02 and H2S. qk�r� and ik�r� de-
note the value and the position of the image charge of r
inside Tk.

APPENDIX D: PROOF OF KAC’S FORMULA
AND OF ITS EXTENSION

1. Model

We use the notations of Sec. II: R is an arbitrary finite set
of points 1 ,2 , . . . ,N, with positions r1 ,r2 , . . . ,rN. wij is the
transition probability from j to i, and we assume that any
couple of points i and j in R can be joined by at least one
succession of links with nonzero transition probabilities.

Among the points of R, we now arbitrarily define a subset

�, and note the complementary subset �̄. Practically, the
following properties will mostly be interesting if the number
of points in � is much smaller than the total number N of
points, but it is not necessary for the definitions.

With the definitions, the Perron-Frobenius theorem �1� as-
sures that there exists a stationary probability ��ri�, which
satisfies

��ri� = �
j�R

wij��r j� . �D1�

From now on, we will consider that � is absorbing, which
means that the particle is absorbed as soon as it goes to the
subset. However, it may start from it and go away on the
following step without being absorbed. Thus we state that,
on any state ri, the particle has a probability pd�ri� to be
absorbed on its next step equal to

pd�ri� = �
j��

wji. �D2�

2. Obtention of the formula

Now, the probability p�ri , t� that the particle is adsorbed
exactly at time t, starting from state i at time 0, obeys the
backward equation:

p�ri,t� = �
j��̄

p�r j,t − 1�wji �D3�

if t�2, and

p�ri,1� = pd�ri� . �D4�

As a result, the Laplace transform p̂ of p�ri , t� satisfies

p̂�ri,s� − e−s �
j��

wji = e−s �
j��̄

p̂�r j,s�wji, �D5�

where p�ri ,1� has been replaced by its value. We multiply
this equation by the stationary probability ��ri� and sum up
over all i�R. We notice that, from Eq. �D1�,

�
i��

wji��ri� = ��r j� . �D6�

We thus obtain

�
i�R

p̂�ri,s���ri� − e−s �
j��

��r j� = e−s �
j��̄

p̂�r j,s���r j� .

�D7�

We now define two kinds of average for a quantity ��t�:
�i� the volume average

���T���̄ =
1

���̄�
�
i��̄

��ri��
t=1




��t�p�ri,t�; �D8�

�ii� the surface average

���T��� =
1

���� �
i��

��ri��
t=1




��t�p�ri,t� , �D9�

where ���̄� and ���� are the respective stationary probabili-
ties of the volume and the surface:

���̄� = �
i��̄

��ri� , �D10�

FIG. 17. �Color online� Picture of the real and image charges
when the target is near the boundary �+=red pluses; −=blue
crosses�.
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���� = �
i��

��ri� , �D11�

and T denotes the absorption time, which corresponds to the
FPT to �, or the FRT to �, depending on whether the starting

point is on �̄ or �. We thus simply get from Eq. �D7� the
following equation:

�����e−sT�� + ���̄��e−sT��̄ − ���� = e−s���̄��e−sT��̄

�D12�

or

������e−sT�� − e−s� = ���̄��e−s − 1��e−sT��̄, �D13�

which is the extended Kac’s formula, relating the Laplace
transforms of the FRTs and the FPTs. Thus for the first mo-
ment of T we obtain the very simple and general result

�T�� =
1

����
�D14�

�Kac’s formula �22��.

APPENDIX E: SIMULATION METHODS

1. Random walks

For random walks we use a method based on the exact
enumeration method �31�. The exact enumeration method al-
lows one to compute the exact distribution probability up to
a given time: at each time step �t�0�, we compute the full
probability distribution of the random walker, using the mas-
ter equation

p�r,t� =
1

�
�

r��N�r�

p�r�,t − 1� . �E1�

p here is the probability of the random walker to be at posi-
tion r at time t and to never have reached the target site
before. N�r� is the ensemble of neighbors of r, which in-
cludes r itself if r is a boundary site. The initial condition is
of course p�r ,0�=��r ,rS�. Note that if we set T=S the algo-
rithm will compute the distribution of the FRT. After this first
step, we have the probability distribution p�t� of the FPT:

p�t� = p�rT,t� . �E2�

The last step of the algorithm is to set p�rT , t� to 0, and we
can then proceed to the computation for the time t+1. This
enables us to compute the exact probability distribution, but
of course the algorithm has to stop at a certain time. To go
further, we can notice that the tail of the probability distribu-
tion is exponential �this corresponds to the highest eigen-
value of the transition matrix, the transition probabilities to
and out of the target being set to 0 to take the absorption into
account�. If p�e−�t for high enough t, then we can compute
the distribution up to a time t0, then estimate

�T� = �
t=0

t0−1

p�t� +
p�t0�t0

1 − e−� +
p�t0�e−�

�1 − e−��2 . �E3�

The two latter terms correspond to �t=t0

 p�t0�e−��t−t0�. Since �

is small, its order of magnitude being 1/N, they are approxi-
mated by p�t0�t0 /�+ p�t0� /�2. To estimate �, we take

� =
1

10
ln

p�t0 − 10�
p�t0�

�E4�

�we took ten steps and not one in order to avoid parity ef-
fects�. To select t0, we run a few trial simulations, with a
large maximum time, and we determine the minimal t0 which
gives a result differing by at most 0.1% from the result ob-
tained with a larger t0. We add a small security margin, and
then run the simulation. We use similar methods for all the
other quantities studied. The error on the simulation results is
thus guaranteed to be less than 0.1%!

2. Brownian motion

Unfortunately, for the Brownian motion, we do not have
such an accurate algorithm, and we thus used a Brownian-
dynamics-based algorithm �32�: we average the time needed
to reach the target on n=105 Brownian processes. To simu-
late the Brownian motion, we use the following algorithm:

1. Find the distance between the particle and the nearest
obstacle �target, nonflat boundary�.

2. Multiply that distance by a constant � �we used
�=0.2� to get a trial typical step length.

3. If we are very close to a boundary, or very close to the
target, this trial step length would be too small. We thus add
a lower cutoff to this trial step length �we took 0.01 near the
target, of typical size radius 1, and 0.2 near the curved
boundaries, whose radius of curvature was typically 25�, and
get the typical step length rstep.

4. We use this step length to determine our time step
tstep=rstep

2 �we have D=1�.
5. For each direction x ,y ,z, we add to the position a

Gaussian random variable, of variance 2tstep. To get such a
variable, we use two random variables � and � uniformly
distributed between 0 and 1, and then the random variable
rstep�−2 ln���cos�2��� is indeed a Gaussian with the re-
quired variance.

6. If we are outside the domain, we move the particle
inside the domain, to a position symmetrical with respect to
the boundary.

7. If we are inside the target, we end the process, other-
wise we take another step.

This algorithm is less accurate than the one we used in the
discrete case, and is computationally more expensive. More-
over, the study of the probability density of the FPT is deli-
cate with this algorithm.

APPENDIX F: PROPERTIES OF THE PSEUDO-GREEN
FUNCTION H

The properties of the continuous pseudo-Green function
are well described in �23�, and we will just describe the
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properties of the discrete one. We consider the case of sym-
metric transition probabilities. We define the discrete Laplac-
ian operator:

�− ��ij = �ij − wij . �F1�

This operator is Hermitian which will be useful. We define
�p and �p the eigenvectors and �real� eigenvalues of the
operator −�, ordered from 0 to N−1 in increasing order. We
have �0=0, and �0=1/�N, with the usual normalization.
Since the operator is Hermitian, we can take �p

* =�p. We
define

H�ri�r j� = �
p=1

N−1

�p
*�r j��p�ri�/�p. �F2�

This solution satisfies

− �H�ri�r j� = �ij −
1

N
, �F3�

which corresponds to the definition we used for H, and we
thus found the solution �up to a constant� to Eq. �5� we used
to define H. This shows that H is symmetric in its arguments

if W= �wij� is symmetric. To prove that the sum H̄j

= 1
N�i=1

N H�ri �r j� is independent of j, we will simply sum up
Eq. �5� over all i, and use the fact that H is symmetric. This
gives

− �H̄j = 0 �F4�

and H̄ is proportional to �0, and thus is a constant.
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