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We investigate precursors and the predictability of extreme increments in a time series. The events we are
focusing on consist in large increments within successive time steps. We are especially interested in under-
standing how the quality of the predictions depends on the strategy to choose precursors, on the size of the
event, and on the correlation strength. We study the prediction of extreme increments analytically in an
autoregressive process of order 1, and numerically in wind speed recordings and long-range correlated autore-
gressive moving average processes data. We evaluate the success of predictions via receiver-operator charac-
teristics �ROC curves�. Furthermore, we observe an increase of the quality of predictions with increasing event
size and with decreasing correlation in all examples. Both effects can be understood by using the likelihood
ratio as a summary index for smooth ROC curves.
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I. INTRODUCTION

Extreme value statistics �1� is a well-established approach
to predict the relative frequency of rare extreme events, but
does not include forecasts of when the next event will occur.
There have been many attempts to employ time series strat-
egies for the latter purpose. These strategies usually investi-
gate a record of historical data about the phenomenon under
study and try to infer knowledge about the future. A standard
approach is to search for precursors, i.e., typical signatures
preceding an extreme event. Such precursors have been dis-
cussed, e.g., in the literature about earthquakes �2�, epileptic
seizures �3�, and stock market crashes �4–6�. As the above-
listed examples illustrate, the definitions of what an extreme
event is depends on the context. Frequently, one encounters
extremely large values of some observable, or some drastic
changes. It is the latter that is the focus of this paper where
we discuss large increments motivated by stock markets or
by a turbulent wind gusts in wind speed data.

One might expect that the more extreme an event is, the
more difficult it is to predict it, simply because more extreme
events are usually also much rarer. However, it has been
reported in the literature of wind speed predictions �7�, pre-
cipitation forecasts �8�, multiagent games �11�, and earth-
quakes �12� that more extreme events are better predictable
than small events. Therefore one particular goal of this con-
tribution is to investigate how the predictability of large in-
crements depends on the size of the increment.

In this contribution we study predictions in a simple au-
toregressive process of order 1 �9,10� analytically in order to
obtain a detailed understanding of some questions on precur-
sors and predictions. The autoregressive process of order 1 is
a simple stationary stochastic model process, which might
not reflect all features of more complex processes occurring
in nature, but it admits a fully analytic treatment. Addition-
ally, we study similar prediction procedures numerically in
long-range correlated data and in wind speed data, verifying
the same quantitative results. The questions, which we intend
to answer, are the following:

�Q1� How do you choose a precursor in order to obtain
good predictions?

�Q2� Are extreme increments the better predictable, the
more extreme they are?

�Q3� How does the correlation of the data influence the
predictability of extreme increments?

The paper is organized as follows. In Sec. II A we discuss
two strategies which can be used to choose precursory struc-
tures and in Sec. II B we introduce a method to evaluate the
predictive power of precursors. The extreme events we di-
cuss in this contribution are defined in Sec. II C and we show
how to obtain their joint PDFs analytically in Sec. II D. We
apply these procedures to autoregressive stochastic processes
of order 1 in Sec. III, to wind speed measurements in Sec. IV
and to long-range correlated data in Sec. V. Conclusions ap-
pear in Sec. VI.

II. DEFINITIONS AND SETUP

The considerations in this introductory section are made
for general dynamical systems with a complex time evolu-
tion. They might be purely deterministic, then high-
dimensional and chaotic, or they might be stochastic. In any
case we assume that the time evolution of the system cannot
be easily modeled and hence one tries to extract information
about the future from time series data. This means that
through some experimental observation one can record a
usually univariate time series, i.e., a set of measurements xn
at discrete times tn, where tn= t0+n� with a sampling interval
�. The recording should contain sufficiently many extreme
events so that we are able to extract statistical information
about them. We also assume that the event of interest can be
identified on the basis of the observations, e.g., by the value
of the observation function exceeding some threshold, by a
sudden increase, or by its variance exceeding again some
threshold.

A. Choice of the precursor

Ideally, a precursor is a typical signature in the data pre-
ceding every individual event. Unfortunately the time evolu-
tion of most systems is usually too irregular to demand this,
so one would call a precursor a data structure, which is typi-
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cally preceding an event, allowing deviations from the given
structure, but also allowing events without preceding struc-
ture. This interpretation of a precursor allows us to determine
the specific values of the precursory structure by statistical
considerations.

In order to predict an event occurring at the time �n+1�
we compare the last k observations x�n,k�
= �xn−k+1 ,xn−k+2 , . . . ,xn−1 ,xn� with a specific precursory struc-
ture xpre= �xn−k+1

pre ,xn−k+2
pre , . . . ,xn−1

pre ,xn
pre�.

This precursory structure can be chosen according to dif-
ferent strategies. The two possible strategies, which we ad-
dress here, represent the most fundamental choices. They
consist in using either the maximum of the a posteriori PDF
or the maximum of the likelihood �13�. In more applied ex-
amples one looks for precursors that minimize or maximize
more sophisticated quantities, e.g., discriminant functions or
loss matrices. These quantities are usually functions of the
posterior PDF or the likelihood, but they take into account
the additional demands of the specific problem, e.g., mini-
mizing the loss due to a false prediction �14�. The two strat-
egies studied in this contribution are thus fundamental in the
sense that they enter into most of the more sophisticated
quantities, which are used for predictions and decision mak-
ing.

The a posteriori PDF ��x�n,k� �X� takes into account all
events of size X and provides the probability density to find
a specific precursory structure before an observed event.

�I� Hence strategy I consists in defining the precursors in
a retrospective or a posteriori way: once the extreme event
X has been identified, one asks for the signals right before
it. Formally, this implies that the precursory structure con-
sists of the global maxima in each component
�xn−k+1

* ,xn−k+2
* , . . . ,xn−1

* ,xn
*� of the a posteriori PDF.

The likelihood ��X �x�n,k�� takes into account all possible
values of precursory structures, and provides the probability
density that an event of size X will follow them. Note that the
likelihood is thus not a density function with respect to the
precursory structure, but with respect to the event size X. The
precursory structure enters into the likelihood only as a pa-
rameter.

�II� Strategy II consists in determining those values of
each component xi of the condition x�n,k� for which the like-
lihood has a global maximum.

Note that the a posteriori PDF and the likelihood are
linked via Bayes’s theorem

��x�n,k�,X� = ��x�n,k����X�x�n,k�� = ��x�n,k��X���X� ,

where ��x�n,k�� represents the marginal PDF to find the pre-
cursory structure x�n,k� and ��X� represents the marginal PDF
to find events of size X.

In summary the possible values of precursors are given by

xpre = �xI ,

xII,
�

where xI ª �xn−k+1
* ,xn−k+2

* , . . . ,xn−1
* ,xn

*� ,

and xII ª �xn−k+1
† ,xn−k+2

† , . . . ,xn−1
† ,xn

†� , �1�

where xi
* are the points in which ��x�n,k� �X� has a global

maximum and xi
† are the points in which ��X �x�n,k�� has a

global maximum, with n−k+1� i�n. In both cases the
event size X is assumed to be fixed. Once the precursory
structure xpre is determined, we give an alarm for an extreme
event when we find the last k observations x�n,k� in the vol-
ume

Vpre��� = �xn−k+1
pre −

�

2
,xn−k+1

pre +
�

2
	 � �xn−k+2

pre −
�

2
,xn−k+2

pre +
�

2
	

� ¯ � �xn
pre −

�

2
,xn

pre +
�

2
	 . �2�

This method of determining the precursor is especially useful
if the PDF of a process has one clearly defined maximum.
For multimodal PDFs the strategy of using only the global
maxima can surely be improved by considering also the in-
fluence of smaller maxima of the PDF. In this case the pre-
cursory volume could, e.g., consist of x�n,k� for which the
PDFs have values above a certain threshold. In this case
Vpre��� might not be simple connected, but apart from this
the procedure of predicting should not be different. However,
we restrict ourselves to unimodal PDFs in this contribution.

B. Testing for predictive power

A common method to verify a hypothesis or test the qual-
ity of a prediction is the receiver operating characteristic
curve �ROC curve� �15,16�. The idea of the ROC curve con-
sists simply in comparing the rate of correctly predicted
events rc with the rate of false alarms rf by plotting rc vs rf.
The resulting curve in the unit square of the rf-rc plane ap-
proaches the origin for �→0 and the point �1,1� in the limit
�→�, where � accounts for the size of the precursor volume
Vpre��� �see Eq. �2��.

The shape of the curve characterizes the significance of
the prediction. A curve above the diagonal reveals that the
corresponding strategy of prediction is better than a random
prediction, which is characterized by the diagonal. Further-
more we are interested in curves that converge as fast as
possible to rc=1, since this scenario tells us that we reach the
highest possible rate of correct prediction without having a
large rate of false alarms.

There are various so-called summary indices �17� that
quantify the behavior of the ROC. In this contribution we use
the so-called likelihood ratio �16� in order to quantify the
ROC curve. The likelihood ratio is identical to the slope m of
the ROC curve. For the usage as a summary index, we con-
sider the slope in the vicinity of the origin, which implies
�→0.

The term likelihood ratio results from signal detection
theory in which context the term “a posteriori PDF” refers to
the PDF, which we call likelihood in the context of predic-
tions, and vice versa. This is due to the fact that the aim of
signal detection is to identify a signal that was already ob-
served in the past, whereas predictions are made about future
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events. Thus the “likelihood ratio” is in our case in fact a
ratio of the posterior PDFs, as defined by

m =
�rc

�rf

� ��x�n,k��X�

��x�n,k��X̄�
�

��0

+ O��� , �3�

where ��x�n,k� � X̄� denotes the a posteriori PDF for non-
events. However, we will use the common name likelihood
ratio throughout the text.

The likelihood ratio can be expressed in terms of the like-
lihood ��X �x�n,k�� and the total probability to find events
��X�,

m�x�n,k�,X� 

�1 − ��X��

��X�

��X�x�n,k��

�1 − ��X�x�n,k���
. �4�

If we assume that the events we are observing are quite rare
and hence ��X� ,��X �x�n,k���1, the likelihood ratio is ap-
proximately given by

m�x�n,k�,X� 

��X�x�n,k��

��X�
=

��x�n,k��X�

��x�n,k��
. �5�

Equation �5� already suggests answers to questions �Q1� and
�Q2�, by considering m�x�n,k� ,X� as a summary index.

Addressing �Q1�: This asymptotic form of the likelihood
ratio allows us to compare different strategies of prediction.
Looking for the maximum of ��x�n,k� �X� in x�n,k�, according
to strategy I, there is always the influence of the denominator
��x�n,k��, which will keep the likelihood ratio small, even if
��x�n,k� �X� in x�n,k� is maximized. This is due to the fact that
��x�n,k� �X� cannot be large without ��x�n,k�� being large.
Strategy II, which uses the maximum of ��X �x�n,k�� in x�n,k�
should thus be superior, since the denominator ��X� is inde-
pendent of the chosen precursor. The examples that are stud-
ied in Sec. III, Sec. IV, and Sec. V support this idea.

Addressing �Q2�: According to Eq. �5�, the likelihood ra-
tio is larger than unity, if ��x�n,k� ,X����x�n,k����X�, i.e., if
x�n,k� and X are correlated. This condition can be also written
as ��X �x�n,k�����X� or as ��x�n,k� �X����x�n,k�� using
Bayes’s theorem. The latter expression states that the a pos-
teriori PDF ��x�n,k� �X�, i.e., the probability to find the pre-
cursor prior to an event should be larger than the probability
to find the precursor prior to an arbitrary value. Thus, the
condition is fulfilled by choosing the precursor in a reason-
able way, e.g., using the maximum of ��x�n,k� �X� in x�n,k� or
the maximum of ��x�n,k� �X�.

C. Definition of extreme increments

In this contribution we will concentrate on extreme events
that consist in a sudden increase �or decrease� of the ob-
served variable within a few time steps. Examples of this
kind of extreme events are the increases in wind speed in
Refs. �7,18�, but also stock market crashes �4,5� that consist
in sudden decreases.

We define our extreme event by an increment xn+1−xn
exceeding a given threshold d,

xn+1 − xn 	 d , �6�

where xn and xn+1 denote the observed values at two con-
secutive time steps.

D. Obtaining the analytic expression of the posterior PDFs

A mathematical expression for a filter, which selects the
PDF of our extreme events out of the PDFs of the underlying
stochastic process, can be obtained through the Heaviside
function 
�xn+1−xn−d�. This filter is then applied to the
joint PDF of a stochastic process.

Since only the time steps �xn ,xn+1� are of relevance for the
filtering, we can neglect all previous time steps and apply the
filter simply to the joint PDF for �xn ,xn+1�, which has then
the form ��xn ,xn+1�=��xn���xn+1 �xn�. This implies that we
can regard all previous time steps x0 ,x1 , . . . ,xn−1, on which
�n and �n+1 might depend, as parameters.

The joint PDF of the extreme events �
�xn+1 ,xn ,d� can
then be obtained by multiplication with 
�xn+1−xn−d�. If
the resulting expression is nonzero, the condition of the ex-
treme event �6� is fulfilled and for xn+1 and xn the following
relation holds:

xn+1 = xn + d + � �� � R,� 	 0� . �7�

Hence it is possible to express the joint probability density in
terms of xn or xn+1 with the new random variable �. We can
then use the integral representation of the Heaviside function
with appropriate substitutions to obtain

f
�xn+1,xn,d� = ��xn�

0

�

��xn + d + ��xn�

����xn+1 − xn − d� − ��d� . �8�

By normalizing this expression with the total probability
�
�d� to find extreme events of size d or larger we obtain the
joint PDF �
�xn ,xn+1 ,d� of all values of xn and xn+1, which
are part of an extreme event. Integrating the resulting joint
PDF �
�xn ,xn+1 ,d� over xn+1 we find the following expres-
sion for the marginal distribution, i.e., the a posteriori PDF:

��xn�X�d�� =
��xn�
�
�d�
0

�

d���xn + d + ��xn� . �9�

Analogously �(xn �X�d�) denotes the a posteriori PDF to
observe the value xn before a nonevent, i.e., before an incre-
ment which is smaller than d.

��xn�X�d�� =
��xn�

�1 − �
�d��
−�

�

dxn+1

��1 − 
�xn+1 − xn − d���n+1�xn+1�xn� . �10�

If for a given process the joint PDF of two consecutive
events is known, we can hence analytically determine
��xn �X�d��, ��xn �X�d��, and �
�d�.
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III. EXTREME INCREMENTS IN THE AUTOREGRESSIVE
PROCESS OF ORDER 1

A. Autoregressive process of order 1

We assume that the time series �xn� is generated by an
autoregressive process of order 1 �AR�1�� �see, e.g., Ref.
�9,10��

xn+1 = axn + 
n, �11�

where 
n are uncorrelated Gaussian random numbers with
unit variance and −1�a�1 is a constant that represents the
coupling strength. The size and the sign of the coupling
strength sets whether successive values of xn are clustered or
spread, as illustrated in Fig. 1.

In the case a=0 the process reduces to uncorrelated ran-
dom numbers with mean �=0 and variance �2=1, whereas
generally the process is exponentially correlated �xnxn+k�
=ak�1 and has the marginal PDF

��xn� =�1 − a2

2�
exp�−

1 − a2

2
xn

2	 . �12�

Since the size of the events is naturally measured in units of
the standard deviation ��a� we introduce a new scaled vari-
able �= d

��a� =d�1−a2.

Applying the filter mechanism developed in Sec. II D we
obtain the following expressions for the posterior PDF of
extreme events and the posterior PDF of nonextreme events:

�„xn�X���,a… =
�1 − a2

2�2��
�a,��
exp�−

1 − a2

2
xn

2	
� erfc� �1 − a�xn

�2
+

�

�2�1 − a2	 , �13�

�„xn�X���,a… =
�1 − a2

2�2�„1 − �
�a,��…
exp�−

1 − a2

2
xn

2	
� �1 + erf� �1 − a�xn

�2
+

�

�2�1 − a2	� .

�14�

B. Determining the precursor value

Because of the Markov property of the AR�1� process the
probability for an event at time n+1 depends only on the last
value xn, hence k=1 in Eq. �1�. Thus, we give an alarm for an
extreme event when an observed value xn is in an interval
Vpre= �xpre−� /2 ,xpre+� /2�, around the precursor value xpre.
We compute the precursor values xI and xII defined by Eq.
�1� according to the strategies described in Sec. II A.

The maximum xI of �(xn �X��� ,a) is given by the solution
of the transcendental equation

xI��� =
�2

���1 + a�

exp�−
1

2��1 − a�xI +
�

�1 − a2	2�
erfc� �1 − a�xI

�2
+

�

�2�1 − a2	
.

�15�

Inserting the asymptotic expansion for large arguments of the
complementary error function

erfc�z� 

exp�− z2�

��z
�1 + �

m=1

�

�− 1�m1 � 3 ¯ �2m − 1�
�2z2�m 	 ,

�z → �, �arg z� �
3�

4
	 , �16�

which can be found in Ref. �19�, we obtain

xI��� 

− �

2�1 − a2�1 + O� 1

�2	� �� → �� . �17�

Figure 2 shows the posterior PDFs �(xn �X��� ,a) accord-
ing to Eq. �13� for different values of a and �. One can see
that the maximum of �(xn �X��� ,a) moves towards −� with
increasing size of � and a→1. Although we can always
formally define the maximum xI and the mean �xn� as pre-
cursor values, one can argue that the maximum of the distri-
bution has no predictive power if a→1. Since the variance
of the posterior PDF increases immensely in this limit, the
value of �(xn �X��� ,a) in its maximum does not considerably
differ from the values in any other point.

For large values of � we can also assume that the maxi-
mum and the mean of �(xn �X��� ,a) nearly coincide, i.e.,

FIG. 1. �Color online� Parts of the time series of the autoregres-
sive process of order 1 for different values of a.
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�xn� � xI 

− �

2�1 − a2�1 + O� 1

�2	� �� → �� , �18�

provided that �(xn �X��� ,a) is not too asymmetric �i.e., a is
not close to −1�. In the numerical tests in Sec. III C we will
hence use the mean of the posterior PDF as a precursor for
strategy I, since it can be calculated explicitly by evaluating
the corresponding integral.

In order to determine xII, the precursor for strategy II, we
have to find the maximum in xn of the likelihood

�„X����xn,a… =
1

2
erfc� �1 − a�xn

�2
+

�

�2�1 − a
	 . �19�

Since the complementary error function is a monotonously
decreasing function of xn we see that we do not have a well-
defined maximum xII, �we will thus denote xII=−�� and that
the interval V−= �−� ,x−� with the upper limit x− represents
the interval for raising alarms according to strategy II.

C. Testing the performance of the precursors

In order to test for the predictive power of the precursors
specified above, we used two different methods to create
ROC curves �see Sec. II B�. The first method consists in
evaluating the integrals that lead to the rate of correct and
false predictions,

rc�xpre,�,�� = 

V���

dxn�„xn�X���,a… , �20�

rf�xpre,�,�� = 

V���

dxn�„xn�X���,a… . �21�

The second method consists in simply performing predic-
tions on a time series of 107 AR�1� data and counting the
number of extreme increments, which could be predicted by
using the precursors specified above. For different values of
the correlation coefficients the data sets contained the fol-
lowing numbers of extreme increments:

a

Number of increments of size

�	0 �	2 �	4 �	8

−0.99 5000059 1579103 222858 310

−0.75 5000563 1425146 162405 107

0 5000417 786355 23370 0

0.75 5000818 23377 0 0

0.99 5001081 0 0 0

In all cases, where the AR�1�-correlated data sets contain
increments, the empirically determined rates comply very
well with the rates obtained via the evaluation of Eqs. �20�
and �21�. For those values of a and �, which were not ac-
cessible for the numerical test, we evaluated the integrals in
Eqs. �20� and �21�.

In the numerical tests for both strategies and also for the
evaluation of the integrals in Eqs. �20� and �21� according to
strategy I, the size of the precursory volume ranged from
10−6 to 4, measured in the size of the standard deviation of
the marginal PDF of the AR�1� ��a�=1/�1−a2. As precur-
sors according to strategy I we used the means of the a
posteriori PDF. For the empirically created ROC plots ac-
cording to strategy II we used the smallest values of the data
sets as precursors.

The evaluation of the integrals in Eqs. �20� and �21� was
done in a slightly different way for strategy II. Since there
were no events in the data sets for certain values of a and d
�as indicated in the table above�, one could argue that the
data sets also did not contain any precursor. From the previ-
ous section, we know that the theoretical precursor value
according to strategy II should be xII=−�. Thus, we used a
sufficiently small value as a precursor and adjusted the size
of the prediction interval in order to capture all events. How-
ever, the resulting ROC curves for strategy II coincided with
the curves obtained empirically, as far as they were available.

The resulting ROC curves in Fig. 3 display the following
properties:

Addressing �Q1�: The predictions according to strategy II
are better than the predictions according to strategy I for all
values of a and �.

Addressing �Q2�: The ROC curves display an increase of
the quality of our prediction with the increasing size of the
events �.

Addressing �Q3�: The ROC curves in Fig. 3 show that the
quality of the predictions increases with decreasing correla-
tion strength a. Especially for a=0, when the predictions
were made within completely uncorrelated random numbers,

FIG. 2. �Color online� The a posteriori PDFs for the autoregres-
sive process of order 1 for different values of a�0 and �. The
vertical lines represent the means. The PDFs become asymmetric
for a→−1. �For a=−0.99 and �→� the marginal PDFs become
very flat and hence cannot be distinguished from the x axis in this
figure.�
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the ROC curves are far better than ROC curves for any ran-
dom prediction. This is in agreement with results reported in
Ref. �21� for the prediction of signs of increments in uncor-

related random numbers, i.e., the case �a=0, �=0�.
Intuitively, the result for �Q3� can be understood easily by

considering that increments are not independent from the last
observation. More precisely, xn+1−xn= �a−1�xn+
n, so that
the known part of the increment �a−1�xn is the larger, the
smaller a. In other words, if we consider a very small value
of xn �small compared to the mean� in an uncorrelated pro-
cess, the probability that the next value will be closer to the
mean and hence lead to a large increment is high. Positive
correlation hinders this effect, since it causes successive val-
ues to be closer to each other.

A formal explanation of the results �Q1�–�Q3� is also
given by an asymptotic expression for the slope m�a ,� ,xpre�
in the following section.

D. Analytical discussion of the precursor performance

In this section, we will try to understand the effects shown
by the ROC curves in the previous section in more detail.
Thus, we evaluate the asymptotic structure of the likelihood
ratio as defined by Eq. �3� for different scenarios.

In the case of the AR�1� process the slope of the ROC
curve in the vicinity of the origin is given by

m�a,�,xpre� 

�1 − �
����

�
���
r�xpre,�� , �22�

with r�xpre,�� =

erfc� �1 − a�xpre

�2
+

�

�2�1 − a2	
1 + erf� �1 − a�xpre

�2
+

�

�2�1 − a2	
.

�23�

Addressing �Q1�: We will first consider the behavior of
the precursor according to strategy II. As we saw in Sec.
III B, the optimal precursor value of strategy II is the limit-
ing case xII=−�.

Since limxpre→−�r�xpre ,��=� we find
limxpre→−�m�a ,� ,xII�=�. Thus, we should expect ROC
curves made with xII=−� to be tangent to the vertical axis of
the curve and hence represent an ideal predictability for all
sizes of events and all possible correlation strengths. How-
ever, for any finite precursor value of strategy I and strategy
II we find nonideal ROC curves.

Another way to understand the superiority of strategy II is
to analyze the asymptotic behavior of the rate of correct pre-
dictions �(xn �X��� ,a) and the rate of false alarms,
�(xn �X��� ,a) at the precursor value of strategy I. For the
following calculations we use an approximation for the total
probability to observe extreme events:

�
��,a� 

�1 − a

��

1

�
exp�−

�2

4�1 − a�	�1 + O� 1

�2	�
�� → �� , �24�

which is derived in Appendix A.
Inserting the asymptotic expression for �
�� ,a�, the ap-

proximation of xI in Eq. �A3� and the asymptotic expansion

FIG. 3. �Color online� The ROC curves made for the precursors
of strategies I and II. The thin lines represent the results of strategy
I; the bold lines correspond to predictions made according to strat-
egy II. In both cases the predictions were made within 107 AR�1�-
correlated data. For the values of � and a, where the data sets
contained no increments, we created the ROC curves by evaluating
the integrals in Eqs. �20� and �21�.
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of the complementary error function Eq. �16� into Eqs. �13�
and �14�, we find the following expressions:

�„xI�X���,a… 

�1 − a2�1 + a

��

�1 + O� 1

�2	�
�1 + a + O� 1

�2	� �� → �� .

�25�

�„xI�X���,a… 

�1 − a2

�2�
exp�−

�2

8

1

�1 + O� 1

�2	��
�� → �� . �26�

Hence the value of �(xn �X��� ,a) at the precursor value ap-
proaches a constant for large �, whereas the values of
�(xn �X��� ,a) decrease exponentially in this limit. Figure 4
illustrates this effect for the case a=−0.75. The maximum of
the failure PDF remains at the origin for �→�. Thus the
values of this PDF, which are observed at the decreasing
precursor value xI�

−�

2�1−a2 , decrease according to the shape of
the distribution. This explains also the success of strategy II.
Since the precursor value obtained by strategy II is the small-
est possible value, strategy II seems to focus on the minimi-
zation of the failure rate. Note that by “minimization of the
failure rate,” we understand here a minimization of the inte-
grand in Eq. �21�, while the alarm interval of size � remains
constant. The fact that in this point the corresponding value
of �(xn �X��� ,a) is also far away from the maximum of
�(xn �X��� ,a) does not apparently influence the outcome of
the prediction.

Addressing �Q2�: In the following calculation we will ob-
tain the asymptotic form of the likelihood ratio for large
events. Inserting the asymptotic form of the probability
�
�� ,a� provided by Eq. �A4�, and using the asymptotic
expansion of the complementary error function in Eq. �16�,
the likelihood ratio reads

m�a,�,xpre�



1

2�1 − a

� exp� �2

4�1 − a�
− z��,a�2	�1 + O� 1

�2	�
z��,a��1 + O� 1

�2	� + O�exp„− z��,a�2
…�

+ O� exp„− z��,a�2
…

z
	�� → ��, �z��,a� → ��

with z��,a� =
�1 − a�

�2
xpre +

�

�2�1 − a2
. �27�

Note that the limit z�� ,a�→� corresponds to the limit �
→� in the context of �Q2�, but we can also interpret it as the
limit a→ ±1 in the context of �Q3� if ��0.

The expression in Eq. �27� tends to infinity in the limit
�→�, if the argument of the exponential function in Eq.
�27�

f�xpre,a,�� =
�2

4�1 − a�
− � �1 − a�xpre

�2
+

�

�2�1 − a2	2

�28�

is positive. This is indeed the case for every precursor value
xpre�0. Therefore, for both strategies of prediction, the slope
m�xpre ,a ,�� increases as a squared exponential with increas-
ing size of the events � according to Eq. �27�. Hence, the
considerations of Sec. II B hold for our example, according
to which an event is the better predictable the more rare it is.

Addressing �Q3�: One can also calculate the asymptotic
behavior of the likelihood ratio for a→ ±1. The limit
z�� ,a�→�, which is relevant for the asymptotic form in Eq.
�27�, can also be interpreted as the limit a→ ±1. We assume
that � is big enough, e.g., ��2, such that Eq. �A4�, which
enters into Eq. �27�, is a useful approximation. One can now
discuss again the argument of the exponential function in Eq.
�28�.

Inserting the precursor of strategy I �as given by Eq. �17��,
one obtains f�xI ,a ,��= �2

8 , hence

m�a,�,xI� →� 2

1 + a
exp��2

8
	 �z��,a� → �� . �29�

As a→1, this expression converges to exp��2 /8�. As a→
−1, this expression approaches infinity as m�1,� ,xI�

1/�1+a. Figure 5�a� illustrates this behavior. Figure 5�b�
shows that the asymptotic expression in Eq. �29� becomes
better in the limit �→�, since in this limit the higher-order
terms of the approximation vanish even faster.

FIG. 4. �Color online� �(xn �X��� ,a) and �(xn �X��� ,a) for a=
−0.75. The maximum of the posterior PDF to observe extreme
events �(xn �X��� ,a), which is used as a precursor, moves towards
−� with increasing � since xI
−� / �2�1−a2��. Because the maxi-
mum of the failure posterior PDF �(xn �X��� ,a) remains at the ori-
gin, the values of �(xn �X��� ,a), which are observed at the precursor
value xI decrease according to the decrease of �(xn �X��� ,a) as xn

→−�.
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For the theoretical precursor of strategy II, xII=−�, the
slope would be independent of the value of the coupling
strength if the exact precursor of strategy II could be used.
For any real precursor value of strategy II, xII=const�0, Eq.
�28� reads

f�xII,a,�� 

�2

2�1 − a��1

2
−

1

1 + a
	 + O��1 − a�� �a → 1� .

�30�

This expression approaches a small negative value close to
zero in the point a=1. Hence, we find m�a ,� ,xII�
1, as a
→1.

In the limit a→−1 and for any finite precursor value xII
=const�0, Eq. �28� reads

f�xII,a,�� 

�2

4
�1

2
−

1

1 − a2	 −
2xII�

�1 − a2
− 2xII

2


 −
1

1 − a2

�2

4
−

2xII�

�1 − a2
− 2xII

2 . �31�

If the precursor is sufficiently small, e.g., xII
�−� / �4�1−a2�, this expression is positive and hence
m�a ,� ,xII�→�, as a→−1.

Hence, the asymptotic expressions of the likelihood ratio
are able to describe the behavior of the ROC curves, shown
in the previous section. Figure 6 combines the dependence of
the likelihood ratio on the event size and the correlation
strength. One can see that the influence of the event size on
the likelihood ratio is dominating, as long as one does not
approach the singularity at a→−1.

IV. APPLICATION: WIND SPEED MEASUREMENTS

As an illustration of the preceding considerations and also
in order to demonstrate the usefulness of the benchmarks

derived for AR�1� processes, we study here time series data
of wind speed measurements. The data are recorded at 30 m
above ground by a cup anemometer with a sampling rate of
8 Hz in the Lammefjord site of the Risø research center �22�.
Wind speed data are evidently nonstationary and strongly
correlated, so that, e.g., the principle of persistence yields
surprisingly accurate forecasts: the very simple prediction
scheme x̂n+1=xn is almost as accurate as an AR�20� process
fitted on moving windows �in order to take nonstationarity
into account� or order-ten Markov chains �18�. The ampli-
tude of the fluctuations around a time local mean value are
proportional to this mean value, i.e., there is statistical evi-
dence that the noise in this process is multiplicative. How-
ever, when subtracting the time local mean �more precisely,
performing a high-pass filtering with a Gaussian kernel with
a standard deviation of 75 time steps�, we receive data for
which it is reasonable to fit an AR�1� process. When doing
so, we find a coefficient a�0.94.

Turbulent gusts, i.e., sudden increases of the wind speed,
are relevant events, e.g., for the save operation of wind tur-
bines, for aircrafts during takeoff and landing, and for all
wind-driven sports activities. In previous work �7� we were
therefore concerned with their prediction, where we were
studying the performance of a Markov chain model. Here,
we will restrict ourselves to the simpler �and less appropri-
ate� AR�1� philosophy: The current state of the process gen-
erating the wind time series is assumed to be fully specified
by the last observation xn, and the event is assumed to be
characterized by the upward jump of the wind speed in a
single time step by more than g m/s.

A. Determining the precursor value

If we extract from the data set all subsequences of data
where such a jump is present, then we can, in principle,
construct empirically the distribution p�xn �g�, which corre-
sponds to ��x�n,k� �X� of strategy I.

In Fig. 7 we show instead the mean value of p�xn+k �g� for
k=−20, . . . ,20, i.e., we show the mean profile of gusts of
strength g. Otherwise said, this is an average of all those time
series segments, which �in shifted time� fulfill x1−x0�g, so
that the part of these segments with k�0 is what one would
call naively a precursor of a gust event. This has to be com-
pared to the values xn+k, which we find when we focus on the

FIG. 5. �Color online� The bold lines show the dependence of
the slope m�xI ,a ,�� on the coupling strength according to Eq. �27�.
The thin lines display the asymptotic behavior given by Eq. �29�.
The constant lines represent the values, obtained from Eq. �29� in
the limit a→1. �b� illustrates that this asymptotic expression be-
comes better in the limit �→�, since in this limit the higher-order
terms in the approximation vanish even faster.

FIG. 6. �Color online� The asymptotic dependence of the slope
m�xI ,a ,�� on the coupling strength and the event size, if the pre-
cursor of strategy I is used.
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maximum xII in xn of p�g �xn�, which corresponds to the con-
ditional probability ��X �xn� of strategy II. More specifically,
in Fig. 8 we show the profiles ��xn+k��xn=xII

, where xII is de-
fined by p�g �xII�=maxxn

. In even different words, the value
plotted at k=0 is the value xn for which p�g �xn� is maximal,
and at the preceding and succeeding time steps we show the
average over all time series segments that fulfill xn=xII is
some precision. These profiles differ from the precursors
shown before, as we have to expect for an AR�1� process: In
a perfect autoregressive process of order 1, the precursors
equivalent to those in Fig. 7 would show a jump larger than
g from k=0 to k=1, with x0=−x1, and with xk=akx0 for k
�0, and xk=akx1 for k�1. For the same idealized process,
one expects Fig. 8 to show curves given by xk=a�k�xII for all
k. Evidently, the wind data show a qualitatively very similar
behavior, whereas, however, additional correlations are vis-
ible.

B. Testing for predictive power

The ROC curves for the two prediction strategies are
shown in Figs. 9 and 10. As expected, the minimization of
false alarms �strategy II� is here superior, as strategy I has no
predictive power. The latter is consistent with the observed
value a�0.94 and the results for the autoregressive process
of order 1.

In order to compute the ROC curves we use the following
numerically expensive but theoretically best justified algo-
rithm: In theory, we want to generate an alarm if the current
observation xn lies in an interval V, which is defined by the
subset of the R where either p�g �xn� or p�xn �g� exceeds
some threshold 0� pc�1. We assume that both conditional
PDFs are smooth in xn.

We can locally approximate p�g �xn� by searching all simi-
lar states xj, with �xn−xj � �� and counting the relative num-
ber of events in this set of states. When this number exceeds
pc, we give the alarm and can see whether it is a hit or a false
alarm.

FIG. 7. The profiles obtained from the mean of p�xn+k �g� for
gust events of amplitude g. Also shown is the theoretical profile for
an AR�1� process with a=0.94.

FIG. 8. The profiles obtained from the maxima of p�g �xn+k� for
gust events of amplitude g. Also shown is the theoretical profile for
an AR�1� process with a=0.94.

FIG. 9. �Color online� The ROC curves using strategy I, exploit-
ing p�xn �X� and maximizing the hit rate. Evidently, the rate of false
alarms exceeds the hit rate.

FIG. 10. �Color online� The ROC curves for the prediction of
jumps of amplitude larger than g for the wind data. Strategy II
exploits p�X �xn�, which minimizes the false alarm rate and per-
forms the better the larger g.
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In order to evaluate p�xn �g� we first create the set of all
states xe, which are preceding an event, and then compute the
fraction of these, which is � close to the current state xn.
Since this fraction evidently depends on the value of �, we
should introduce a normalization. However, in order to cre-
ate the ROC statistics we just have to introduce a threshold,
which runs from zero to the largest value thus found. Both
schemes can be straightforwardly generalized to situations
where the current state of the process is defined by a se-
quence x�n,k� of k past measurements �xn−k+1 ,xn−k+2 ,
. . . , ,xn−1 ,xn�, e.g., for an AR�2� process k=2, whereas in
Ref. �7� we were using k=10 for a Markov chain of order
ten.

Since the wind speed data are strongly correlated, a
�0.94, it is not possible to predict the increments of the data
sufficiently well. This corresponds to the previously derived
results for the AR�1� process in the limit a→1. However, we
also find deviations from the theoretical ROC curve for a
=0.94, which is additionally plotted in Figs. 9 and 10. These
deviations show that the AR�1� process is not able to de-
scribe the wind data completely.

The wind data also show the increase of predictability
with increasing event size. This suggests that this effect is
more general and not limited to the class of AR�1� processes.
Again, we also observe that strategy II is superior to strategy
I.

V. EXTREME INCREMENTS IN LONG-RANGE
CORRELATED PROCESSES

We studied the same questions, which are described be-
fore, in long-range correlated processes. Since the precursors
we were interested in live on a very short time scale �one
step before the event�, one should not expect long-range cor-
relations to lead to qualitatively different results for the as-
pects we were interested in. The results obtained in this sec-
tion support this assumption.

There are various definitions of long-range correlation.
Typically long-range correlation in a time series is character-
ized by the exponent 0��c�1 of the power-law decay of
the autocorrelation function as a function of the time t,

Cx�t� = �xnxn+t� =
1

N − t
�
n=1

N−t

xnxn+t 
 t−�c. �32�

The correlation coefficient �c is controlling how fast the cor-
relations decay.

We study the predictability of increments numerically by
applying the prediction strategies described in Sec. II A. The
data used for this numerical study were generated as de-
scribed in Ref. �23� and used in Ref. �24�: Imposing a power-
law decay on the Fourier spectrum,

fx�k� � k−�, �33�

with 0���0.5 and choosing phase angles at random one
obtains through an inverse Fourier transform the long-range
correlated time series in x with �c=1−2�. The data are
Gaussian distributed with �x�=0, �=1. Having specified the
power spectrum or, correspondingly, the autocorrelation

function for sequences of Gaussian random numbers means
to have fixed all parameters of a linear stochastic process.
Hence, in principle the coefficients of an autoregressive or
moving average process can be uniquely determined, where,
due to the power-law nature of the spectrum and autocorre-
lation function, the order of either of these models has to be
infinite �9,10�. Thus, the effects that we observed for this
autoregressive moving average process of order � and �
�ARMA�� ,�� process� model should be valid for the whole
class of linear long-term correlated processes.

The ROC curves in Fig. 11, which are generated from the
long-range correlated data are very similar to the ones for the
autoregressive process in order 1 in terms of the question we
want to study.

Addressing �Q1�: The ROC curves obtained by using
strategy II are superior to the curves resulting from strategy
I.

Addressing �Q2� and �Q3�: The quality of the prediction
also increases with increasing event size and decreasing cor-
relation.

Hence we observe the same effects that we described be-
fore for the autoregressive process in order 1 and the wind
speed data in a long-range correlated ARMA�� ,�� process.

VI. CONCLUSIONS

We studied the predictability of extreme increments in an
AR�1�-correlated process, in wind speed data, and in a long-
range correlated ARMA process. To measure the quality of
the prediction we used the ROC curve and additionally the
slope of the ROC curve in the vicinity of the origin as a
summary index. This so-called likelihood ratio characterizes
particularly the behavior in the limit of low false-alarm rates.

In the case of the AR�1� process we could construct the
posterior PDF and the likelihood analytically from a given
joint PDF and hence we were able to obtain the asymptotic
behavior of the likelihood ratio analytically. In the case of
the two other examples, we constructed the posterior PDFs
numerically. The resulting distributions were then used to
determine precursors according to two different strategies of
prediction.

In all examples we studied the aspects: �Q1� Which is the
best strategy to choose precursors? �Q2� How does the pre-
dictability depend on the event size? �Q3� And how does the
predictability depend on the correlation? The results can be
summarized as follows:

Addressing �Q1�: Strategy I, the a posteriori approach,
maximizes the rate of correct predictions, while strategy II
focuses on the minimization of the rate of false alarms. For
the example of the AR�1� process one can show that strategy
II is the optimal strategy to make predictions. For other sto-
chastic processes, it is not in general clear which of the two
strategies leads to a better predictability. However, the appli-
cation to the prediction of wind speeds and the numerical
study within long-range correlated data reveals that also for
these examples better results are obtained by predicting ac-
cording to strategy II.

Addressing �Q2�: For all examples studied, we observe an
increase of predictability with increasing size of the events.
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This phenomenon, which is also reported in the literature
�7,8,11�, can be better studied by investigating the
asymptotic behavior of our summary index. In the case of the
AR�1� process we showed explicitly that the likelihood ratio
increases as a squared exponential with increasing event size.
In Sec. II B we discussed for a general stochastic process that

this effect appears, if the PDFs of the studied process fulfill
certain conditions.

Addressing �Q3�: For the AR�1� process and the long-
range correlated data we observe that the correlation of the
data is inversely proportional to the quality of the predic-
tions. The ROC curves for the wind data, which we assume
to be a strongly correlated AR�1� process with correlation
strength a=0.94, display also a bad predictability. This effect
is due to the special definition of the events as increments.
The asymptotic expression for the likelihood ratio in Eq. �27�
provides us also with a formal understanding of the a depen-
dence.

All the considerations made in this contribution are made
for a very simple but general method. In order to make pre-
dictions, we use the largest maximum of the a posteriori
PDF or the likelihood. For multimodal distributions, one can
think about more sophisticated methods, which take into ac-
count also other maxima of the distribution. Furthermore, we
investigate only stationary processes in these contributions.
It remains to be studied, whether the answers obtained to the
questions �Q1�–�Q3� are also valid for nonstationary pro-
cesses or multimodal distributions.
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APPENDIX A: OBTAINING AN ASYMTOTIC FORM
OF THE TOTAL PROBABILITY TO FIND

INCREMENTS OF SIZE �

The total probability �
�� ,a� to find increments of size �
can be obtained by integrating the preform of the posterior
probability in Eq. �8�. For the example of the AR�1� process
the corresponding integral reads

�
��,a� = 

−�

� �1 − a2

2�2�
exp�−

1 − a2

2
xn

2	
� erfc� �1 − a�xn

�2
+

�

�2�1 − a2	 . �A1�

In the special case �=0 one can find the analytical form of
the total probability �
�0,a� using again an integral identity
from Ref. �20�. The resulting value �
�0,a�=1/2 corre-
sponds to the intuitive expectation one would have, since for
�=0 the condition of our extreme event is always fulfilled if
xn+1 is larger than xn. This special case of predicting the sign
of increments in uncorrelated data is discussed in Ref. �21�.

For ��0, we can find an asymptotic form of the total
probability �
�� ,a� via evaluating the mean of the posterior
PDF. An analytic expression of the mean can be obtained
using an integral representation from �20�

�xn� =

− exp�−
�2

4�1 − a�	
2���1 + a�
��,a�

. �A2�

For large values of � we can also assume that the maximum
and the mean of ��xn �X��� ,a� nearly coincide, i.e.,

FIG. 11. �Color online� ROC curves for the ARMA�� ,�� pro-
cesses with �c=0.2 and �c=0.8. For �=4 and �c=0.2 only few data
points were available.
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�xn� � xI 

− �

2�1 − a2�1 + O� 1

�2	� �� → �� , �A3�

provided that ��xn �X��� ,a� is not too asymmetric �i.e., a is
not close to −1�. Using this approximation, we find the fol-
lowing asymptotic form of the total probability to find incre-
ments of size �:

�
��,a� 

�1 − a

��

1

�
exp�−

�2

4�1 − a�	
� �1 + O� 1

�2	� �� → �� . �A4�

APPENDIX B: TRANSFORMATION OF EXTREME
INCREMENTS INTO EXTREME VALUES

We show how to relate the results obtained using the defi-
nition of extreme events as extreme increments �xn+1−xn
	d, as in Eq. �6�� to the case when extreme events are de-
fined as extreme values �yn+1	d�, which exceed a certain
threshold d, for autoregressive moving average processes of
orders p and q �ARMA�p ,q� processes�. An ARMA�p ,q�
process is defined as �9�

��B�xn = ��B�
n, �B1�

where �
� correspond to white noise and

��B� = 1 − �1B − �2B2 − ¯ − �pBp,

��B� = 1 + �1B + �2B2 + ¯ + �qBq,

with Bjxn=xn−j. Searching for extreme increments in a time
series �x� is equivalent to search for extreme values in the

time series �y�, defined through the transformation

yn+1 = xn+1 − xn. �B2�

Assuming that �x� is described by an ARMA�p ,q� process
defined by Eq. �B1�, and inserting Eq. �B2� in Eq. �B1�, one
obtains that �y� is described by an ARMA�p ,q+1� model
with the following transformed coefficients:

�i
† = �i, i = 1,2, . . . p ,

�i
† = �i − �i−1, i = 1,2, . . . q ,

�q+1
† = �q. �B3�

Due to the transformation �B2� the precursory structure
equivalent to the one used in Sec. III is obtained choosing
�25�

ypre = �
j=0

n

yj − x0 = xn. �B4�

With this choice of precursory structure and the correspond-
ing transformation of the process �Eq. �B2��, the results ob-
tained for extreme increments can be transferred to the case
of extreme values. In particular, for the case of autoregres-
sive processes in order 1 �which corresponds to an
ARMA�1,0�� discussed in Sec. III, all results are also valid
for an ARMA�1,1� process with the precursor given by Eq.
�B4� and events defined as extreme values. For example, the
alarm strategies consist in this case in raising an alarm when-
ever ypre falls near the precursor values given in Eq. �1�.
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