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I. INTRODUCTION

A swaption is an interest rate option that has a deep and
liquid market, and arguably is even the most liquid option on
interest rates that is available today. Participants in the swap-
tion market tend to focus their attention on the highly liquid
European swaptions, that is, swaptions that can be exercised
only on a single date. The theoretical price of these instru-
ments depends on the forward interest rates model being
used.

In quantum finance the forward interest rates are modeled
as a two-dimensional quantum field theory �2� and has
shown great advantage in pricing and hedging interest rate
options �3,4�. This encourages us to investigate the swaption
market in some detail within the quantum finance frame-
work. Swaptions can be expressed as a special case of cou-
pon bond options. Swaption pricing is a nonlinear problem
which usually needs to be studied numerically. However, as
shown in Baaquie �1�, henceforth called paper I, Feynman
perturbation expansion gives a closed form approximation
for the price and correlation of swaptions. All the pricing
formulas and empirical results for swaptions obtained in this
paper are also valid for the coupon bond option.

In Sec. II the relevant formulas for swaption price, vola-
tility, and correlation are reviewed and the computational
framework is defined. In Sec. III the data of swaptions and
zero coupon yield curve are discussed in some detail. Data
processing and computational procedures are discussed in
Sec. IV with some empirical results being given in Sec. V.

II. PRICE AND CORRELATION OF SWAPTIONS

We review the results, given in paper I, on swaption price,
volatility, and correlation that provide the analytical basis for
our empirical study.

Swaps and swaptions are financial instruments that are
widely used in the debt market. Swaps are interest rate de-
rivatives in which one party pays floating interest rate, deter-
mined by the prevailing Libor at the time of the payment,
with the other party paying at a prefixed interest rate RS. The
swaptions that we are studying have floating interest rate
payments that are paid at �=3 month intervals and fixed rate
payments that are paid at intervals of 2� =6 months. The
three monthly floating rate payments are paid at times T0
+n�, with n=1,2 , . . . ,N; there are N payments. For six

monthly fixed rate payments there are only N /2 payments1

of amount 2RS, made at times T0+2n�, n=1,2 , . . . ,N /2.
The payoff function for the interest rate swaption, in

which the holder of the option receives at the fixed rate and
pays at the floating rate, is given in paper I by �5�

C�T0;RS�

= V�B�T0,T0 + N � � + 2 � RS�
n=1

N/2

B�T0,T0 + 2n � � − 1�
+

= V��
n=1

N/2

cnB�T0,T0 + 2n � � − 1�
+

, �1�

where B�t ,T� is the price of a zero coupon Treasury Bond at
time t that matures at time T� t. The coefficients and strike
price for a swaption are hence given by

cn = 2 � RS, n = 1,2, . . . ,�N − 1�/2,

payment at time T0 + 2n � ,

cN/2 = 1 + 2 � RS, payment at time T0 + N � ,

K = 1. �2�

The fixed interest rate par value RP, at time t0, is such that
the value of the interest rate swap has zero value. Hence

�
n=1

N/2

cnB�t0,T0 + 2n � � − 1

= 0 ⇒ 2 � RP�t0� =
B�t0,T0� − B�t0,T0 + N � �

�
n=0

N/2

B�t0,T0 + 2n � �

. �3�

The price of a coupon bond option C�t0 , t* ,RS� at time
t0� t*, using the money market measure and discounting the
value of the payoff function using the spot interest rate r�t�
= f�t , t�, is given from Eq. �1� by

1Suppose the swaption has a duration such that N is even. Note
N=4 for a year long swaption.
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C�t0,t*,RS� = VE�e−	t0

t*dtr�t���
n=1

N/2

cnB�t*,t* + 2n � � − 1�
+


 ,

�4�

where V is the notional deposit on which the interest is cal-
culated; we set V=1.

The option price has been derived in paper I and yields
the results given below,2

C�t0,t*,RS� = B�t0,t*�� A

2�
� B

6A3/2X +
C

24A2 �X2 − 1�

+
1

72

B2

A3 �X4 − 6X2 + 3��e−�1/2�X2

+ B�t0,t*�� A

2�
I�X� + O��4� , �5�

I�X� = e−�1/2�X2
−��

2
X�1 − �� X

�2
�
 , �6�

X =
K − F
�A

, �7�

F � �
i=1

N

Ji,

Ji � ciFi, Fi � Fi�t0,t*,Ti� = exp�− 

t*

Ti

dxf�t0,x��
�8�

Fi are the forward bond prices; coefficients ci and strike price
K are given in Eq. �2� in terms of the fixed interest rate RS.
For a swaption initialized at time t0 to be at the money, the
fixed interest rate RS is equal to the par value RP�t0�.

The coefficients in the option price are given in paper I by

A = �
ij=1

N

JiJj�Gij +
1

2
Gij

2� + O�Gij
3 � ,

B = 3 �
ijk=1

N

JiJjJkGijGjk + O�Gij
3 � ,

C = 16 �
ijkl=1

N

JiJjJkJlGijGjkGkl + O�Gij
4 � . �9�

The market correlator Gij of the forward bond prices has
been derived in paper I. Gij for different quantities is defined
over different domains of the forward interest rates and this
results in the integration of the forward interest rates corre-
lation function over different integration limits. The exact
form of the various integrations will be discussed later with

the other correlators that are required for the computation of
swaption volatility.

The input data that we need for computing the swaption
price can be derived from the underlying forward interest
rates’ data and yield the coupon bond price, the forward bond
price, and the fixed rate par value RP.

A. Swaption at the money

Recall the par value of the fixed interest rate RP�t0� is the
value for the fixed interest payments for which the swap at
time t0 is zero. From Eqs. �8� and �3� fixed interest rate equal
to par value, namely RS=RP, implies the following:

F � F�t0� = �
i=1

N/2

ciF�t0,T0,T0 + 2i � �

= �
i=1

N/2

2 � RPF�t0,T0,T0 + 2i � � + F�t0,T0,T0 + N � �

=
B�t0,T0� − B�t0,T0 + N � �

�
n=0

N/2

B�t0,T0 + 2n � �
�
i=1

N/2

F�t0,T0,T0 + 2i � �

+ F�t0,T0,T0 + N � � = 1. �10�

In the coupon bond option pricing formula X= �F−K� /�A
and for swaptions K=1. Hence when the fixed interest rate
RS for the swaption is at the money F=1 and this leads to
X= �F−K� /�A=0. As discussed in paper I, the asymptotic
behavior of the error function yields the following:

I�X� = 1 −��

2
X + 0�X2�, X � 0 �11�

and hence the swaption close to the money, to leading order,
has the form

C�t0,t*,RP� � B�t0,t*�� A

2�
−

1

2
B�t0,t*��K − F� + O�X2� .

�12�

B. Volatility and correlation of swaptions

The volatility and correlation of swaption prices are im-
portant quantities since they are indicators of the market’s
direction and also give us insights on portfolio study.

Consider the volatility and correlation of the change of
swaption price for infinitesimal time steps. Let C1
�C�t0 , t1 ,R1� and C2�C�t0 , t2 ,R2� denote two swaptions.
Denote time derivative by an upper dot; for infinitesimal
time step � we have

�Ċ1Ċ2�c =
1

�2 ��C1�t0 + �� − C1�t0���C2�t0 + �� − C2�t0���c

=
1

�2 ��C1�t0��C2�t0��c, �13�

where the connected correlator is defined by �AB�c��AB�
− �A��B�.2The error function is given by ��u�= �2/���	0

udWe−W2
.
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Note the swaption prices C1 ,C2 depend on the forward
bond prices Fi, which take random values every day. The
random changes in the price of the forward bond prices lead
to changes in the price of the swaption. The correlation func-
tion ��C1�t0��C2�t0��c can be evaluated by a historical aver-
age over the daily swaption prices, considered as the random
outcomes of the swaption price due to the random changes in
the forward bond price. Hence a historical average of the
correlator of changes in the swaption price can be equated to

the ensemble average of the correlator taken over the random
fluctuations of the forward bond prices.

The field theory of forward interest rates yields, from pa-
per I, that

� ḟ�t,x� ḟ�t,x���c =
1

�
M�t,x,x�� . �14�

From the pricing formula given in Eq. �12�, the swap-
tion’s rate of change at the money, namely X=0, is given by

the following:

�2�
dC�t0,tI,RP�

dt0
=

dB�t0,tI�
dt0

�AI +
1

2�AI

dAI

dt0
+��

2
B�t0,tI�

dF

dt0

= DI − C�t0,tI,RP�

t0

tI

dxḟ�t0,x� −
B�t0,tI�

�AI
�
ij=1

I

JiJjGij

tI

Tj

dxḟ�t0,x� −��

2
B�t0,tI��

i=1

N

Ji

tI

Ti

dxḟ�t0,x� , �15�

where tI denotes t1 or t2 and DI contains all the deterministic �nonstochastic� factors that are subtracted out in forming the
connected correlation functions.

To determine Ċ, as seen from the equation above, one needs ḟ�t0 ,x�, namely the evolution equation of the quantum field
f�t ,x�, and is discussed in paper I. The evolution equation of f�t ,x�, together with Eqs. �14� and �15�, yields the following:

2����C1�t0��C2�t0��c = C1C2

t0

t1

dx

t0

t2

dx�M�t0,x,x�� +
B�t0,t2�

�A2

C1 �
j j�=1

N2

Gjj�JjJj�

t0

t1

dx

t2

Tj

dx�M�t0,x,x��

+
B�t0,t1�

�A1

C2 �
ii�=1

N1

Gii�JiJi�

t0

t2

dx

t1

Ti

dx�M�t0,x,x��

+
B�t0,t1�B�t0,t2�

�A1A2

C1C2 �
ii�=1

N1

�
j j�=1

N2

Gii�JiJi�Gjj�JjJj�

t1

Ti

dx

t2

Tj

dx�M�t0,x,x��

+��

2
B�t0,t2�C1�

j=1

N2

Jj

t0

t1

dx

t2

Tj

dx�M�t0,x,x�� +��

2
B�t0,t1�C2�

i=1

N1

Ji

t0

t2

dx

t1

Ti

dx�M�t0,x,x��

+��

2

B�t0,t1�B�t0,t2�
�A1

�
ii�=1

N1

�
j=1

N2

Gii�JiJi�Jj

t1

Ti

dx

t2

Tj

dx�M�t0,x,x��

+��

2

B�t0,t1�B�t0,t2�
�A2

�
i=1

N1

�
j j�=1

N2

JiGjj�JjJj�

t1

Ti

dx

t2

Tj

dx�M�t0,x,x��

+
�

2
B�t0,t1�B�t0,t2��

i=1

N1

�
j=1

N2

JiJj

t1

Ti

dx

t2

Tj

dx�M�t0,x,x�� , �16�

where A1 and A2 denote A for the two swaptions, respec-
tively.

C. Market correlator

The forward bond price correlator Gij, the swaption cor-
relator, and volatility are all computed from a set of three-
dimensional integrations on M�t ,x ,x�� with various integra-

tion limits. A general form of all the integration is given as
follows:

I = 

t0

m1

dt

m2

d1

dx

m3

d2

dx�M�t,x,x�� �17�

and the limits of integrations are listed in Table I.
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Note that for quantities appearing in swaption price and
volatility function, the swaption maturity is at t* and the two
indices i and j run from 1 to N, with the last payment being
made at TN. For the swaption correlation, options mature at
two different times t2� t1, and hence two indices i , j have the
range i=1,2 , . . . ,N1 and j=a ,a+1, . . . ,N2 where the last
payments are made at TN1 and TN2, respectively. In the next
section, we examine the data in detail in order to compute I.

III. DATA FROM SWAPTION MARKET

The swaption market provides daily data for X by Y swap-
tions. These swaptions mature X years from today, with the
underlying swap starting at time X and the last payment be-
ing paid X+Y years in the future. The domain for the swap-
tion instrument is given in the time and future time tx plane
in Fig. 1.

All the prices are presented with interest rates in basis
points �100 basis points	1% annual interest rate� and must
be multiplied by the notional value of one million dollars.
Daily swaption prices at the money are quoted from January
29, 2003 to January 28, 2005, a total of 523 daily data. In
order to get accurate results, actual days in the real 6 months
are divided by 360, since the convention for total number of
days in a year is 360.

ZCYC data. In order to generate swaption prices and
swaption correlation from the model, both the historical and
current underlying forward interest rates are required. The
value of the coupon bond and forward bond price and the par
fixed rate RP are computed from the current forward interest
rates. The integrand of the forward bond correlator Gij,
namely M�t ,x ,x��, is derived from historical forward interest
rates’ data.

Our analysis uses Bloomberg data for the zero coupon
yield curve �ZCYC�, denoted by Z�t0 ,T�, from January 29,
2003 to January 28, 2005, and which yields, in total, 523
daily ZCYC data. The ZCYC is necessary for evaluating
long duration swaptions since Libor data exist for maturity of
only up to a maximum of 7 years in the future, whereas
ZCYC has data with maturity of up to 30 years.

The ZCYC is given in the 
=x− t	constant direction as
shown in Fig. 2, with the interval of 
 between two data

points not being a constant. Cubic spline is used for interpo-
lating the data to a 3 month interval.

From Ref. �5� we have that the zero coupon bond is given
by

B�t0,T� =
1

�1 + Z�t0,T�/c��T−t0�*c , �18�

where c represents how many times the bond is compounded
per year. For ZCYC c is given as half yearly, and hence we
have c=2/year. As expected the forward bond price is given
by

F�t0,t*,T� =
B�t0,T�
B�t0,t*�

. �19�

From the definition of the zero coupon bond,

B�t0,T� = exp�− 

t0

T

dxf�t0,x�� ,

we obtain, from Eq. �18�, the following:



t0

T

f�t0,x�dx = ln��1 + Z�t0,T�/c��T−t0�*c� . �20�

Note the important fact that the bond market directly pro-
vides the ZCYC, which is the integral of the forward interest
rates over future time x. One can numerically differentiate
the ZCYC to extract f�t ,x�; this procedure does yield an
estimate of f�t ,x�, but with such large errors that it makes the
estimate quite useless for empirically analyzing swaption
pricing. Hence we develop numerical procedures directly
based on the ZCYC.

All data required for calculating a swaption’s price can be
obtained directly from the ZCYC data. The interpolation of
ZCYC data and the convention used by Bloomberg have
been empirically tested by comparing the computed RP �from
Eq. �3�� with the one given by market, and the result con-
firms the correctness of our computation.

FIG. 1. The shaded area is the domain for evaluating the price of
a swaption. For 2�10 swaption t*= t0+2 year and TN= t*+10 year.

FIG. 2. Zero coupon yield curve data on lines of constant 
; the

 interval is 3 months by cubic spline. 
N=30 years.
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IV. NUMERICAL ALGORITHM FOR THE FORWARD
BOND CORRELATOR

The market value of the forward bond price correlator I
given in Eq. �14� can be derived from ZCYC data. From Eq.

�14� and for discrete time ḟ ��f /� the correlation for
changes in the forward interest rates is given by �2�

M�t,x,x�� =
1

�
��f�t,x��f�t,x���c,

�f�t,x� = f�t + �,x� − f�t,x� . �21�

Thus, we have for the forward bond correlators the follow-
ing:

I =
1

�



t0

m1

dt

m2

d1

dx

m3

d2

dx���f�t,x��f�t,x���c. �22�

From Table I we see that none of the limits on the integra-
tions over x ,x� depend on the time variable t; hence the finite
time difference operator � can be moved out of the x ,x�
integrations and yields

I =
1

�



t0

m1

dt���

m2

d1

dxf�t,x����

m3

d2

dx�f�t,x����
c

.

�23�

We keep to the x and x� integration variables instead of
changing them to 
 and 
� since, as discussed earlier, ZCYC
data directly yield the integrals of forward interest rates on
future time x. The numerical values of 	m2

d1 dxf�t ,x� and
	m3

d2 dx�f�t ,x�� are obtained from the market values of the
ZCYC.

To evaluate the market correlator I one needs to know the
value of the correlator M�t ,x ,x�� in the future; the reason
being that the time integration t in I runs from present time
t0 to time m1� t0 in the future. The problem of obtaining the
future values of M�t ,x ,x�� can be solved by assuming that
the correlation function for changes in the forward interest
rates is invariant under time translations; that is

M�t,x,x�� = M�t − a,x − a,x� − a� . �24�

The assumption of time translation invariance of the forward
rates correlation function has been empirically tested in Ref.
�6�; although this assumption cannot be indefinitely ex-
tended, a 2 year shift is considered to be reasonable �6�.

The integration on the t axis can be converted to a sum-
mation by discretizing time into a lattice with spacing ��; one
then obtains

I = �� �
tk=0

m1−t0 

m2

d1

dx

m3

d2

dx�M�t0 + tk,x,x�� . �25�

From Eq. �25� and a change of variables yields

x = y + tk, x� = y� + tk.

We hence have from Eq. �25�,

I = ���
tk



m2−tk

d1−tk

dy

m3−tk

d2−tk

dy�M�t0 + tk,y + tk,y� + tk�

= ���
tk



m2−tk

d1−tk

dy

m3−tk

d2−tk

dy�M�t0,y,y�� , �26�

where the condition given in Eq. �24� has been used to obtain
Eq. �26�. The integration on future data has been replaced by
a summation on the current value of M�t0 ,x ,x��, with x ,x�
taking values on various intervals. The current value of
M�t0 ,x ,x�� in turn is evaluated by taking averages of the
correlator over its past values.

From above and Eqs. �21�, �23�, and �26� we have

I =
��

�
�
tk
�


m2−tk

d1−tk

�f�t0,y�dy

m3−tk

d2−tk

�f�t0,y��dy��
c

=
��

�
�
tk
���


m2−tk

d1−tk

f�t0,y�dy���

m3−tk

d2−tk

f�t0,y��dy���
c

.

As discussed earlier, in order to directly use the ZCYC data
the finite time difference operator � is taken outside the fu-
ture time integrations. Note �� is the time integration interval
and is equal to �; for the time summation with daily intervals
�=��= 1

260 �260 is the actual number of trading days in one
year�.

Reexpressing I in terms of the ZCYC data we obtain

I =
��

�
�
tk

��Y�t0,m2 − tk,d1 − tk��Y�t0,m3 − tk,d2 − tk��c,

where, from Eq. �20�, we have

Y�t0,t*,T� = 

t*

T

f�t0,x�dx = 

t0

T

f�t0,x�dx − 

t0

t*

f�t0,x�dx

= ln�„1 + Z�t0,T�/c…�T−t0�*c�

− ln�„1 + Z�t0,t*�/c…�t*−t0�*c� . �27�

The forward bond price correlator’s present value �at time
t0� is obtained by averaging the value of the correlator
��Y�t0 ,m2− tk ,d1− tk��Y�t0 ,m3− tk ,d2− tk�� over the last t0

− tA days with tA=180 days.3 Since the computation requires
the value of �Y for different future time intervals x ,x� we
must again use cubic splines to interpolate ZCYC for obtain-
ing daily values of the ZCYC. The shift of the future time
integration to the present and the domain used for doing the
averages for the correlator is illustrated in Fig. 3.

V. EMPIRICAL RESULTS

The 2�10 and 5�10 swaptions are priced for time series
April 6, 2004–January 28, 2005 using the pricing formula
from Sec. II. When computing the forward interest rates’

3We ran the program by adding 30 days to the time averaging for
evaluating the expectation values of the correlators; the best fit is
given when the averaging is done over the past 180 days; see Sec.
V.
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correlator M�t ;x ,x�� we found that daily swaption prices are
stable when more than 270 days of historical data for ZCYC
are used; but a 270-day average does not give the best fit of
the predictions of model swaption price with the swaption’s
market value. This may be due to too much old information
creating large errors in the predictions for the present day
swaption prices. However, averaging on less historical data
causes the swaption price curve to fluctuate strongly since it
is likely that new information dominates swaption pricing
and makes the price too sensitive to small changes.

Our empirical studies and results show that a moving av-
eraging of 180 days of historical data gives the best result for
this period. One can most likely improve the accuracy by
higher frequency sampling of 180 days of historical data.

The results obtained from the field theory model are com-
pared with daily market data and are shown in Figs. 4 and 5,
with normalized root mean square of error being 3.31% and
6.31%, respectively.

The results for the swaption volatility and correlation dis-
cussed in Sec. II B are derived for the change on the same
instruments; from Eq. �22�

�C1 � C1�t0 + �� − C1�t0� � C1�t0 + �,RS� − C1�t0,RS� ,

�28�

where C1�t0+�� and C1�t0� are the same contract being
traded on successive days. Par fixed rate RP is determined
when the contract is initiated at time t0, and the swaption
C1�t0� is at the money. However, in general C1�t0+�� is away
from the money; the reason being that the swaption depends
on the forward bond prices Fi, and these change every day
and hence there is a daily change in the par fixed rate Rp.
From the market we only have the price of the swaption at
the money. Historical data for the daily prices of swaptions
in the money and out of the money are not quoted by
Bloomberg. Hence, only the swaption volatility and correla-
tion computed from the model are shown in Fig. 6, without
any comparison made with the market value for these quan-
tities.

Comparison of field theory pricing with HJM model. In
order to see how the field theory model compares with the
industry standard one factor HJM model, we empirically

TABLE I. The various domains of integration for evaluating the
integral I=	t0

m1dt	m2
d1 dx	m3

d2 dx�M�t ,x ,x�� that are required for com-
puting the coefficients in the swaption price and correlators.

m1 m2 m3 d1 d2

Gij t* t* t* Ti Tj

Gii� t1 t1 t1 Ti Ti�
Gjj� t2 t2 t2 Tj Tj�

FIG. 3. Shaded area A is the integration domain of I. For
the case when t= t0+ tk, the integration of x and x� for evaluating the
expression for Y�t0+ tk , t* ,T� inside ��Y�t0+ tk , t* ,T��Y�t0

+ tk , t* ,T�� is shifted back to t0. Invariance in time yields this to be
equal to ��Y�t0 , t*− tk ,T− tk��Y�t0 , t*− tk ,T− tk��. A historical aver-
age is done over the shaded area B, which is in the past of t0. tA

=180 days is the optimum number of past data for evaluating the
historical averages.

FIG. 4. 2�10 swaption price versus time t0 �April 6, 2004–
January 28, 2005�, for both market and model. Normalized root
mean square error	3.31%.

FIG. 5. 5�10 swaption price versus time t0 �April 6, 2004–
January 28, 2005�, both market and model. The normalized root
mean square error	6.31%.
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study swaption pricing in the HJM model. By considering
the volatility function to have the special form of ��t ,x�
=�0e−��x−t� Jarrow and Turnbull �5� obtained, for the one-
factor HJM model, the following explicit expression for the
coupon bond option:

CHJM�t0,t*,K� = �
i=1

N

ciB�t0,Ti�N�di� − KB�t0,t*�N�d� ,

di �
r�

�R
+ W�t*,Ti��R, d =

r�

�R
,

W�t*,Ti� �
1

�
�1 − e−��Ti−t*��, �R

2 =
�0

2

2�
�1 − e−2��t*−t0�� .

�29�

The quantity r� is related to the strike price K by a nonlinear
transformation that depends on the initial coupon bond price
�5�. As shown in paper I, to leading order in �0 the HJM
limit of the field theory pricing formula with exponential
volatility given by ��t ,x�=�0 exp�−��x− t�� yields the HJM
pricing formula.

We estimate �0 for the exponential volatility function in
the HJM model from historical ZCYC data. By using expo-
nential volatility and daily forward bond prices obtained
from ZCYC, we price the swaption with the HJM pricing
formula and in Fig. 7 compare it with the market price and
the field theory price.

The results show that the HJM model is inadequate for
pricing swaptions, both because it systematically overprices
the swaption by a large amount, and also because the insta-
bility of the price itself would give incorrect results if one
tries to hedge the swaption using the one-factor HJM pricing
formula.

Instead of using the HJM formula for pricing the coupon
bond options practitioners may consider representing the
price of the swaption by an implied volatility using the HJM
pricing formula. However, unlike the case for the price of
caps where this procedure is possible �3�, the entire swaption
curve cannot be fitted by adjusting only one quantity �0.
Furthermore, the implied volatility ��t ,x� in the first place
may not be able to fit the price of all swaptions, and second,
it will depend on time; it is quite impractical to numerically
evaluate daily implied volatility from daily swaption prices.

VI. CONCLUSION

The quantum finance swaption pricing formula was em-
pirically tested, for various durations, by comparing its pre-
dictions with the market values. There is over 90% agree-
ment of the theoretical predictions for the swaption’s price
with its market value, with errors around 6% for most swap-
tions and with an accuracy of about 3% for the shorter ma-
turity swaptions.

A comparison of the field theory model and the industry
standard HJM model shows that the field theory model gives
a more accurate and stable result than the HJM model.

The HJM model is not suited for pricing swaptions be-
cause the volatility parameter that goes into the pricing for-
mula cannot be extracted from the swaption data. In contrast
since the field theory model directly uses the market cor-
relator M�t ,x ,x�� all the market information is fully ac-
counted for in the swaption price.

The correlation of different swaptions and their volatilities
are central ingredients in forming swaption portfolios and
hedging these portfolios. The quantum finance swaption pric-
ing formula provides an approximate analytic result that can
in turn be used to compute the correlation and volatility of
swaptions; based on these analytic results one can form and
hedge interest rate portfolios.

FIG. 6. Swaption variance �Ċ1
2�c, �Ċ2

2�c and covariance �Ċ1Ċ2�c

versus time t0 �June 15, 2004–January 27, 2005� computed from the
quantum finance model, with the value of the forward bond prices
taken from market data.

FIG. 7. 2�10 swaption price, at the money, from the market,
from the quantum finance model, and from the HJM model. Time t0

is in the range �April 6, 2004–January 28, 2005�. The normalized
root mean square error for HJM	18.87% compared with the far
more accurate quantum finance swaption formula with error	
3.31%.
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APPENDIX: TEST OF ALGORITHM FOR COMPUTING I

The computation of I is the key step in calculating swap-
tion prices. We test the program used for numerically com-
puting I by an analytically solvable formula of the forward
interest rates.

Consider an analytical formula for forward interest rates
as given below

f�t,x� = 1 − e−��x−t�. �A1�

The forward interest rates have an exponential form and in-
crease from f�t , t�=0 to the maximum value 1. Furthermore,
f�t ,x� depends only on x− t, which is what we need for car-
rying out the shift of time as explained in Eq. �24�.

Since we can analytically perform the integration of for-
ward interest rates, one can directly determine Y. The ana-
lytic expression for the Y is given by

Y � Y�t,t*,Ti�

=

t*

Ti

dxf�t,x�

=Ti − t* +
1

�
e�t�e−�Ti − e−�t*� . �A2�

The input data are generated from our test forward inter-
est rates and processed using the same algorithm as em-
ployed in Sec. IV. Using the forward interest rates itself as
input data will cause new errors since it does not directly
appear in the program being checked. Note that Y depends
on three variables and is not suitable as input data. In anal-
ogy with Eq. �27� we form a new variable z�t ,x�, similar to
ZCYC, such that

Y�t,t*,Ti� = z�t,Ti� − z�t,t*� ,

z�t,x� = x − t +
1

�
�e−�x−t� − 1� . �A3�

The function z�t ,x� from the above formula is used as
input data since this is a starting point for the analysis of
market data.

Since we are checking I, more concretely Gij, we have
the exact analytical result

Gij = 

t0

t*

dt�Ẏ�t,t*,Ti�Ẏ�t,t*,Tj��c �A4�

and from Eq. �A2� we have

Ẏ�t,t*,Ti� = e�t�e−�Ti − e−�t*� � bie
�t. �A5�

Changing the integration on t to a summation, we have

Gij = ���
k=0

N 

t*

Ti

dx

t*

Tj

dx�M„x − �t0 + k���,x� − �t0 + k���… ,

�A6�

where N= �t*− t0� /��. Note

���
k=0

N 

t*−k��

Ti−k��
dy


t*−k��

Tj−k��
dy�M�y − t0,y� − t0�

=���
k=0

N

�Ẏ�t0,t* − k��,Ti − k���

�Ẏ�t0,t* − k��,Tj − k����c,

and

�Ẏ�t0,t* − k��,Ti − k���Ẏ�t0,t* − k��,Tj − k����c

=
1

N�
�
n=0

N�−1

Ẏ�t0 − n�,t* − k��,Ti − k���Ẏ�t0 − n�,t*

− k��,Tj − k��� −
1

N�2 �
n=0

N�−1

Ẏ�t0 − n�,t* − k��,Ti − k���

� �
n=0

N�−1

Ẏ�t0 − n�,t* − k��,Tj − k���

=
1

N�
bibj

�1 − e−2��N��
1 − e−2�� −

1

N�2bibj
�1 − e−��N��2

�1 − e−���2 �A7�

with

bi = e−��Ti−k��� − e−��t*−k���.

We ran the program for I with our artificial test input and
compared the result from the program with the known ana-
lytical results. The numerical test for the algorithm shows
that it exactly reproduces the analytical results, verifying the
correctness of the algorithm used for our empirical analysis
of swaptions.
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