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We discuss localization phenomena in multilayer films doped with scattering particles. If the films exhibit a
particular type of transmission resonance then above a critical frequency waves in the sample can decay as a
power law rather than exponentially. This phenomenon is independent of the scattering strength of the par-
ticles, in stark contrast to previous work. We find that this phenomenon has many similarities to a second order
phase transition. This work points to interesting avenues in the study of waves in anisotropic disordered media.
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I. INTRODUCTION

Recent interest in localization of classical waves �1–4�
has been driven by advances in the processing of materials
with structure on length scales comparable to the wavelength
of light, including photonic crystals �3,5�. Advances in ma-
terials synthesis and processing have also expanded the tool
kit of engineered materials to include photonic materials
with highly directional or anisotropic properties. Effects such
as anisotropic diffusion �6� and anisotropic coherent back-
scattering have been observed �7�. The new possibilities
opening up in the study of anisotropic photonic materials
motivate us to seek previously unexplored phenomena in the
theory of wave propagation in anisotropic media.

Theoretical studies of anisotropic materials have focused
on layered media with dopants that break the translational
symmetry perpendicular to the layering direction �8–10�.
Earth’s layered crust is one obvious example of such a me-
dium, the understanding of which is relevant to seismology,
geology, and oil exploration. Sheng and co-workers exam-
ined such systems in a series of papers beginning fifteen
years ago. They considered the Anderson model with disor-
der that could be “tuned” from isotropic �e.g., powders, or
amorphous electronic materials� to strongly anisotropic �lay-
ered structure�. One of the key findings was that above a
critical degree of anisotropy the transport along the layering
direction was dominated by one-dimensional �1D� localiza-
tion, despite the presence of dopants that break translational
symmetry transverse to the layering direction �8�. Transport
in the axial direction was found to be localized when the
system is strongly anisotropic, but transport in the transverse
direction was found to be diffusive.

However, previous studies of waves in anisotropic media
have largely ignored the influence of phenomena that can
lead to anomalously high transmission. In 1D disordered me-
dia, all solutions of the wave equation are localized, with the
possible exception of a set of freely propagating states at
discrete frequencies �11�. These discrete frequencies corre-
spond to perfect or near-perfect transmission, and are often
referred to as transmission resonances.

Anomalously large transmission of classical waves
through 1D �as opposed to anisotropic 3D� disordered sys-
tems has been studied primarily in two contexts. The first
�and most common� situation is transmission resonances that
arise from constructive interference of forward-scattered
waves and destructive interference of reflected waves �12�.
These sharp resonances can occur in a wide range of systems
and are a subject of active interest �13�. They are character-
ized by narrow resonances at discrete angles and frequencies,
with widths that decreases exponentially with sample thick-
ness.

The second type of anomalous transport in a 1D disor-
dered system is referred to as a “Brewster anomaly,” and
results when light propagates through a disordered multilayer
medium at or near the Brewster angle �14,15�. The two po-
larization components decouple in such media, and for one
of the polarizations the localization length � diverges at the
Brewster angle, as the slabs do not back-scatter waves inci-
dent with a particular angle and polarization. The signature
of this phenomenon is that � depends on angle but not on
frequency. However, this phenomenon is limited to electro-
magnetic waves.

In this work, we study another type of resonance that is
particularly simple but is not limited to electromagnetic
waves. We consider anisotropic media with transmission
resonances resulting from Fabry-Perot resonances of the in-
dividual scatterers �16�. We study classical scalar waves for
simplicity, but the underlying phenomenon holds for electro-
magnetic and other types of waves. There are a few close
analogies between our work and Brewster anomalies, but the
phenomenon that we study is frequency dependent, which
leads to unique effects.

We will show that Fabry-Perot transmission resonances
can lead to incredibly rich behavior in a seemingly simple
system. We predict delocalization of waves above a critical
frequency equal to the frequency of the first Fabry-Perot
resonance �aside from a possible trivial resonance at zero
frequency�. The delocalized states are not propagating states,
as they undergo power law decay along the layering direc-
tion, but they decay more slowly than exponentially local-
ized states. The delocalization transition is in many ways
analogous to a second order phase transition. These previ-
ously unanticipated phenomena raise the possibility that*Electronic address: smallalex@mail.nih.gov
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waves in anisotropic disordered media may exhibit much
richer behavior than previous studies have anticipated.

II. OUR MODEL SYSTEM

The system under study is a material composed of a series
of identical dielectric slabs with thickness d and refractive
index n, all aligned perpendicular to the z axis. �Fig. 1� They
are separated from one another by random intervals, and they
are surrounded by a medium of refractive index nb. Well-
studied examples of such a system include Thue-Morse �17�
and Fibonacci �18� multilayer films. The medium is doped
with small particles that scatter weakly.

III. RESONANCES OF SINGLE SLABS AND MULTILAYER
STACKS

A. Scattering from single slabs

We begin our analysis by considering resonant transmis-
sion through a single slab. The reflectance �at normal inci-
dence� of a single slab surrounded by a medium of refractive
index n is given by �16�

R =
4r2 sin2 kz2d

�1 − r2�2 + 4r2 sin2 kz2d
, �1�

where

r =
kz1 − kz2

kz2 + kz1
, �2�

kz2=nk0, kz1=nbk0, �=ck0 is the frequency of the wave inci-
dent on the slab, and c and k0 are, respectively, the speed of
light in vacuum and the wave number of the wave in
vacuum. At frequencies that are integer multiples of a critical
frequency �c=�c /nd, the reflectance at normal incidence is
zero due to destructive interference.

Now, consider the case where a wave is incident on a slab
from off-normal incidence. We will not describe the incident
direction by its angle with respect to the z axis or by the z
component of the k vector, because these variables change
due to refraction when passing from the surrounding medium
to the slab. Instead, we will describe the incident wave by kt,
the transverse portion of the wave vector, which is un-
changed by reflection and refraction in a multilayer medium
and is hence a position-independent variable to describe the
wave. In this case, the reflectance of the slab is given again
by Eq. �1�, with the following modifications �16�:

kz2 = �n2k0
2 − kt

2, kz1 = �nb
2k0

2 − kt
2. �3�

The slab’s azimuthal symmetry leads to R depending only on
kt, the magnitude of kt.

The reflectance is zero when

�n2k0
2 − kt

2 = m
�

d
, �4�

where m is an integer. When Eq. �4� is satisfied a wave
undergoes an integer number of half cycles of oscillation
while traversing the slab. Once again, destructive interfer-
ence between the wave reflected from the surface of the slab
and the wave reflected internally leads to resonant transmis-
sion. If we vary k0 and kt �i.e., vary the frequency as well as
the direction of propagation�, resonant transmission through
the slab is possible over a range of frequencies above �c,
with a different direction of propagation for each frequency.
We note that, although this condition was derived for classi-
cal scalar waves, Eq. �4� holds for electromagnetic waves
incident on a slab, irrespective of polarization.

B. Theory of multilayer stacks

Next consider what happens in a stack of parallel slabs
with identical thicknesses d but random spacing. Because
reflection and refraction by the slabs do not change kt, states
with different transverse wave vectors are uncoupled, and we
can catalog the possible channels for waves to scatter into by
their frequencies and transverse wave vectors. For a given
frequency, waves incident in all directions will be attenuated
except over a cone of angles corresponding to the Fabry-
Perot resonances of the slabs �see Eq. �4��.

In general, the phenomenon of localization in one dimen-
sion will cause exponential attenuation of waves transmitted
through our sample. However, when the identical slabs are
either transparent or reflect only weakly �i.e., for directions at
or near a Fabry-Perot resonance in our system�, the mean
free path for scattering can be comparable to or larger than
the system size. Localization requires significant scattering
and destructive interference of forward-scattered waves, and
the exponential decay characteristic of localized waves is
normally a statistical feature of wave behavior that is only
evident over long distances. It is therefore not conceptually
satisfying to apply the term “localized” to waves propagating
through our system at or near a Fabry-Perot resonance.
Nonetheless, when energy is distributed over a range of
angles inside such a multilayer stack, transmission will be
dominated by waves in resonant and near-resonant channels
�directions of propagation�. We will therefore formulate an
appropriate theoretical description of transmission via reso-
nant or near-resonant channels.

We can calculate the mean free path � from the relation

�−1��,kt� = R��,kt��s, �5�

where R�� ,kt� is the reflectance of a slab for a given fre-
quency and transverse wave vector, and �s is the number
density of slabs per unit length. If we expand Eq. �1� as a
function of kt in the vicinity of a value of kt satisfying the

FIG. 1. Sketch of the anisotropic medium under consideration,
consisting of identical slabs of refractive index n aligned along the
z axis in a medium of refractive index nb and doped with particles
�circles�.
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resonance condition Eq. �4� �we shall call this kt,res�, after
much algebra we get that �to lowest order in �kt−kt,res��

�−1��,kt� � ��s�kt − kt,res�2kt,res
2 d4, �6�

where � is a dimensionless factor of order 1, determined by
the values of nbk0d and kt,resd. For resonant transmission �−1

is zero, corresponding to an infinite mean free path.
In order to model transport over long distances inside a

multilayer stack, we need to know the localization length
��� ,kt� for waves with a given frequency and transverse
wave vector, since the intensity of light transmitted through a
multilayer stack decays �on average� as

T = e−2L/���,kt�, �7�

where L is the sample thickness. In general, ��� ,kt� depends
on the detailed configuration of a system, since the transmit-
ted field is governed by interference between multiply scat-
tered waves. However, if we consider an ensemble of sys-
tems with the same total size and same number density of
slabs per unit length, and vary the spacing between the slabs,
we can use the ensemble-averaged transmittance to calculate
an average localization length from Eq. �7�. In the limit of a
large ensemble, the localization length ��� ,kt� is propor-
tional to ��� ,kt� by a factor of order �4 �11�.

We therefore conclude that, for waves propagating in di-
rections near to a Fabry-Perot resonance, the localization
length ��� ,kt� will scale as

�−1��,kt� = ��s�kt − kt,res�2kt,res
2 d4, �8�

where ��4� is a dimensionless number of order unity.
Our results for the scaling of the ensemble-averaged lo-

calization length are verified with numerical simulations in
the Appendix.

IV. MULTILAYER STACKS DOPED WITH PARTICLES

We now consider what happens when we dope our sys-
tems with small scattering particles. For simplicity we as-
sume that the particles are spherical and identical, but we can
also assume that they are nonspherical but randomly ori-
ented. If we illuminate the system with a monochromatic
plane wave incident parallel to the z axis at z=0, the incident
wave will couple to a localized state with kt=0. The effect of
the particles will be to scatter a portion of the energy into
other localized states with different transverse wave vectors.
We will assume that the �ensemble averaged� intensity pro-
files of the localized states decay as e−2z/�.

The field ��r� inside the multilayer stack can be written
as a superposition of modes with different transverse wave
vectors kt:

��r� =� a�kt���kt,r�eikt·rd2kt, �9�

where ��kt ,r� is the field amplitude at a position r inside the
sample for a mode with transverse wave vector kt1, and a�kt�
gives the projection of the field onto that mode. We assume
that, when averaged over an ensemble of similar systems, the

intensity ���kt1 ,r j��2 decays exponentially as e−2z/���,kt�,
where ��� ,kt� is given by Eq. �8�. The square of the projec-
tion, �a�kt��2 depends only on the magnitude of the transverse
wave vector due to the fact that there is no preferred azi-
muthal direction in the system, so we can write �a�kt��2
= �a�kt��2.

We want to calculate the ensemble-averaged intensity in-
side the system as a function of distance z along the axis. We
are interested in the intensity averaged over the cross-
sectional area of the sample �i.e., averaged over the xy
plane�, and so we can use Parseval’s Theorem to convert an
integral over the cross sectional area to an integral over all
possible transverse wave vectors kt:

I�z� 	� ���r��2dxdy 	 �
0

kt,max

�a�kt��2e−2z/���,kt�ktdkt,

�10�

kt,max is whatever the maximum possible value of kt is in our
system. Although this integral is an incoherent addition of
intensities, none of the interference effects crucial to local-
ization are lost because it is an incoherent addition of waves
traveling in different transverse directions. The exponential
scaling of the localized waves accounts for 1D localization
effects.

In general, for large z the integral in Eq. �10� is dominated
by propagation along whichever direction corresponds to the
longest localization length. If we illuminate the system with
a wave of frequency �
�c, the weakest reflectance �and
hence the longest localization length� is obtained at normal
incidence, so deep inside the sample the field will be domi-
nated by a state localized along the z axis with kt=0.

Things become more interesting for ���c. The particles
will scatter part of the wave’s energy into states with reso-
nant or near resonant transmission through the slabs. These
states have an unbounded continuum of localization lengths,
and so there is no intrinsic length scale governing the wave’s
behavior deep inside the sample. For any arbitrarily large
distance z inside the sample there is a continuum of states
with localization lengths longer than z. We can show that in
this case the wave exhibits power law behavior if we assume
that in the vicinity of kt�kt,res, �a�kt��2 is a continuous and
differentiable �i.e., well-behaved� function and is not identi-
cally zero. A very general form for �a�kt��2 in the vicinity of
kt,res is then

�a�kt��2 = �kt − kt,res�2�g�kt − kt,res� , �11�

where g�kt−kt,res� is analytic, g�0� is nonzero, and the value
of �
0 will be determined later. For large z, the integral in
Eq. �10� is dominated by contributions from resonant and
near-resonant transmission, provided that the field has non-
zero projection onto those states. We expand Eq. �10� to
lowest order in �kt−kt,res� by substituting the form for �−1

given in Eq. �8� and expanding the form for �a�kt��2 given in
Eq. �11�:
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I�z� 	 �
0

kt,max

e−2�sz���kt�
2kt,res

2 d4
��kt�2�

� �g�0� + �ktg��0� + O„��kt�2
…��kt,res + �kt�d�kt,

�12�

where �kt	kt−kt,res
We can cast the integral in Eq. �12� in terms of the dimen-

sionless variable u	���sz �kt−kt,res �kt,resd
2:

I�z� 	
1

�z�s�1/2+��
umin

umax

e−2�u2
u2�

� 
g�0� +
u

���sz

g�0� + g��0�kt,res

kt,res
2 d2 �du , �13�

where umin=−���szkt,res
2 d2, and umax=���szkt,res�kt,max

−kt,res�d2.
This integral requires careful treatment. For nonzero kt,res

�or, equivalently, ���c� and z sufficiently large, we can
approximate the limits of integration as ±�. The second term
integrates to zero and the integral is a constant, leading to the
scaling relationship

I�z� 	 z−�1/2+��. �14�

We thus find that the wave is no longer localized, with the
transmission decaying as a power law instead of an exponen-
tial.

At this point, it is worth noting that the integral in Eq.
�13� is dominated by contributions in the range −1�u�1.
Since u=���sz �kt−kt,res �kt,resd

2, this implies that most of the
transmitted intensity comes from propagation in directions
specified by the condition

�kt − kt,res� 	 �kt �
1

���szkt,resd
2

. �15�

This condition defines a cone of angles with finite width �kt.
Transport through directions within the cone implies trans-
port in a state with localization length ��� ,kt�
z, which is
what we would expect physically.

For � sufficiently close to �c, the integral in Eq. �13�
requires a more careful treatment. The limits of integration in
Eq. �13� are asymmetric. As long as the limits of integration
extend outside the range where e−2u2

is of order unity the
second term in Eq. �13� integrates to zero. However, when
��sz�kt,resd�2 is of order unity or smaller, the second term no
longer integrates to zero, and its magnitude is no longer neg-
ligible relative to the first term. It is easy to show that the
second term in Eq. �13� decays exponentially both as a func-
tion of z and as a function of ��−�c�, and so the second term
in Eq. �13� produces a localized wave with an amplitude that
is negligible except at frequencies near �c.

Before we try to predict the value of �, it is easy to see
that � must be at least 1

2 . If there were no slabs in the system,
or if the slabs were index-matched to the background me-
dium �n=nb�, wave transport would be diffusive and the in-
tensity inside the medium would decay as z−1. Introducing
the slabs should obviously further attenuate wave propaga-

tion in the system, and so above the critical frequency the
wave should decay at least as rapidly as z−1. �In principle, of
course, slabs could enhance transmission due to interference
effects for a particular configuration. However, in the
ensemble-averaged case that we consider here, the effect of
introducing slabs will be to reduce the ensemble-averaged
transmission.�

V. DETERMINING THE EXPONENT

To calculate � we invoke the principle of detailed balance
to determine the distribution of energy among the various
modes. The instantaneous rate at which a single particle j
scatters energy from a mode �kt1 ,�� to a mode �kt2 ,�� is

�a�kt1��2�f j�kt1,kt2��2���kt1,r j��2, �16�

where f j�kt1 ,kt2� is proportional to the form factor for par-
ticle j to scatter light from a mode with transverse wave
vector kt1 to a mode with transverse wave vector kt2. The
total instantaneous rate R1→2 of scattering from a mode
�kt1 ,�� to a mode �kt2 ,�� is therefore

R1→2 = �a��kt1���2�f�kt1,kt2��2 �
particles j

���kt1,r j��2. �17�

Our assumption that the particles are identical and spheri-
cal �or at least randomly oriented� enables us to bring the
scattering amplitude f outside the summation and remove the
subscript j. Equation �17� accounts for all multiple scattering
effects from the particles. The summation itself depends only
on the state being scattered out of, is inversely proportional
to the lifetime of the state �kt1 ,��, and will henceforth be
denoted �−1�kt1�. Being a sum over particles, the inverse life-
time is just proportional to the number of particles probed by
that state, and hence the spatial extent of the state. The natu-
ral measure of the spatial extent of a state is the localization
length. We therefore have that

�−1�kt� 	 ��kt� 	 �kt − kt,res�−2. �18�

To obtain information on �a��kt1���2 we impose the steady
state condition. In a steady state the rate of scattering from a
state 1 to a state 2 should be equal to the rate of scattering
from state 2 to state 1. Our task is simplified by the fact that,
due to time-reversal symmetry, �f�kt1 ,kt2��2= �f�kt2 ,kt1��2,
and hence the form factor cancels out. Since the rate of scat-
tering from 1 to 2 is equal to �−1�1� and the rate of scattering
from 2 to 1 is equal to �−1�2�, in steady state the ratio
�a��kt1���2 / �a��kt2���2 is ��kt1� /��kt2�, so

�a�kt��2 	 �kt − kt,res�2 �19�

This analysis therefore predicts that �=1, and that in the
multiple scattering regime the intensity will scale as z−3/2.

It may seem strange that the projection of the field onto a
resonant state is zero. However, we never normalized our
basis of localized states, and so the energy stored in a state
with transverse wave vector kt is proportional to the local-
ization length. The energy density is obtained by multiplying
�a�kt��2 by the localization length ��kt�. Since �a�kt��2
	�−1�kt�, the energy density per state is therefore a constant.
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This is exactly what one would expect for diffusive waves.
It is interesting to note that a very crude scaling argument

could have given the same result: Within the range of direc-
tions specified by Eq. �15�, the slabs scatter only weakly.
Transport is largely diffusive and dominated by scattering
from the particles. The width of this resonance scales as
z−1/2, and the intensity of the diffusely transmitted wave
scales as z−1. Multiplying the diffuse transmission by the
angular width of the resonance gives a diffusely transmitted
intensity of z−3/2.

VI. ANALOGY WITH MEAN FIELD THEORY
AND PHASE TRANSITIONS

We can obtain further insight into the delocalization phe-
nomenon if we examine the reflectance of a single slab ver-
sus angle of incidence. �For ease of interpretation we revert
to characterizing states by angle of incidence rather than
transverse wave vector.� In Fig. 2 we plot the reflectance
versus angle of incidence onto an air gap �n=1� of thickness
d surrounded by silica �n=1.45� and excited and probed at
various frequencies. For frequencies below �c the reflectance
minimum is at normal incidence, and the curve of reflectance
versus angle shifts downward at increasing frequencies. The
channel with the longest localization length is therefore the
one with kt=0, and the localization length decreases with
increasing frequency.

At �=�c, the reflectance is exactly zero at normal inci-
dence, and above �c the zeroes of reflectance shift out to
larger angles. Waves scattered at or near those angles by the
particles will have long localization lengths and travel far
into the sample, and if we were to measure the angular pro-
file of transmitted radiation exiting the sample we would find
that the peak angle would be the one that minimizes the
reflectance of an individual slab.

When we consider the frequency dependence of the angu-
lar profile, it is clear that for frequencies below �c the inten-
sity profile of the transmitted light will be peaked at �peak
=0. We illustrate this behavior �schematically� in Fig. 3.
However, at frequencies above �c the angular profile of the
transmitted light will be circular, with a peak at whichever
angle minimizes the reflectance of an individual slab. More-
over, the value of �peak will be a continuously increasing
function of �. We observe that this finding is independent of
our finding of delocalized power-law transport: Even if
waves remained localized for ���c, transport over long dis-
tances would be strongest in those directions for which re-
flection from the slabs is minimized.

The behavior of �peak bears a striking resemblance to an
order parameter in a system undergoing a second order phase
transition. It is an easily measured macroscopic quantity with
a clear geometrical significance, and it increases continu-
ously from zero when a characteristic energy scale �fre-
quency� is exceeded. Below that characteristic energy scale it
is identically zero. We also note that the behavior of the
minima in Fig. 2 bears a striking resemblance to plots of free
energy versus order parameter in the mean field theory of a
system undergoing a second order phase transition. Perhaps
the most obvious difference between our delocalization tran-
sition and a second order phase transition is the absence of
symmetry breaking. Because waves traveling in different di-
rections cannot interact with one another there is no driving
force that would break symmetry. One might, however,
speculate on possibilities for symmetry breaking in nonlinear
media.

VII. EXPERIMENTAL CONSIDERATIONS

A. Particle concentration

We now consider how the phenomena described thus far
would manifest in an actual experiment. We begin with the

FIG. 2. Reflectance vs angle of incidence for a low index slab
�n=1� embedded in a high index medium �n=1.45� at various fre-
quencies. �a� The approach to the first transmission resonance, with
�=0.6�c �thin solid line�, 0.8�c �dashed�, and �c �thick solid line�.
�b� The approach to the second transmission resonance, with �
=1.2�c �thin solid line�, 1.6�c �dashed�, and 2�c �thick solid line�.

FIG. 3. The dominant direction at which transmitted waves exit
the sample as a function of frequency �schematic�.
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effect of varying particle concentration in actual experi-
ments. For these purposes, imagine an ensemble of identical
multilayer dielectric films that differ only in the concentra-
tion and placement of particles.

A film without particles would look like a mirror at nor-
mal incidence and angles far away from a resonance. At an
angle corresponding to a resonance it would look at least
somewhat transparent, although the degree of transparency
might be small due to the narrow width of the resonance.

The next simplest situation would be to incorporate par-
ticles at or near the surface of the sample, or to roughen the
surface by scratching or etching it. The effect would be to
distribute incident light over a range of angles, including
resonant and near-resonant directions. More light would be
diffusely transmitted through the sample as a result, in stark
contradiction to the usual effect of roughening a surface.

Finally, consider a film with particles distributed through-
out its volume. If the system is illuminated by a plane wave
incident at a nonresonant angle, the light will only penetrate
a distance �0 into the system before being reflected, where �0
is the localization length of the state that the incident light
couples to. At low particle concentrations, the amount of
light scattered out of the incident beam by the particles will
scale as �0�p�, where �p is the number density of particles
per unit volume and � is the scattering cross section of a
single particle. This condition remains valid as long as
�0�p��1. The light scattered out of the incident beam by the
particles is the light that will participate in the phenomena
described here, and so we predict that, at low particle con-
centrations, the diffusely transmitted light will be propor-
tional to particle concentration. This is very different from
the usual result for diffusion of light, where transmittance is
inversely proportional to scatterer concentration.

B. Angular distribution of transmitted light

As discussed above, when ���c, the angular distribution
of transmitted light will have a sharp peak at whichever
angle corresponds to a Fabry-Perot resonance. Suppose that
we measure the angular profile of the transmitted light. The
strongest signal will occur around a ring with a radius corre-
sponding to the angle of the Fabry-Perot resonance.

The total amount of light contained in that ring is propor-
tional to the angular cross section of the ring. The diameter
of the ring scales as kt,res, and the thickness of the ring scales
as �kt from Eq. �15�. If we normalize the angular cross sec-
tion by 1/k0

2 to obtain a measure of the solid angle, we see
that the amount of light in the ring scales as
�k0d�−2�L�s��−1/2. Outside this ring, the intensity is decreas-
ing exponentially with sample thickness, providing a sharp
contrast between the bright ring and the surrounding back-
ground. We are therefore confident that the amount of light
transmitted by the mechanisms considered here is significant
compared with the exponentially attenuated light transported
through states with short localization lengths.

In the limit of large systems, of course, transmission mea-
surements would not be feasible due to the decay of the
signal, and in the limit of a truly infinite system transmission
would be a meaningless concept. However, if one has the

ability to probe the local field inside the system then an
ensemble-averaged intensity profile could still be measured,
and the power law decay would distinguish delocalized
waves from localized �exponentially decaying� waves.

C. Polydisperse slabs

Our results assume that the system contains dielectric
slabs of identical thickness. In any realistic experiment, of
course, the slabs will have variable thicknesses. In that case,
there will be no direction of propagation for which all slabs
are transparent. However, if the distribution of slab sizes is
sufficiently narrow then most of the slabs will be either
transparent or almost transparent to waves propagating at a
certain critical angle. This critical angle is determined by the
condition

kz2
d� = �n2k0
2 − kt,res

2 
d� = m� , �20�

where 
d� is the average slab thickness and m is an integer
representing the order of the resonance. Although waves
propagating in or near this resonant direction will still be
localized, the localization length will be very long and
peaked for states at or near that direction. The output radia-
tion will therefore exhibit the directional behavior discussed
above, as long as the distribution of slab thicknesses is suf-
ficiently narrow.

Strong transmission will be possible for the direction
specified by Eq. �20� as long as the distribution of slab thick-
nesses is sufficiently narrow that kz2�d�� /2, where �d is
the standard deviation of the distribution. This condition im-
plies that in order to observe the predicted phenomena in an
experimental system, the width �d of the size distribution
must satisfy the condition

�d/
d� �
1

m
. �21�

The fractional thickness tolerance is more stringent for
thicker slabs, so experimental tests of these predictions
should ideally be conducted with frequencies that probe the
lowest frequency �m=1� resonance of the slabs.

VIII. RELOCALIZATION TRANSITIONS

In Fig. 4 we plot reflectance versus angle of incidence on
a slab of silica �n=1.45� embedded in air �n=1� and probed
at various frequencies. Just as in the previous case, for fre-
quencies below �c the reflectance minimum at normal inci-
dence becomes smaller and smaller until the reflectance is
zero for normal incidence when �=�c. Above �c, likewise,
the same delocalization phenomenon occurs, with the reflec-
tance being zero at angles that increase with frequency.

Eventually, however, we reach a frequency �approxi-
mately 1.39�c in this case� where the reflectance is nonzero
for all angles. The reflectance remains nonzero for all angles
until the frequency reaches 2�c, where the second transmis-
sion resonance becomes accessible �at normal incidence�. At
the frequency where the reflectance is nonzero for all angles
we say that the wave is relocalized, because no transmission
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resonance is accessible to allow power law transport over
long distances. Instead, at large z the wave behavior is domi-
nated by the �exponential� localized behavior of whichever
channel has the longest localization length.

As we look at the plots of reflectance versus angle at
higher frequencies in Fig. 4, we see that the reflectance again
goes to zero for normal incidence at �c. For frequencies
between 2�c and �2.77�c there is always an angle at which
the reflectance is zero, until relocalization occurs at �
�2.77�c. As at 2�c there is another delocalization transition
at 3�c, where the reflectance of the slab again goes to zero.
At all frequencies above 3�c, however, there is always at
least one angle at which the reflectance of the slab is zero,
and the wave remains delocalized at all frequencies above
3�c. This sequence of delocalization and relocalization tran-
sitions is summarized in Fig. 5.

The occurrence of relocalization transitions is easy to un-
derstand. The resonance condition Eq. �4� requires that the z
component of the wave vector �inside the slab� be an integer
multiple of � /d. At �=�c the wave vector’s magnitude is
precisely � /d, so the resonance occurs for normal incidence.
Above �c the wave vector’s magnitude exceeds � /d and the
resonance condition is satisfied for progressively larger

angles of incidence, the angle increasing to keep constant the
z component of a progressively longer wave vector. In a slab
with a lower index than its surroundings �e.g., an air gap
surrounded by silica� the wave vector can point in any direc-
tion. In a high index slab surrounded by a low index medium
�e.g., a silica slab in air�, however, refraction always bends
the wave vector toward the z axis, and the phenomenon of
total internal reflection ensures that inside the slab the angle
between the wave vector and the z axis will never exceed a
certain upper bound. For sufficiently large frequencies the
projection of the wave vector onto the z axis will always
exceed � /d, regardless of the angle of incidence.

At some sufficiently high frequency there is always at
least one angle of incidence that yields resonant transmis-
sion, due to the fact that the number of accessible transmis-
sion resonances increases linearly with frequency. This fre-
quency corresponds to the final delocalization transition in
our doped multilayer stack. How high this frequency is �and
how many successive delocalization and relocalization tran-
sitions the system undergoes before reaching it� depends on
the refractive index contrast between the slabs and the sur-
rounding medium. It is straightforward to show that the final
delocalization transition occurs at the mth transmission reso-

FIG. 4. Reflectance vs angle of incidence for a high index slab �n=1.45� embedded in a low index medium �n=1�. �a� Approach to the
first transmission resonance, with �=0.6�c �thin solid line�, 0.8�c �dashed�, and �c �thick solid line�. �b� The range of the first transmission
resonance, with �=�c �thin solid line�, 1.2�c �dashed�, and 1.39�c �thick solid line�. Notice that at 1.39�c the reflectance is nonzero at all
angles. �c� Approach to the second transmission resonance, with �=1.6�c �thin solid line�, 1.8�c �dashed�, and 2�c �thick solid line�. �d� The
range of the second transmission resonance, with �=2�c �thin solid line�, 2.4�c �dashed�, and 2.77�c �thick solid line�. �e� Approach to the
third transmission resonance, with �=2.8�c �thin solid line�, 2.9�c �dashed�, and 3�c �thick solid line�. �f� Above the third transmission
resonance, with �=3�c �thin solid line�, 3.5�c �dashed�, and 4�c �thick solid line�.
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nance, where m is the smallest integer satisfying

m 

�1 − nb

2/n2

1 − �1 − nb
2/n2

. �22�

For the case of silica in air, Eq. �22� predicts m=3, which is
consistent with the calculations shown in Fig. 4. For higher
contrast, such as silicon slabs surrounded by silica �n /nb
�3.5/1.5 at �=1.4 �m�, Eq. �22� predicts �and calculations
similar to those in Fig. 4 confirm� that m=10. Clearly, a large
number of transmission windows may be achievable with
common materials.

IX. COMPARISON WITH OTHER ANOMALOUS
TRANSPORT PHENOMENA IN 1D DISORDERED

SYSTEMS

The phenomenon described here is unique to the case of
Fabry-Perot resonances and similar situations involving reso-
nances of the constituent scatterers �e.g., slabs of random
thickness, with antireflection coatings on each side�. A simi-
lar effect would not occur in the more general case of trans-
mission resonances created by multiple scattering and inter-
ference, since the angular width of those resonances
decreases exponentially with sample thickness, rather than as
a power law. In systems exhibiting a Brewster anomaly, it is
clear that the frequency-dependent phenomena described
here would not occur. However, further work is needed to
determine whether similar delocalization phenomena could
occur in such systems.

X. CONCLUSIONS

In conclusion, we have shown that waves can be delocal-
ized by dopants that break translational symmetry along the
transverse direction in a multilayer film that exhibits Fabry-
Perot resonances. This effect occurs even for weakly scatter-
ing dopants, in stark contrast to previous predictions for
waves in anisotropic disordered media. The delocalization
transition occurs in a manner analogous to a second order
phase transition. This rich behavior arises from resonances of
the constituent layers, a phenomenon not described in other

studies. This work therefore shows that the field of waves in
anisotropic systems is richer than previously anticipated. Av-
enues for further work include more precise predictions of
the exponent, and the question of whether analogous phe-
nomena occur in electronic systems.
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APPENDIX: SIMULATIONS OF MULTILAYER STACKS

We tested the predictions laid out in Sec. III B by calcu-
lating the transmittance of a multilayer stack as a function of
sample thickness and angle of incidence �. Our goal was to
verify that the ensemble-averaged transmittance of the sys-
tems described in Sec. II scales with transverse wave vector
in the manner predicted by Eq. �8�.

For our numerical work, our systems were multilayer
stacks of alternating silica slabs �n=1.45� of uniform thick-
ness d, and air gaps �nb=1� with random thicknesses. The
thicknesses of the air gaps were uniformly distributed be-
tween d and 4d. We considered illumination by light with a
wavelength of 500 nm, and the slab thickness d
=176.78 nm was chosen so that the Fabry-Perot resonance
would occur for an arbitrarily chosen incident angle of �
=30° We studied systems with sizes ranging from 625 layers
��190 �m� to 104 layers ��3100 �m�.

We performed our calculations using the 2�2 transfer
matrix method for layered media �19�. All calculations were
performed in MATHEMATICA. To test our code we verified
that the reflectance of the slabs was zero for an incident
angle �=30°, and that the reflectance and transmittance
added to unity with an accuracy of 1 part in 106 or greater.
When calculating ensemble averages we randomly generated
100 systems with the parameters described in the previous
paragraph. From the ensemble-averaged transmittance we
calculated a localization length using the relation T
=e−2L/���,kt�.

In Fig. 6 we show the ensemble-averaged results for the
localization length as a function of direction. The range of
transverse wave vectors considered corresponds to an angu-

FIG. 5. Schematic depiction of the localized and delocalized
bands of states in a system of high index �n=1.45� slabs in air �n
=1� doped with weak 3D scatterers.

FIG. 6. Ensemble-averaged localization length � as a function of
transverse wave vector. The straight line has slope −2, and an in-
tercept chosen by averaging the first point in each of the data sets.
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lar width of approximately 5°. We show results from systems
with 5�103 and 104 layers to verify that our predictions are
not dependent on our choice of system size. The dashed line
in the log-log plot has slope −2, corresponding to a power
law with the theoretically predicted exponent −2 from Eq.
�8�. For both system sizes we see that the computational
results agree well with the predictions of Eq. �8�.

As a test of our simulations, we also verified that that the
ensemble-averaged intensity decays exponentially inside our
system. In Fig. 7 we show the wave intensity as a function of
position inside our system, averaged over 100 different con-
figurations. The log-linear plot clearly shows that the
ensemble-averaged intensity decays exponentially as a func-
tion of position, as predicted by theory.

We also demonstrate explicitly that our results are only
valid for ensemble averages rather than single systems. In
Fig. 8 we show calculations of the localization length ��� ,kt�
as a function of transverse wave vector kt for two systems of
different thicknesses. �� is normalized to the sample thick-
ness for convenience.� In both cases we see that for kt very
close to kt,res �i.e., very close to a Fabry-Perot resonance� the
localization length ��� ,kt� scales as predicted. However,

there is a detuning �kcutof f past which ��� ,kt� fluctuates as a
function of kt. Our investigations show that the cutoff varies
from sample to sample. The trend is that the average value of
�kcutof f decreases with increasing sample thickness, but we
have not found a systematic dependence on sample thick-
ness.

These numerical results imply that our results in Sec.
III B are valid when averaged over ensembles of similar sys-
tems. Within a single system our results are only valid for
transport in directions very close to a Fabry-Perot resonance.
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FIG. 7. Intensity vs layer number inside a random medium ex-
cited at an angle of incidence �=26°, averaged over 100 different
random systems with the same thickness �L=3100 �m� and volume
fraction of scatterers. The straight line is an exponential �predicted
by theory� with the appropriate incident and transmitted intensities.

FIG. 8. Localization length � as a function of transverse wave
vector. The straight lines have slope −2, and the intercept is the
average of the first data point in each of the data sets. �a� System of
625 slabs �187 �m� thick�; �b� system of 5000 slabs �1547 �m
thick�.
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