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We discuss the mechanism of fast and slow light generation when optical pulses propagate through a fiber
taper coupled to an ultrahigh-Q microsphere system in the time domain. Fast and slow light are explained as
interference effects between ballistic light through the fiber and circulated light within the sphere. One of the
striking effects predicted by this model is dynamic pulse splitting in the transmitted pulse at the critical
coupling condition, where the coupling strength between the sphere and fiber equals the round-trip loss in the
sphere. By realizing this critical coupling condition experimentally, we observed this dynamic pulse splitting
effect.
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The velocity of light is of fundamental interest in physics;
fast light has been attracting renewed interest in the context
of information velocity and Einstein’s special relativity
theory, while slow light is discussed in the context of the
enhancement of interactions between light and matter. Fast
and slow light appear not only in simple absorption or gain
lines but also in quantum manipulated atomic systems �1�,
such as electromagnetically induced transparency and double
Raman type resonances �2,3�. Various kinds of nanostructure
media, including photonic crystals and resonant photon tun-
neling systems, have been fabricated, and fast and slow light
have been investigated �4–7�. Dielectric microspheres also
have potential usefulness in dispersion engineering. These
spheres trap light inside and can act as an ultrahigh-Q optical
cavity �8,9�. The mode in the spherical cavity is referred to
as a whispering gallery mode �WGM�, and the resonance
linewidth can be reduced to an extremely narrow 10 kHz
�10�. Such a narrow resonance strongly modifies the phase of
the light, resulting in very steep dispersion, comparable to
quantum manipulated atomic systems. This dispersion, asso-
ciated with the single sphere, as well as periodic arrays of
spheres, holds great promise for controlling the propagation
velocity of optical pulses �11–18�.

In previous papers, we examined pulse propagation in a
fiber taper system coupled to a microsphere experimentally
�11,12�. It was shown that the dispersion in this system de-
pends strongly on the coupling strength between the sphere
and fiber and the round-trip loss within the sphere. In the
undercoupling condition, where the coupling is weak com-
pared with the loss, the dispersion shows anomalous behav-
ior and fast light appears. Conversely, in the overcoupling
condition, where the coupling strength is strong compared
with the loss, normal dispersion is observed, and slow light
appears. We observed both fast and slow light within a single
microsphere–optical-fiber system by controlling the coupling
strength between the sphere and fiber. In this paper, we
discuss the mechanisms of fast and slow light generation
within the time domain. Fast and slow light are explained as
a result of interference effects between ballistic and circu-
lated light within the sphere. The illustration clarifies the
processes involved. One of the striking effects predicted in
this picture is the dynamic pulse splitting in the transmitted
pulse profile at the critical coupling condition, where the
coupling strength between the sphere and fiber equals the

round-trip loss in the sphere. We realized this critical cou-
pling condition experimentally and observed the dynamic
pulse splitting effect.

Figure 1 shows a schematic illustration of the waist region
of a microsphere–fiber-taper system. The fiber taper has an
air clad structure where the diameter is reduced gradually
from normal to several micrometers or even to submicrome-
ter size. The light traveling along the fiber taper is not con-
fined in the glass core, but emerges from the core as a
quasiexponentially decaying evanescent wave. When a mi-
crosphere is moved into the evanescent wave region, the
light traveling though the fiber taper is coupled into the
sphere WGM. The light transferred into the WGM is re-
flected at the sphere boundary by total internal reflection, so
that it circulates in orbits near the sphere surface, and is
therefore referred to as circulated light. The circulated light
also emerges from the sphere surface as an evanescent wave
and is coupled back into the fiber taper. Some of the incident
light bypasses the sphere and appears directly at the output
of the system; this we refer to as ballistic light. Therefore,
the total electric field at the output of this system can be
described by the sum of the ballistic and circulated light.

When the incident light beam is turned on, the sphere
starts to store light energy. The characteristic buildup time is
on the order of 1 /��=Q /�, the inverse of the resonance
linewidth. Similarly, when the light beam is turned off, the

FIG. 1. Schematic illustration of the microsphere-fiber-taper
system.
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light energy leaves the sphere. These buildup and fall-down
times create a time delay in the circulated pulse with respect
to the ballistic pulse. Both fast and slow light can be de-
scribed in terms of this delay; more specifically, the ballistic
electric field Eb��� and the circulated electric field Ec��� are
given, by directional coupling theory �19�, as

Eb���
E0���

= �1 − ��1/2y , �1�

Ec���
E0���

= �1 − ��1/2x�1 − y2�exp�− i�����
xy exp�− i����� − 1

= �Tc��� exp�− i�c���� ,

where E0��� is the electric field of the incident light,
x= �1−��1/2 exp�−�L /2� is the loss parameter, y=cos��� is
the coupling parameter, � is the insertion loss, � is the round-
trip loss, � is the coupling strength between the sphere and
the fiber, ����=n�L /c with L the round-trip path length of
the WGM, Tc��� and �c��� are the intensity and phase shift
of the circulated light, respectively, n is the effective refrac-
tive index, c is the velocity of light in vacuum, and � is the
frequency of the light. For the modes with low radial indices
in a large sphere, we can assume n=1.458, i.e., the refractive
index of pure silica; and L=2�a, where a is the radius of the
sphere. The phase shift �c��� in the circulated electric field is
written as

�c��� = arctan� − sin������
xy − cos������� . �2�

The transmitted pulse profile of the circulated light is
calculated as

Ec�t� 	� S����Tc��� exp	− i��t + �c��� + �0�
d� , �3�

where S��� is the initial Fourier component of the incident
pulse and �0 is a constant phase shift relative to the phase
shift though the fiber. The total output electric field, Eout�t�,
can be represented by the sum of the two fields, Eb�t� and
Ec�t�.

Figure 2�a� illustrates the fast light mechanism in the time
domain at the resonance frequency for the undercoupling
condition schematically. The upper and lower curves show
the intensity profiles of the ballistic and circulated light, re-
spectively, calculated at the output of the system. A pulse
with a duration of 
tp=58 ns and a resonance linewidth of
�� /2�=35 MHz are assumed. These values correspond to
the experimental conditions described below. In Fig. 2�a�, the
intensity of the circulated light is shown as downward, since
at the resonance frequency the phase of the circulated light is
shifted by � with respect to the ballistic light. The total out-
put pulses are calculated as the sum of the circulated and
ballistic electric fields. It is seen that the temporal profile of
the circulated light is delayed 8.4 ns, which is on the order of
1 /��=Q /�. In the undercoupling condition, the ballistic
light is stronger than the circulated light; the tailing part of
the ballistic pulse disappears through destructive interference

with the phase-shifted circulated light. This mechanism
makes the pulse profile advanced with respect to the original
profile, and explains the fast light in the time domain. Figure
2�b� shows the transmitted pulse profiles for different param-
eters of y, while the loss parameter x is kept constant at
0.999903. As the coupling strength is increased, the ampli-
tude of the circulated light also increases, but the ballistic
light amplitude remains almost unchanged, causing the out-
put pulse to become more advanced. A similar explanation
can be made for the overcoupling condition. Figure 3�a� il-
lustrates the slow light mechanism in the time domain. In the
overcoupling condition, the circulated light is stronger than
the ballistic light. Therefore, the minor field of the ballistic
pulse, which is � out of phase to the circulated pulse, cancels
the leading edge of the circulated pulse. This mechanism
results in a pulse profile delayed with respect to the original
profile, and explains slow light in the time domain. Figure
3�b� shows the output pulse profiles for different values of y
while x=0.999903. Again, as the coupling strength is in-
creased, the circulated light becomes stronger while the bal-
listic light remains almost unchanged, but here, the delay in
the output pulse increases.

We see an analogy between fast and slow light in this
sphere system and that in a simple atomic system. Superlu-
minal pulse propagation through an atomic absorption line
has been discussed in the time domain �20�. When a coherent
pulse propagates through a resonant atomic absorber, more
energy is absorbed from the trailing half of the pulse than

FIG. 2. �a� Illustration of the fast light mechanism in the time
domain in the undercoupling condition. The ballistic light is drawn
upward, while the circulated light is shown downward, as the phase
of the circulated light at the resonance frequency is shifted by �
with respect to the ballistic light. These curves are drawn in inten-
sity, but the output pulse is calculated by adding the amplitudes of
the two waves. �b� Temporal profile of the output pulse for different
parameters of the coupling constant. From top to bottom, y=1,
0.99997, 0.99995, and 0.999903, respectively. The magnitude of the
curve for y=1 is scaled by a factor of 1 /2.
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from the leading half. This effect results in motion in the
pulse position, and the resultant reshaping effect explains the
superluminal velocity. In the atomic system, the incident
light pulse induces a dipole moment, and this macroscopic
dipole radiates back an additional field; in our system, the
circulated light generates this field.

The illustration gives a clear understanding of the pro-
cesses involved with fast and slow light. One of the striking
effects predicted by the picture, as discussed above, is dy-
namic pulse splitting in the transmitted pulses. In steady-
state measurements at the critical coupling condition, the
transmission becomes zero because the ballistic and circu-
lated light cancel perfectly. In this situation, all the injected
energy is dissipated within the sphere. Since the ballistic and
circulated pulses are time delayed with respect to each other,
their dynamic behavior differs. In the time region, where the
two pulses overlap temporally, their intensities cancel. How-
ever, the leading edge of the ballistic pulse and the tailing
edge of the circulated pulse are not cancelled, and appear at
the output. This mechanism produces the dynamic pulse
splitting at the critical coupling condition. Note that the total
transmission electric field Eout���, can also be obtained di-
rectly by directional coupling theory, where the group delay
time of a wave packet is calculated as �d=��total��� /��, with
�total��� being the phase shift in the total transmitted field
�12�. At the critical coupling condition, however, the phase
shift �total��� jumps from � /2 to −� /2 at the resonance fre-
quency; therefore, ��total��� /�� diverges at the resonance
frequency and the conventional definition of the group ve-
locity loses physical meaning. This process generating the
dynamic pulse splitting is reminiscent of the mechanism of
the odd pulse in pulse-shaping optical systems �21�. In
generating the odd pulse, an optical pulse is separated into its

spectral components, and then a phase shift of � is added to
half of the spectral components. The resultant temporal pulse
shape has two peaks when all the spectral components are
recombined.

To investigate pulse propagation at the critical coupling
condition, we performed an experiment using the sphere-
fiber taper system �22�. A silica microsphere was fabricated
on the tip of a standard telecommunication optical fiber. To
fabricate a sphere smaller than the diameter of the standard

FIG. 4. �Color� �a� The time integrated transmission intensity as
a function of the detuning frequency. �b� Two-dimensional contour
plot of the transmitted pulse intensity as a function of time and
frequency detuning of the laser at the critical coupling condition.
The intensity is plotted on a logarithmic scale. The time origin is set
at the peak arrival time for a pulse at a far detuning frequency of
100 MHz. �c� The transmitted pulse profile at the resonance fre-
quency along the dashed line in Fig. 4�b�. The solid thin curve is the
experimental result. The dotted curve is the theoretical pulse profile
derived from Eqs. �1� and �2� in the text. The solid thick curve is the
calculated profile when 2.9% of the circulated light is assumed to
leak into higher modes in the fiber.

FIG. 3. �a� Illustration of the slow light mechanism in the over-
coupling condition. These curves are drawn in intensity, but the
output pulse is calculated by adding the amplitudes of the
two waves. �b� Temporal profile of the output pulse for different
parameters of the coupling parameter y. From bottom to top,
y=0.999903, 0.9998, 0.9997, and 0.9995, respectively.
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optical fiber, we etched the fiber to 20 �m in diameter using
buffered hydrofluoric acid. The end of the etched fiber was
fused using a CO2 laser and a microsphere was self-formed
via the surface tension. We used a sphere of radius a
=57.5 �m for the experiment. The fiber taper was fabricated
from the same telecommunication optical fiber. The sphere
was attached to a translation stage controlled by a piezoelec-
tric actuator. We used the second harmonic of a continuous
wave Nd3+ YAG �yttrium aluminum garnet� laser with a line-
width of 1 kHz as the light source. The laser frequency was
tuned thermally using the cavity length control and the
mode-hop-free tuning range was over 10 GHz. Nearly
Gaussian shaped transformed limited pulses were prepared
using an electro-optical �EO� modulator with a repetition rate
of 100 kHz. We have an option to operate the laser in a
continuous wave �cw� mode by applying an electrical bias to
the EO modulator. The pulse duration was 
tp=58 ns and
the frequency width was ��p /2�=10 MHz. The incident la-
ser power was 1 �W. The pulse profile after propagation
through the microsphere-fiber-taper system was observed us-
ing a streak camera with a time resolution of 10 ps.

To achieve the critical coupling condition, we first ad-
justed the sphere position along the waist region of the fiber
taper monitoring the transmission intensity to become less
than 2–3%. Figure 4�a� shows the steady-state measurement
of the transmission intensity as a function of the laser fre-
quency. In this measurement, the EO modulator was operated
in the cw mode and the laser frequency was scanned across
the resonance. The resonance dip has a frequency width of
�� /2�=35 MHz. Then, we made fine adjustment of the
sphere position to find the critical coupling condition so that
the dynamic pulse splitting appeared most clearly. Figure
4�b� shows a two-dimensional contour plot of the pulse in-
tensity as a function of time and frequency detuning of the
laser at a critical coupling condition. In this measurement the
EO moderator was operated in the pulse mode. The laser
detuning frequency was continuously scanned and the trans-
mitted pulse profile was monitored through the streak cam-
era. Figure 4�c� shows the pulse profile along the vertical
dashed line shown in Fig. 4�b�. The solid thin line shows the
experimental result. The pulse profile is split into two peaks
temporally and the experiment correctly demonstrates the
dynamic pulse splitting. The dotted curve in Fig. 4�c� is the
theoretical profile calculated using Eqs. �1� and �2� with

x=0.999903 and y=0.999904, assuming a Gaussian shaped
initial pulse. While the experiment and theory are in good
agreement in showing the dynamic pulse splitting, some of
the details of the experimentally observed transmitted profile
differ from the theoretically expected shape; especially, the
dip between the two peaks does not drop to zero. At the
critical coupling condition, most of the ballistic and circu-
lated pulses are canceled, and the transmission intensity ap-
proaches zero. Therefore, the transmitted pulses shape could
be very sensitive to the initial pulse shape, such as any asym-
metry, or even a small deviation from an ideal Gaussian. In
addition, the pulse shape could also be sensitive to the small
out-coupling of the circulating light into higher modes of the
fiber taper. The circulated pulses coupled back into the fun-
damental fiber mode interferes with the ballistic pulse and
results in the dynamic pulse splitting. On the other hand, the
circulated pulse which is out-coupled into the higher fiber
mode does not interfere with the ballistic pulse propagating
in the fundamental fiber mode, but is added as the intensity
profile. The temporal position of the circulated pulse is lo-
cated between the two peaks, therefore this model explains
why the dip between the two peaks does not go to zero
around the zero delay time. The thick solid curve in Fig. 4�c�
is a theoretically calculated pulse profile that incorporates
this leakage by assuming that 2.9% of the circulated light is
coupled into higher modes in the fiber. This calculated curve
shows good agreement with the observation.

In summary, we have discussed fast and slow light in a
microsphere-optical-fiber system in the time domain. Fast
and slow light are explained as interference effects between
ballistic and circulated light. This explanation gives a clear
picture, not only for the undercoupling and overcoupling
conditions but also for the critical coupling condition where
the conventional definition of phase velocity diverges. Re-
cently, theoretical analysis revealed that the coherent effects
of a coupled microresonator are remarkably similar to those
in atoms. Experimentally, it was clearly demonstrated that
coupled whispering gallery microresonators showed induced
transparency and absorption �17,18�. The basic mechanism
involved in our single-sphere system could also be an essen-
tial and an elementary process in pulse propagation through
coupled spheres �13,17,18�, serial loop structures �14�, and
arrays of spheres �13�, such as photonic crystals �13,23�.
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