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An analytical theory is developed to describe the dynamics of a closed lipid bilayer membrane �vesicle�
freely suspended in a general linear flow. Considering a nearly spherical shape, the solution to the creeping-
flow equations is obtained as a regular perturbation expansion in the excess area. The analysis takes into
account the membrane fluidity, incompressibility, and resistance to bending. The constraint for a fixed total area
leads to a nonlinear shape evolution equation at leading order. As a result two regimes of vesicle behavior, tank
treading and tumbling, are predicted depending on the viscosity contrast between interior and exterior fluid.
Below a critical viscosity contrast, which depends on the excess area, the vesicle deforms into a tank-treading
ellipsoid, whose orientation angle with respect to the flow direction is independent of the membrane bending
rigidity. In the tumbling regime, the vesicle exhibits periodic shape deformations with a frequency that in-
creases with the viscosity contrast. Non-Newtonian rheology such as normal stresses is predicted for a dilute
suspension of vesicles. The theory is in good agreement with published experimental data for vesicle behavior
in simple shear flow.
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I. INTRODUCTION

The dynamics of deformable particles such as drops, cap-
sules, and cells in flow represents a long-standing problem of
interest in many branches of science and engineering, for
instance, because of its relevance to the rheology of emul-
sions and biological suspensions such as blood. The problem
is challenging because the shape of these “soft” particles is
not given a priori but is governed by the balance between
interfacial forces, e.g., due to stretching and/or bending of
the interface, and fluid stresses. The interfacial properties
therefore play a crucial role in the dynamics of these par-
ticles.

The interface between two simple fluids is governed by
the surface tension, which is isotropic, in the absence of sur-
factants or heating. Surface tension acts to minimize the in-
terfacial area; therefore the rest shape of a drop is a sphere.
Under shear flow, the drop deforms initially into an ellipsoid.
As the flow strength increases, the drop area also increases
and the angle between the ellipsoid major axis and flow di-
rection decreases from � /4. If the flow strength is suffi-
ciently high, and the viscosity contrast is moderate, the drop
breaks up. Drop microhydrodynamics has been studied quite
extensively �1,2�.

Polymerized membrane interfaces found in synthetic cap-
sules and the red blood cell, where a lipid bilayer is attached
to a scaffolding of cytoskeletal proteins, exhibit far more
complicated mechanical properties. These membranes be-
have as thin viscoelastic materials that can develop bending
moments similar to thin elastic shells. Barthes-Biesel �3� has
reviewed the various constitutive laws adopted to describe
the membrane mechanics and the effects of interfacial prop-
erties on the capsule behavior in a linear flow. Yet, most of

the theoretical studies treat the membrane as a two-
dimensional viscoelastic surface with no bending resistance.

Bending stiffness, however, plays a crucial role in the
mechanics of biological membranes, for example, the equi-
librium biconcave shape of the red blood cell cannot be ac-
counted for without including bending resistance �4�. The
main structural component of the cell membrane is the lipid
bilayer and its mechanical properties are essential to the
overall cell mechanics. The pure lipid membrane consists of
two sheets of lipid molecules. The molecular thickness im-
parts bending resistance. Lipid molecules are free to move
within the monolayer, and therefore, in contrast to solidlike
polymerized membranes, the lipid bilayer membrane is fluid.
In addition, since the lipid bilayer contains a fixed number of
molecules with fixed area per molecule �under moderate
stresses�, the membrane is incompressible and the total area
is constant. The enclosed volume is also constant at given
osmotic conditions. The mechanics of lipid bilayers in con-
cisely reviewed in Powers �5�.

Equilibrium mechanical properties of vesicles made of
lipid bilayer membranes are fairly well understood �6�, and
vesicle shapes can be generated by minimizing the mem-
brane bending energy subject to the constraints of constant
area and enclosed volume. In contrast, the nonequilibrium
dynamics of lipid bilayer membranes has been studied only
to a limited extent. Experimental studies �7–10� of vesicle
behavior in unbounded shear flow observe that in weak
flows, and when the inner and outer fluids are the same, the
vesicle deforms into a tank-treading stationary prolate ellip-
soid with an inclination angle close to � /4 with respect to
the flow direction; however, in striking contrast to drops,
when the fluid inside is more viscous than outside the vesicle
undergoes a tumbling motion. Numerical simulations
�11–13� and analytical theories �14–16� of vesicle microhy-
drodynamics attempt to elucidate such experimental observa-
tions. In their classic paper Keller and Skalak �17� analyzed
the motion of a tank-treading ellipsoid in unbounded shear
flow. The theory qualitatively captures features like the tum-
bling transition, but their assumption of a fixed particle shape
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casts some doubts on the applicability to deformable
vesicles; for instance, no connection can be made to the
physical properties of real membranes such as the bending
rigidity. The free-boundary character of the problem is taken
into account in several recent works. Shape evolution of a
fluctuating quasispherical vesicle was considered by Seifert
�14� for the case where the inner and suspending fluids are
the same, i.e., there is no viscosity contrast. The theory pre-
dicts a stationary, tank-treading prolate ellipsoid and no tran-
sition to tumbling motion. The importance of viscosity con-
trast for the tumbling transition was recognized by Misbah
�16�, who showed quantitatively that a critical value of vis-
cosity contrast exists which separates the tank-treading and
tumbling regimes. The critical viscosity ratio was shown to
decrease with the excess area �the difference in the areas of
the vesicle and an equivalent sphere with the same volume�.
He also pointed out that the area constraint leads to nonlinear
leading order evolution equations for the vesicle shape,
which in the case when only ellipsoidal deformation modes
are considered are independent of the membrane bending
rigidity. Earlier work by Olla �15� derived similar results for
a viscoelastic membrane.

Cell behavior in unbounded flow is of fundamental inter-
est. However, flows in confined geometries are much more
relevant to physiology, for instance, blood flow in the micro-
circulation. Walls affect greatly particle microhydrodynam-
ics, for example, red blood cells migrate away from the
blood vessel walls, an observation that dates back to Poi-
seuille �18�. The existence of a near-wall cell-depleted region
accounts for the Fahraeus-Lindqvist effect, which is the de-
crease of the apparent blood viscosity in smaller vessels �19�.
Cell traffic between the blood stream and tissues involves
cell attachment to blood vessel walls �20�; examples are leu-
kocytes during inflammatory response, platelets in formation
of atherosclerotic plaques, or tumor cells in metastasis. In
order to elucidate the fundamental features of the process,
several studies have used vesicles as the simplest artificial
cell �21–23�. They have reported that the flow-induced de-
formation of adhering vesicles gives rise to a lift force that
can lead to unbinding from the substrate. The experimental
data on the lift force and vesicle migration velocity have not
yet been quantitatively compared to theoretical studies
�24–26�.

The purpose of this paper is to simultaneously include the
effects of �i� viscosity contrast, �ii� membrane incompress-
ibility, and �iii� bending rigidity in the analysis of vesicle
dynamics in shear flows, unbounded or in the presence of a
wall, in a consistent way and thereby proceed further towards
a fully quantitative description of the experimentally ob-
served vesicle behavior. As a first step, the leading order
small deformation of a nearly spherical vesicle will be con-
sidered. However, the developed formalism will serve as a
rigorous basis for considering higher orders in the nonlinear
dynamics of a vesicle in flow.

Our study extends the results of Seifert �14� derived for an
equiviscous vesicle. The works by Misbah �16� and Olla �15�
are clarified, more specifically, the calculations are presented
more explicitly, some important results are corrected and cast
in a form that can be directly compared to experimental mea-
surements, and more physical insights are given for the

vesicle behavior in the tumbling regime. We demonstrate that
the theory agrees quantitatively with published experimental
data �8–10�. We present new results for �i� the non-
Newtonian rheology of a vesicle suspension, in particular,
we show how the single vesicle solution serves to calculate
the effective stress of a collection of many vesicles and we
predict the existence of normal stresses, and �ii� vesicle mi-
gration velocity in wall-bounded flow in the case of large
distances from the boundary.

II. PROBLEM FORMULATION

Let us consider a neutrally buoyant vesicle formed by a
closed lipid bilayer membrane with total area A. The vesicle
is suspended in a fluid of viscosity � and filled with a fluid of
viscosity ��−1��. Both interior and exterior fluids are in-
compressible and Newtonian. The vesicle has a characteristic
size a defined by the radius of a sphere of the same volume.
The equilibrium shape of the vesicle is characterized by a
small excess area

� = A/a2 − 4� . �1�

The coordinate system employed is spherical �r ,� ,��, with
the origin coinciding with the center of mass of the vesicle.
The interface is specified by a shape function F�r , t�, of the
position r and time t, which represents the interface as the set
of points, where F�r , t��0. It is given by the relation

F�r,t� = r − rs��,�,t� . �2�

A. Hydrodynamics

The vesicle is placed in a steady two-dimensional linear
flow,

v��r� = 	̇E · r , �3�

where 	̇ is the strain rate, and E is the velocity gradient
tensor. Linear flows are defined by

E =
1

2� 0 1 + 
 0

1 − 
 0 0

0 0 0
� , �4�

where 
 is the magnitude of the rotational flow component.
Irrotational flow such as the pure extensional flow is given
by 
=0. Simple shear flow is specified by 
=1, i.e., vx

�

= 	̇y. A sketch of the problem is shown in Fig. 1.
Typically vesicles are micron sized. At these small length

scales water is effectively very viscous, inertial effects are
unimportant, and fluid velocity fields inside vin and outside
vout the vesicle are described by the Stokes equations

��2vout − �pout = 0, � · vout = 0,

�� − 1���2vin − �pin = 0, � · vin = 0. �5�

Far away from the vesicle, the flow field tends to the unper-
turbed external flow vout→v�. Velocity is continuous across
the interface,
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vin = vout � vs at r = rs, �6�

where rs denotes the position of the interface. The interface
moves with the fluid velocity �27�,

�F

�t
+ vs · �F = 0, �7�

where vs is the fluid velocity at the vesicle interface. Fluid
motion gives rise to bulk hydrodynamic stress,

T = − pI + ���u + ��u�T� , �8�

where I denotes the unit tensor and the superscript T denotes
transpose. The surrounding fluids exert tractions on the
membrane that are balanced by membrane forces

n · �Tout − Tin� = tmem at r = rs, �9�

where n is the outward unit normal vector and the membrane
surface forces are discussed next.

B. Membrane mechanics

Unlike drops, which are governed by surface tension, the
shape of the vesicle is determined by bending elasticity �6�.
A nonequilibrium membrane configuration gives rise to a
surface force density �14�

tmem = �2�H − ��4H3 − 4KH + 2�s
2H��n − �s� , �10�

where � is the bending rigidity, H and K are the mean and
Gaussian curvatures, respectively, and � is the local mem-
brane tension. The tangential part of the surface force density
arises from nonuniformities in the surface tension, which are
needed to ensure local area incompressibility, as discussed in
more detail in the next section. The mean and Gaussian cur-
vatures are

H =
1

2
� · n , �11�

K =
1

2
� · �n� · n + n  ��  n�� , �12�

where the outward unit normal vector can be determined
from the shape function �2� via

n =
�F

��F�
. �13�

The surface gradient operator is defined as

�s = Is · � , �14�

where the matrix Is=I−nn represents a surface projection.
At rest, Eq. �9� reduces to the well-known Euler-Lagrange
equation

pin − pout = 2�H − ��4H3 − 4KH + 2�s
2H� . �15�

C. Area constraint and tension

The lipid bilayer is fluid because the lipids can diffuse
rapidly within the membrane. Moreover, since the number of
lipids in a monolayer and the area per lipid are fixed, the
lipid bilayer membrane is incompressible and the total area is
conserved. A membrane element only deforms but does not
change its area. Accordingly, the local tension changes in
order to keep the local area constant. Hence inhomogeneities
in the tension ensure local area incompressibility. The situa-
tion is analogous to three-dimensional incompressible fluids,
where finite changes in pressure �tension is the two-
dimensional analog� correspond to infinitesimal changes in
fluid density, and pressure takes the place of the density as an
independent field variable; in flowing fluids pressure can be-
come nonuniform. The local area conservation implies that
the velocity field at the interface is solenoidal �14�,

�s · v = 0. �16�

The global area constraint acts like an isotropic tension
whose value at equilibrium is given by the Lagrange multi-
plier used to determine the shape �28�. Under flow, the
changes in shape result in variations of this effective isotro-
pic tension.

D. Dimensionless parameters

Viscous forces exerted by the extensional component of
the external flow drive shape deformation that occurs on a
time scale

t	̇ = �	̇−1. �17�

Several intrinsic relaxation mechanisms oppose the deforma-
tion. Bending stresses work to bring the shape back to its
preferred curvature state; the corresponding time scale is

t� =
��a3

�
. �18�

In shear flow, vesicle rotation away from the extensional axis
of the imposed flow effectively decreases the extent of shape
distortion; the associated time scale is

tr = 	̇−1. �19�

The strength of these two relaxation mechanisms that limit
shape deformation by the flow is quantified by the corre-
sponding dimensionless parameters: the capillary number

FIG. 1. �Color online� A sketch of a vesicle is a simple shear
flow. The zoomed region of the interface illustrates the bilayer lipid
structure of the membrane.
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� =
t�

t	̇

, �20�

and the rotation parameter

tr

t	̇

= �−1. �21�

The smaller of these parameters controls the magnitude of
vesicle deformation. At moderate viscosity ratios, the vesicle
shape should remain close to the equilibrium one provided
that the capillary number is small, i.e., restoring bending
forces are stronger than the distorting viscous forces. A high
viscosity inner fluid limits the shape distortion in flows with
nonzero vorticity by means of increasing the rate of vesicle
rotation. In addition to the flow-related parameters, a physi-
cal parameter that arises from vesicle geometry is the excess
area �1�, which sets the maximum magnitude of the shape
distortion; it turns out to be the relevant small parameter for
the analysis of nearly spherical vesicles as shown in the next
sections.

Henceforth, bending stresses and tension are normalized
by � /a2; all other quantities are rescaled using �, a, and 	̇.
Accordingly, the time scale is 	̇−1, the velocity scale is 	̇a,
bulk stresses are scaled with �	̇.

III. SMALL DEFORMATION THEORY

In this section we present a perturbative solution for the
microhydrodynamics of a vesicle with a nearly spherical
shape. In the coordinate system centered at the vesicle, the
radial position rs of the vesicle interface can be represented
as

rs = � + f��� , �22�

where f is the deviation of vesicle shape from a sphere,
which depends only on the angles �� ,�� �or equivalently the
solid angle �� and has a vanishing angular average

	 fd� = 0. �23�

The isotropic contribution � is determined by the volume-
conservation constraint

	 �� + f�3d� = 4� . �24�

The total area conservation constraint relates the amplitude
of the perturbation f and the excess area �,

A/a2 =	 rs
2

r̂ · n
d� = 4� + � , �25�

where r̂ denotes the unit radial vector.

A. Expansion in spherical harmonics

In Eq. �22�, the function f representing the perturbations
of the vesicle shape depends only on angular coordinates.

Thus it is expanded into series of scalar spherical harmonics
Y jm �Eq. �A1��,

f = 

j=2

�



m=−j

j

f jmY jm. �26�

In the above equation, the summation starts from nonzero j
because f includes only the nonisotropic contributions. For
small shape perturbations around a sphere the volume con-
straint �24� becomes �14,29�

� = 1 −
1

4�


jm

f jmf jm
* + O�f3� , �27�

where the sum over j starts from 2, �m � � j and f jm
*

= �−1�mf j−m. Similarly, the area constraint �25� transforms to

� = 

jm

a�j�f jmf jm
* + O�f3� , �28a�

where

a�j� =
�j + 2��j − 1�

2
. �28b�

The tension is expanded in scalar spherical harmonics

� = �0 + 

j=2

�



m=−j

j

� jmY jm, �29�

where �0 is the isotropic part of the tension, which varies
with shape in order to keep the total area constant. It is
determined from the condition that the modes must satisfy

the area constraint �̇=0, i.e.,



jm

aj ḟ jmf jm
* = 0. �30�

The nonuniform part of the tension is related to the local
incompressibility.

B. Perturbation solution

The combination of perturbative analysis and the spheri-
cal harmonics formalism for solving Stokes-flow problems
involving a deformable particle has been developed in detail
in Vlahovska et al. �29,30� for the problem of a surfactant-
covered drop. Here we present a brief outline of the method,
and focus on the different feature specific to lipid bilayer
membranes which is the area constraint.

This paper considers a nonspherical particle albeit the
shape deviation from sphericity is small, i.e., f �O��� and
��1. In this case, the exact position of the interface is re-
placed by the surface of a sphere of equivalent volume, and
all quantities that are to be evaluated at the interface of the
deformed particle are approximated using a Taylor series ex-
pansion.

1. Small parameter for area-constrained dynamics

Small deformations of initially spherical drops and cap-
sules with elastic membranes have been considered in a
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number of studies �31,32�. Typical choices for the small pa-
rameter are the capillary number or the inverse viscosity ra-
tio.

In contrast to drops and capsules, the rest shape of the
vesicle we consider is nonspherical. The excess area plays a
crucial role in the vesicle dynamics, because under the con-
straints of constant area and volume a sphere is a geometri-
cally rigid object. Consequently, in the absence of excess
area, a vesicle behaves as a rigid sphere.

Thus the appropriate small parameter that reflects the im-
portance of the excess area in the vesicle dynamics is

� = �1/2. �31�

The square root comes from the observation that f2��
��28a� and �28b��. The choice of the excess area as the small
parameter allows vesicle behavior to described, where the
whole excess area is involved in the vesicle deformation.

2. Evolution equation

We solve the hydrodynamic problem to obtain the veloc-
ity field, and use the fact that the interface moves with the
normal component of the velocity to determine the shape
evolution. The solution for small deviations from a sphere is
presented in detail in the Appendix. In this section we
present the general expression for the shape evolution equa-
tion valid for any linear flow. In the subsequent sections we
analyze in more detail the particular case of simple shear
flow.

At leading order the evolution of the shape parameters
�26� is described by

ḟ jm = i

m

2
f jm + �−1C��, j,m� + �−1�−1���,�0, j�f jm

+ O��−1�,�2� , �32�

where the isotropic tension �0 is determined using the area
constraint �28a� and �28b� as described in the Appendix, see
Eq. �A36�. The first term in the evolution equation �32� de-
scribes rigid body rotation of a particle with shape f by the
rotational component of the external flow. The second term
describes the distortion of the vesicle shape by the exten-
sional component of the external flow. The term including �
is associated with relaxation driven by the membrane
stresses. The expressions for C and � are given by Eqs.
�A27a� and �A27b�. These coefficients depend on � and are
bounded at �→�.

The area constraint couples all modes, and results in iso-
tropic tension, which depends nonlinearly on the shape. Thus
the leading order vesicle dynamics is nonlinear in contrast to
the corresponding results for drops and capsules. As we
show in the next section, a peculiar consequence from the
area-constrained dynamics is that the stationary solution is
independent of the capillary number.

IV. RESULTS: SIMPLE SHEAR FLOW

In this section we provide analytical solutions for the
vesicle shape evolution in a simple shear flow. Simple shear

flow consists of an extensional component, vext
� = 1

2 �y ,x ,0�,
which in the spherical harmonics representation �A10a� and
�A10b� is described by

c2±20
� = � i��

5
, c2±22

� = � i�2�

15
, �33a�

and a rotational component, vrot
� = 1

2 �y ,−x ,0�, which is speci-
fied by

c101
� = i�2�

3
. �33b�

The extensional part of external flow �3�, which is respon-
sible for shape distortion, is fully characterized by a second-
order traceless tensor, which corresponds to spherical har-
monics of the order j=2 �Eq. �33a��. Therefore at leading
order the shear flow affects only the subspace j=2. Consid-
ering only these modes simplifies the expression for the ten-
sion �A36� and the evolution equations �32� to the following
set of coupled nonlinear differential equations:

ḟ2m = −
im

2
h�����m�2 +

im

2
f2m − 2ih����−1�f22 − f2−2�f2m,

�34�

where

h��� =
4�30�

23� + 9
. �35�

Strictly speaking Eq. �34� is only valid at long times �t� t��
when all transient j�2 modes have decayed. The initial con-
ditions are set by the equilibrium vesicle configuration. For
example, for a fluctuating quasispherical vesicle �14�

�f jm�2 =
kBT

�E�j,�eq�
, �36�

where E�j ,�� is given by Eq. �A27d�.
The shape parameters �26� are decomposed into real and

imaginary parts

f jm = f jm� + if jm� , f jm
* = f jm� − if jm� �37�

In the flow plane x−y, the vesicle shape f is characterized by
only three components, f22� , f22� , and f20, corresponding to
deformation along the flow axis x, straining axis x=y, and
the z axis. Shape modes f2±1 describe deformations of the
type xz and yz, which vanish in the flow plane z=0. From
geometrical considerations we have for the inclination angle

�0 = −
1

2
arctan f22�

f22�
� . �38�

A. Tank treading

The evolution equations �34� have two sets of stationary
points. The first one corresponds to the tank-treading state.
The only nonzero stationary amplitudes are
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f22� = −
�

4h���
�− 1 +

4h2���
�

, f22� =
�

4h���
. �39�

The numerical solution of the full set of evolution equations
�32� shows that all other modes decay to zero. Hence in the
stationary state all excess area is stored in the f2±2 modes.
Substituting the stationary amplitudes �39� in the relation for
the inclination angle �38� and expanding for small values of
the excess area � we obtain

�0 =
�

4
−

�9 + 23���1/2

16�30�
, �40�

which agrees with the expression reported by Seifert �14� for
the case of no viscosity contrast ��=2�. The analogous result
reported by Misbah �16� contains a misprint �140 should read
240�. Our relation �40� is in good quantitative agreement
with the experimental data of Kantsler and Steinberg �8�, as
demonstrated in Fig. 2. Equation �39� implies that if �
�4h2, i.e., if the viscosity contrast is higher than a critical
value

�c = −
9

23
+

120

23
� 2�

15�
�41�

no stationary tank-treading solution exists, as also pointed
out by Misbah �16,33�, and the vesicle starts to tumble.

B. Tumbling

The second fixed point of Eq. �34� corresponds to periodic
vesicle deformation given by oscillating j=2 modes around
values

f22� = h���, f22� = 0, f21� = 0, f21� = 0. �42�

If f20�0��0, the f20�t� is also oscillating. All modes with j
�2 decay to zero and are not oscillating.

The time-periodic vesicle deformation depends strongly
on the viscosity contrast as illustrated in Fig. 3. Figure 3�a�
shows that close to the critical viscosity contrast the period
of oscillations is long and the amplitude of oscillations of the
f20 mode, which corresponds to out-of-the-flow-plane defor-

mation, is significant. Experimentally the vesicle appears to
be trembling or “breathing” �9,10�. The breathing motion has
been discussed in part by Misbah �16� although the role of
the f20 mode has not been recognized �51�.

The mode oscillation frequency increases with viscosity
contrast, as seen in Fig. 3�b�. At high viscosity contrast it
approaches twice the rate of rotation of the external flow, 	̇.
This can be seen from Eq. �34� where in the limit ��1 only
the rotation terms survive. Since the f20 mode is not rotation-
ally stabilized, its oscillation amplitude becomes negligible
at high viscosity contrast; correspondingly the out-of-the-
flow-plane deformation is suppressed. The periodic vesicle
deformation then corresponds to rigid body rotation, f22� �t�
�cos�t�, f22� �t��sin�t�.

In order to compare theory and experiment we derive ex-
pressions for some experimentally measurable parameters.
Experimentally only the deformation in the flow plane is
observable. The vesicle contour represents an ellipse. Com-
bining Eqs. �22� and �38� we obtain for the lengths of the
major and minor axes

rmax,min�t� = 1 − f20�t�� 5

�
± �� − 2f20

2 �t��1/2� 15

2�
,

�43�

where we have neglected the contributions from the f2±1
modes for the sake of simplicity. We see that the major and
minor axes follow the oscillations of the f20 mode: the larger
the f20 oscillation amplitude, the larger the amplitude in the
rmax and rmin fluctuations. In the experiments of Kantsler and

FIG. 2. �Color online� Stationary inclination angle in simple
shear flow as a function of the rescaled excess area, �̃=�1/2�9
+23�� / �16�3/2�30�, for different viscosity contrasts. The symbols
are experimental data from Kantsler and Steinberg �9�. The lines
represent the linear small deformation theory �40�.

FIG. 3. Time dependence of the f2m modes in the �a� breathing
����c� and �b� tumbling ����c� regimes; solid, dashed, and dot-
ted lines represent the f22� , f22� , and f20 modes, respectively. The
excess area is �=0.2. The viscosity contrasts are �a� �=10, �b� �
=100. The initial conditions are f22� �0�= f22� �0�=�0.1�; f20�0� is de-
termined by the area constraint.
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Steinberg �9�, the excess area �̄ corresponding to a prolate
ellipsoidal shape with major and minor axes as seen in the
flow plane was reported. Using the relation between the de-
formation in the flow plane and the excess area �rmax

−rmin� / �rmax+rmin�= �15�̄ /32��1/2, reported first by Seifert
�14�, we obtain

�̄�t� =
� − 2f20

2 �t�

�1 − f20�t��5/16��2 . �44�

Unlike the true excess area �, which is constant, �̄ is time
dependent due to the fluctuations in the f20 mode, i.e., the
out-of-the-flow-plane transfer of area.

The angle evolution is described by

�̇0 = −
1

2
+

h���
�� − 2f20

2 �t��1/2 cos�2�0�t�� , �45�

from which we infer that the tumbling period, defined as the
time needed for a material point to return to its initial posi-
tion, is given by

Ttumble = 4��1 −
4h���2

�
�−1/2

. �46�

As already discussed, when the viscosity contrast is high
the oscillations of the f20 mode are suppressed and f20�t�
� f20�0�. In this case Eq. �45� becomes equivalent to the

Keller-Skalak equation �̇0=A+B cos�2�0�, where the con-
stants A and B are identified with −1/2 and h��� /
��−2f20

2 �0�, respectively.
We compared the time-dependent vesicle behavior with

the experiments of Mader et al. �10�. A good agreement was
obtained for the angle evolution, for example, of their vesicle
number 6 using reduced volume 0.988 instead of the re-
ported 0.996. The difference is reasonable given the uncer-
tainty with which the reduced volume is determined experi-
mentally: it is computed assuming axial symmetry about the
vesicle’s longest axis, which might not be always the case
because of the presence of a nonzero f20 mode. Note, how-
ever, that in the tank-treading regime, since the excess area is
stored only in the f2±2 modes the vesicle is a prolate ellipsoid
and the computation of the reduced volume is quite accurate.
We also attempted to reproduce theoretically the experimen-
tal curves in Fig. 4 of Kantsler and Steinberg �9�. The pre-
dicted tumbling frequency from Eq. �46� using viscosity con-
trast and excess area close to the reported values was almost
twice those of the experimental data. One possible explana-
tion is that our small-deformation theory fails for the large
values of excess area in this experiment ���1�.

C. Rheology

A suspension of vesicles can be described as a continuum
with effective properties at length scales large compared to
the size of the constituent particles. In dilute suspensions
particles are far from each other and they do not feel each
others presence. Thus the effective stress is just a sum of the
stress contributions of the individual particles and the bulk

stress of a dilute suspension is linear with the particle vol-
ume fraction � �34,35�,

� = 2Es + �T , �47�

where Es is the symmetric part of the velocity gradient tensor
�4� and T is the stress associated with the vesicle disturbance
velocity field. Rheological properties of interest are the par-
ticle contribution to the shear viscosity, Txy, and the normal
stress differences, N1=Txx−Tyy and N2=Tyy −Tzz. Vesicle
stress is directly related to the amplitudes of the velocity
field j=2 �Eqs. �A10a� and �A10b�� �36� corresponding to
the stresslet �the symmetric force dipole�. Using relations
�A8a�–�A8c� we obtain for the vesicle contribution to the
effective shear viscosity

Txy =
5

2

23� − 39

23� + 9
+ �−13i�30

�

E�2,�0��f22 − f2−2�
23� + 9

,

�48�

where the shape deformation modes f2±2 are given by Eq.
�A28�. For a given excess area and viscosity contrast the
effective viscosity in the tank-treading regime is

Txy =
5

2
− �

�23� + 9�
16�

, �49�

which is obtained by inserting the expression for the modes
amplitude �A28� in Eq. �48� and taking into account Eq.
�A30�. In the limit of a spherical particle, �=0, and since a
sphere with fixed area and volume in shear flow undergoes
only a rigid body rotation, the Einstein result for a suspen-
sion of rigid spheres is recovered. The effective viscosity
decreases with the increase of the excess area because the
deformable vesicles elongate and thus offer less resistance to
the flow. An increasing viscosity contrast also leads to a de-
crease in the effective viscosity because vesicles align better
with the flow �the inclination angle �40� decreases with vis-
cosity contrast�.

Unlike a suspension of rigid spheres, a suspension of de-
formable vesicles exhibits normal stresses. In the tank-
treading regime below the critical viscosity contrast, the
magnitudes of the first normal stress difference is

N1 =
��23� + 9�

8�
�− 1 +

1920�

��23� + 9�2�1/2

, �50�

and the second normal difference is N2=− 1
2N1.

D. Vesicle migration in the presence of a wall

A spherical particle in simple shear flow produces a sym-
metric disturbance velocity field and therefore the particle
does not drift relative to a bounding wall �37�. Particle de-
formation breaks the symmetry and may lead to cross-stream
migration.

The leading order term in the far field of the disturbance
velocity due to a force-free and torque-free particle is the
stresslet, the symmetric, and traceless force dipole. The
boundary conditions at the wall can be satisfied by placing
the stresslet hydrodynamic image on the opposite side �34�.
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Thus a particle far away from the wall moves with a velocity
due to its corresponding image stresslet; in particular, the
vesicle drift velocity normal to a rigid wall is proportional to
the stresslet component in the direction of the plane unit
normal, i.e., Tyy. Smart and Leighton �38� report that

Ulift = −
3

16d2Tyy , �51�

where d denotes the distance from the particle center to the
wall. Taking into account that the normal stress is Tyy
=−�N1−N2� /3 and using the normal stresses expressions
�50� we obtain for the lift velocity

Ulift =
c��,��

d2 , �52�

where

c��,�� =
3

32
N1. �53�

Similar type expressions have been reported in analytical
studies �26,39�, although the dependence on the excess area
has not been presented explicitly. Equation �53� shows that
the more deformable the vesicle, i.e., the larger the excess
area, the larger the migration velocity. Interestingly, at very
small excess area we obtain from Eq. �50� that N1��1/2, and
vesicle migration is independent of the viscosity contrast.
The values of the prefactor �53� are of the same order of
magnitude as reported in studies considering a tank-treading
ellipsoid �39� or numerical simulations of a vesicle with no
viscosity contrast �25�.

V. SUMMARY AND OUTLOOK

This study considers the behavior of a vesicle formed by a
fluid membrane in a general shear flow. The analysis takes
into account the membrane incompressibility and bending
resistance as well as the viscosity contrast between the inte-
rior and exterior fluids. Analytical results for a nearly spheri-
cal vesicle are obtained. Expressions for the shape evolution
equation, stress and velocity fields, and the effective mem-
brane tension, which is needed to enforce the area constraint,
were derived using a formalism based on spherical harmon-
ics. The main theoretical result of this study is contained in
the shape evolution equation �32� and the expression for the
effective tension Eq. �A36�. The latter serves to eliminate the
tension in favor of the excess area, which is the physically
relevant parameter. In contrast to drops and capsules, the
shape evolution of the area-constrained vesicle is nonlinear.

The derived shape evolution equation describes vesicle
dynamics in general linear flow. In the particular case of
simple shear flow, only the shape modes with the same
spherical harmonic order as the external flow, j=2, are per-
turbed; all other modes decay on a time scale set by the
bending rigidity. Consequently, the shape evolution equa-
tions simplify to Eq. �34� and yield expressions for quantities
that can be measured experimentally such as the inclination
angle with respect to the flow direction, the lengths of the
major and minor axes of the vesicle contour in the flow

plane, etc. In the stationary tank-treading state, we show that
in a simple shear flow the leading order deformation and
stresses are independent of the membrane bending rigidity.
Our theory is in quantitative agreement with experimental
data for the vesicle deformation in the tank-treading and in
the tumbling regimes. Non-Newtonian rheology with normal
stresses is predicted for a suspension of vesicles. We also
considered the vesicle dynamics in wall-bounded shear flow
and presented a simple derivation of the leading order cor-
rection, in the distance to the wall, to the rate of vesicle
migration away from the wall.

Several problems remain open. We discussed the main
features of the time-dependent vesicle dynamics in linear
flows, but this problem remains to be systematically ex-
plored. Although the quantitative agreement between pre-
dicted and experimentally observed �10� behavior of tum-
bling vesicles with small excess area is encouragingly good,
for vesicles with large excess area �9� the agreement is poor,
which might be due to the limitations of the leading order
theory. Our analysis will be extended to consider higher-
order perturbations, and hence elucidate the feedback from
the flow on vesicle dynamics.

The developed theory applies only to a nearly spherical
vesicle. Larger deformations from sphericity can be explored
by numerical simulations. A body of work exists on capsule
dynamics, mostly considering elastic membranes with no
bending resistance �40–42�. To our knowledge there are only
a couple of numerical studies that include bending resistance
�43,44�. Area incompressible fluid membranes with bending
resistance such as the lipid bilayer membranes, have been
studied only to a limited extent �11,12,45� and some results
are conflicting. For example, Noguchi and Gompper �45�
report stationary tank-treading discocyte shape, while Kraus
et al. �11� find only prolate ones. More efficient and accurate
simulations are needed in order to perform a systematic
study on flow induced shape transitions. In order to explore
numerically the dynamics of highly nonspherical vesicle
shapes we are developing boundary integral method simula-
tions, which combine an algorithm for adaptive restructuring
of the computational grid that allows resolution of high cur-
vature regions �46� with the area constraint �16� and interfa-
cial force density �10�.
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APPENDIX

1. Spherical harmonics

For the sake of completeness, we list the definitions of
scalar and vector spherical harmonics �47,48�. The normal-
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ized spherical scalar harmonics are defined as

Y jm��� = �2j + 1

4�

�j − m�!
�j + m�!��− 1�mPj

m�cos ��eim�, �A1�

where r̂=r /r, �r ,� ,�� are the spherical coordinates, and
Pj

m�cos �� are the Legendre polynomials. The vector spheri-
cal harmonics are defined as

y jm0 = �j�j + 1��−1/2r��Y jm, �A2a�

y jm1 = − ir̂  y jm0, �A2b�

y jm2 = r̂Y jm, �A2c�

where �� denotes the angular part of the gradient operator.
y jm0 and y jm1 are tangential, while y jm2 is normal to a sphere.

2. Fundamental set of velocity fields

Following the definitions given in Blawzdziewicz et al.
�36�, we list the expressions for the functions u jmq

± �r ,��,

u jm0
− =

1

2
r−j�2 − j + jr−2�y jm0 +

1

2
r−j�j�j + 1��1/2�1 − r−2�y jm2,

�A3a�

u jm1
− = r−j−1y jm1, �A3b�

u jm2
− =

1

2
r−j�2 − j� j

1 + j
�1/2

�1 − r−2�y jm0

+
1

2
r−j�j + �2 − j�r−2�y jm2. �A3c�

u jm0
+ =

1

2
rj−1�− �j + 1� + �j + 3�r2�y jm0

−
1

2
rj−1�j�j + 1��1/2�1 − r2�y jm2, �A4a�

u jm1
+ = rjy jm1, �A4b�

u jm2
+ =

1

2
rj−1�3 + j� j + 1

j
�1/2

�1 − r2�y jm0

+
1

2
rj−1�j + 3 − �j + 1�r2�y jm2. �A4c�

On a sphere r=1 these velocity fields reduce to

u jmq
± = y jmq. �A5�

Hence u jm0
± and u jm1

± are tangential, and u jm2
± is normal to a

sphere. In general, a vector velocity field which is tangential
to a surface with normal n has an irrotational component
�49�

n · ��s  virr� = 0 �A6�

and solenoidal component

�s · vsol = 0. �A7�

On a sphere, the irrotational component is identified with the
q=0 vector spherical harmonic, and the solenoidal corre-
sponds to the q=1 vector spherical harmonic.

3. Effective stress of a dilute dispersion

The disturbance velocity field due a particle can be repre-
sented as a superposition of velocity fields generated by a
collection of force multipoles, by analogy to electrostatics
�34,50�.

The strength of the stresslet, which is the symmetric and
traceless force dipole moment, gives the particle contribution
to the effective stress of a dilute dispersion,

Txy = −
i

8
� 6

5�
�ĉ220 − ĉ2−20� , �A8a�

N1 = −
1

4
� 6

5�
�ĉ220 + ĉ2−20� , �A8b�

N2 = −
1

2
N1 +

3

4
� 1

5�
ĉ200. �A8c�

The stresslet field is related to the amplitude of the j=2
velocity field; the relations between ĉ and c are given by

ĉjm0 =
�2j + 1��2j − 1��j�j + 1��1/2

j + 1
cjm0

+
j�2j + 1��2j − 1�

j + 1
cjm2. �A9�

The complete expressions can be found in Blawzdziewicz et
al. �36�.

4. Velocity fields and hydrodynamics stresses

Velocity fields are described using basis sets of fundamen-
tal solutions of the Stokes equations �50�, u jmq

± , defined in the
AppendixX:

vout�r� = 

jmq

cjmq
� �u jmq

+ �r� − u jmq
− �r�� + 


jmq

cjmqu jmq
− �r� ,

�A10a�

vin�r� = 

jmq

cjmqu jmq
+ �r� . �A10b�

The hydrodynamic tractions exerted on a surface with a nor-
mal vector n are n ·T,

� � n · T = � jmqy jmq. �A11�

In the particular case of a sphere characterized with a normal
vector r̂, the viscous tractions are linearly related to the ve-
locity field,

� jmq
out = 


q�

2

cjmq�
� ��q�q

+ − �q�q
− � + 


q�

2

cjmq��q�q
− , �A12a�
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� jmq
in = 


q�

2

cjmq��q�q
+ , �A12b�

where �q�q
± are obtained from the velocity fields

�A3a�–�A3c� and �A4a�–�A4c� �36�,

�qq�
+ �j� =� 2j + 1 0 − 3 j + 1

j
�1/2

0 j − 1 0

− 3 j + 1

j
�1/2

0 2j + 1 +
3

j
� ,

�A13�

�qq�
− �j� =� − 2j − 1 0 3 j

j + 1
�1/2

0 − j − 2 0

3 j

j + 1
�1/2

0 − 2j − 1 −
3

j + 1
� .

�A14�

In the derivation of the above expressions we have used that

r̂ · ��v + ��v�T� = r
d

dr
v

r
� +

1

r
��v · r� . �A15�

5. Leading order perturbation solution

For small deviations from sphericity �29�, the O��� expan-
sions for the normal vector and the mean curvature are

n��� = r̂ − f jm�j�j + 1��1/2y jm0, �A16�

H��� = 1 +
1

2
�j + 2��j − 1�f jmY jm. �A17�

At order O���, in the bending stresses �10� the terms H3 and
HK cancel and only �s

2H remains,

�s
2H = −

1

2
j�j + 1��j − 1��j + 2�f jmY jm. �A18�

Combining Eqs. �A16� and �A17� in the Laplace term of the
membrane stresses �10� yields

�H = �1

2
�0�j − 1��j + 2�f jm + � jm�Y jm. �A19�

In the above equation the isotropic part has been omitted
because it has no importance to flow dynamics; � jmf jm is
neglected as well as it is a higher order term. On a sphere
�s� becomes simply �j�j+1�� jmy jm0 according to Eq.
�A2a�.

All modes that contribute to the excess area are affected
by the flow. Therefore we will present results for any j. In
this way, the theory can be applied to fluctuating vesicles and
other types of flow, e.g., quadratic �Poiseuille� flow.

The incompressibility condition �16� implies that the am-
plitudes of the velocity disturbance field �A10a� and �A10b�
are related,

cjm2 =
1

2
�j�j + 1�cjm0. �A20�

At leading order the stress balance reads

r̂ · Tout − �� − 1�r̂ · Tin = tmem. �A21�

It gives a relation for the tractions �A11�, which is linear in j
and m,

� jmq
out − �� − 1�� jmq

in = t jmq
mem. �A22�

The tangential interfacial stress has an “irrotational” compo-
nent,

t jm0
mem = − �−1�j�j + 1�� jm. �A23�

The normal component of the membrane stress is

t jm2
mem = �−1�2� jm + E�j,�0�f jm� . �A24�

The tangential balance �A23� determines the tension distri-
bution in terms of the shape parameters,

� jm = − �cjm0
� 2�1 + 2j�

�j�j + 1�
+ �cjm2

� 3�2j + 1�
j�j + 1�

+ �cjm0
�3 + ��j − 1��

2�j�j + 1�
. �A25�

Finally, the normal stress balance �A24� yields cjm0.
Expanding around sphere, for the linear flow �3� Eq. �7�

yields

� f jm

�t
= cjm2 + 


im

2
f jm at r = 1. �A26�

The first term represents the motion of the interface due to
the normal component of the velocity and the second term
describes the rotation of the deformed shape.

Substituting cjm2 in Eq. �A26� yields the evolution equa-
tion �32� with the following coefficients:

C��, j,m� = d��, j�−1�cjm0
� �j�j + 1��2j + 1�

+ cjm2
� �4j3 + 6j2 − 4j − 3�� �A27a�

and

���,�0, j� = − E�j,�0�
j�j + 1�
d��, j�

, �A27b�

where

d��, j� = 9�−1 + �− 5 + 3j2 + 2j3� �A27c�

and

E�j,�� = �j + 2��j − 1��j�j + 1� + �� . �A27d�

For a simple shear flow �33�, solving Eq. �32� for the station-
ary amplitudes in the tank-treading regime gives

f2±2 = �
i�10�2�/15

E�2,�0� � i���9 + 23��/6�
�A28�

and for the inclination angle
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�0 =
1

2
arctan� 6E�2,�0�

��9 + 23��� . �A29�

These expressions agree with Seifert’s results for a vesicle
with no viscosity contrast ��=2� �14�. At long times, the
excess area is stored in the f2±2 modes only. Substituting the
tension �A36� in Eq. �A27d� leads to

E�2,�0� = �
�23� + 9�

6
�− 1 +

1920�

�23� + 9�2�
. �A30�

Thus the dependence of the mode amplitudes on the capillary
number in Eq. �A28� cancels. Expanding Eq. �A29� for small
values of the excess area � we obtain Eq. �40�.

The surface solenoidal velocity field u jm1
± satisfies identi-

cally the incompressibility condition �16�. The stress bound-
ary condition

� jm1
out − �� − 1�� jm1

in = 0 �A31�

corresponds to a spherical viscous drop with no surface ten-
sion, i.e., the u jm1

± flow field is unaffected by the interfacial
stresses. Consequently, for the j=1 component of the shear
flow, which corresponds to rigid body rotation, we have that
c1m1=c1m1

� , i.e., at leading order the particle rotates with the
flow.

For the sake of completeness we mention the relation be-
tween our notation and the one used by Seifert �14�,

cjm2 = Xjm,

cjm0 = �Y jm + 2Xjm��j�j + 1��−1/2. �A32�

6. Isotropic tension

The area constraint �28a� and �28b� serves to determine
the isotropic part of the tension �0. We can split Eq. �A27b�
into

���,�0, j� = ���, j� + �0���, j� , �A33�

where

���, j� = − 2a�j�
�j�j + 1��2

d��, j�
, �A34�

and

���, j� = − 2a�j�
j�j + 1�
d��, j�

. �A35�

The modes have to satisfy the area constraint �̇=0. Multi-
plying the evolution equations �32� by a�j�f jm

* , summing up
and solving for the tension leads to

�0 = −



jm

a�j��C��, j,m�f jm
* + �−1���, j�f jmf jm

* �

�−1

jm

a�j����, j�f jmf jm
*

.

�A36�

The complicated dependence of the tension on the shape
modes makes the evolution equations Eq. �32� nonlinear.
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