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Recently there has been much attention devoted to exploring the complicated possibly chaotic dynamics in
pseudoperiodic time series. Two methods �Zhang et al., Phys. Rev. E 73, 016216 �2006�; Zhang and Small,
Phys. Rev. Lett. 96, 238701 �2006�� have been forwarded to reveal the chaotic temporal and spatial correla-
tions, respectively, among the cycles in the time series. Both these methods treat the cycle as the basic unit and
design specific statistics that indicate the presence of chaotic dynamics. In this paper, we verify the validity of
these statistics to capture the chaotic correlation among cycles by using the surrogate data method. In particu-
lar, the statistics computed for the original time series are compared with those from its surrogates. The
surrogate data we generate is pseudoperiodic type �PPS�, which preserves the inherent periodic components
while destroying the subtle nonlinear �chaotic� structure. Since the inherent chaotic correlations among cycles,
either spatial or temporal �which are suitably characterized by the proposed statistics�, are eliminated through
the surrogate generation process, we expect the statistics from the surrogate to take significantly different
values than those from the original time series. Hence the ability of the statistics to capture the chaotic
correlation in the time series can be validated. Application of this procedure to both chaotic time series and real
world data clearly demonstrates the effectiveness of the statistics. We have found clear evidence of chaotic
correlations among cycles in human electrocardiogram and vowel time series. Furthermore, we show that this
framework is more sensitive to examine the subtle changes in the dynamics of the time series due to the match
between PPS surrogate and the statistics adopted. It offers a more reliable tool to reveal the possible correla-
tions among cycles intrinsic to the chaotic nature of the pseudoperiodic time series.
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I. INTRODUCTION

Given an experimental time series that exhibits apparently
irregular fluctuation and aperiodic behavior, a common prob-
lem, usually the first step is to determine whether the under-
lying process is governed by low-dimensional deterministic
dynamics �possibly chaotic� or some nondeterministic pro-
cess. To this end, traditional methods originated from chaos
theory depend on the calculation of correlation dimension,
Lyapunov exponent, and entropy �1�. The problem with such
indices, however, is that they cannot be applied absolutely to
determine if the dynamics are generated by a deterministic,
rather than a stochastic process. For example, it has been
demonstrated that the time series from 1/ f-like linear sto-
chastic processes can result in a finite correlation dimension
�2�, and the filtered noise can also mimic low-dimensional
chaotic attractors �3�.

In the last decade some more direct methods from nonlin-
ear dynamical analysis have been developed to detect deter-
minism from a time series �4–8�. For example, the Sugihara-
May method utilized the specific property of short-term
predicability of the chaotic time series �4�. The Kaplan-Glass
method is based on the parallelness of a certain vector field
formed from data �5,6�. The methods proposed by both Way-
land et al. �7� and Salvino �8� measure the continuity of
vector fields in an embedded phase space. In particular, a
trajectory in the phase space reconstructed from a determin-
istic time series behaves similarly to nearby trajectories as
time evolves. These direct methods can be useful in identi-

fying deterministic chaos in real world signals with broad-
band power spectra. They are also capable of effectively dis-
tinguishing between chaos and a random process.

In this paper, we focus on the time series that demon-
strates strong periodic behavior known as pseudoperiodic
time series. Such time series are abundant in natural and
physiological systems, examples include annual sunspot
numbers, laser output, human electrocardiogram �ECG�, hu-
man speech, and human gait data �9–11�. Despite its impor-
tance, there has been relatively little research in this field.
The available techniques in the literature for time series
analysis are not always suitable or perform poorly for ana-
lyzing and modeling pseudoperiodic time series because the
presence of strong periodicity tends to mask other determin-
istic behavior, e.g., hide underlying fractal structures �12�.

Recently, some methods that aim to capture and charac-
terize the chaotic structures in pseudoperiodic time series
have been proposed �13,14�. Unlike previous methods that
require the Euclidian distance between phase space points,
these methods take the cycle in the time series as the basic
processing unit and use the correlation coefficient as a mea-
sure of distance. Therefore phase space reconstruction is
avoided and examining the signal from a larger time scale
has rendered the methods robust to different kinds of noise
and nonstationarity. In both methods, statistics quantifying
the chaotic temporal and spatial correlation respectively hid-
den among the cycles in the time series are designed. The
goal of this paper is to demonstrate that these statistics do
capture the chaotic dynamics, be it in temporal or spatial
domain, within the time series. To achieve this, we adopt the
pseudoperiodic surrogate �PPS� data method. By comparing
the values of the statistics from the original time series with
those from its PPS, we find significant difference between*Electronic address: enzhangjie@eie.polyu.edu.hk
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them. Considering that the PPS eliminates the chaotic corre-
lation that is suitably captured by the new statistics, we con-
firm that the statistics being checked do reflect and quantify
the chaotic structure within the pseudoperiodic data. In addi-
tion, we have compared several other surrogate data algo-
rithms with the PPS. We show that the PPS algorithm is the
most suitable one for pseudoperiodic time series analysis.

A further motivation for this paper is that we want to find
suitable test statistics for surrogate analysis of pseudoperi-
odic data. There are many surrogate generation algorithms
and many more discriminating statistics in the literature.
Choosing the right match has consequently become a non-
trivial problem. Generally speaking, a discriminating statistic
should be sensitive to the “characteristic” present in the
original data while absent in the surrogate. Note, however,
that this point is not given enough attention, and usually,
traditional indices like correlation dimension and Lyapunov
exponent are used without considering their match to a spe-
cific surrogate. This may cause some spurious results in
chaos detection. The reason why we chose PPS rather than
other surrogates in examining the statistics presented here is
that the PPS keeps the shape of the attractor �i.e., the peri-
odic component� so that the new statistics �based on cycle
segmentation� are still applicable. More importantly, the PPS
and the new statistics form a suitable match. That is, the
changes in dynamics in the PPS, which is more explicit on
the scale of the cycle, is more accurately captured by the new
statistics. This is due to the fact that such statistics are de-
pendent of the correlation coefficients between cycles, which
are essentially altered by the surrogate generation procedure.

The paper is organized as follows. Section II briefly intro-
duces the two methods �13,14� and the statistics proposed
therein. Also the advantages of the methods will be dis-
cussed. In Sec. III, the PPS data method �9,15� is first de-
scribed and then the differences between the time series from
the chaotic Rössler system and its surrogate in terms of the
statistics proposed are observed. In Secs. IV and V, the above
framework is applied to the experimental human ECGs and
vowel data, respectively. Finally in Sec. VI, we compare sev-
eral surrogate generation algorithms for pseudoperiodic time
series and explain why PPS in conjunction with the statistics
serves as a most suitable tool for pseudoperiodic time series
analysis.

II. BRIEF INTRODUCTION OF THE METHODS AND
STATISTICS

For a pseudoperiodic time series, the first step is to divide
it into consecutive cycles Ci�i=1,2 , . . . ,m� based on the lo-
cal minimum �or maximum�. We then use the correlation
coefficient � between cycles as a measure of their distance in
phase space �for cycles that are not of the same length, we
shift the shorter cycle onto the longer one until we get the
correlation coefficient of the largest value�. The correlation
coefficient characterizes the similarity of wave form between
a pair of cycles. The larger the �, the higher the level of
similarity. For deterministic systems whose vector fields are
continuous and smooth, two cycles with a larger �, i.e.,
highly similar in wave form, will also be close in the phase

space. Therefore the correlation coefficient may well act as a
substitute for phase space distance, but does not need phase
space reconstruction. In the following part, we will briefly
introduce the two methods that detect temporal �method A�
and spatial �method B� correlation among the cycles, respec-
tively. A detailed explanation of these two methods can be
found in �13,14�.

A. Method that detects temporal correlation

By “temporal correlation among cycles,” we refer to the
property that for two nearby chains of cycles, the time index
of the successive cycles in the two segments are temporally
correlated. To demonstrate this, we construct a series of
“pseudo cycle series” by rearranging the cycles of the origi-
nal time series in the following way: For each cycle Ci, we
sort its correlation coefficients with the remaining �m−1�
cycles Cj�j� i� in descending order, and the �m−1� cycles
are also rearranged correspondingly, denoted as a column
vector Ri= �CSi1

,CSi2
, . . . ,CSi�m−1�

��, where Sij is the index of

the jth most similar cycle to Ci. Then, by linking the pth
�1� p�m−1� element from each column R1 ,R2 , . . . ,Rm to-
gether in order, we can build a �row� sequence of m cycles,
denoted as Tp= �CS1p

,CS2p
, . . . ,CSmp

�. For consistency, the
original cycle series is denoted as T0= �C1 ,C2 , . . . ,Cm�. Note
that each cycle in Tp is the pth “closest” to the corresponding
cycle in T0, therefore as p gradually increases, Tp will grow
less and less similar to T0, i.e., T1 is the most similar and
nearest cycle series to T0, while Tm−1 is the most different
and farthest one.

For clarity of notation, we use Sp to represent the se-
quence of the cycle indexes in Tp, i.e., Sp
= �S1p ,S2p , . . . ,Smp�. Then we count the number of cycle-
pairs in Tp that satisfy the following condition:

Sp�i + k� − Sp�i� = k �1 � i � m − k;k � 1� , �1�

where Sp�j� represents the jth element in Sp. Physically, this
means that the two cycles Ci and CSip

nearby in phase space
are temporally correlated by sharing similar dynamical evo-
lution, and the correlation lasts for k cycles. We use Npk to
denote the number of cycle-pairs in Tp that satisfy the con-
dition �1�.

For chaotic systems, the distance between two nearby
cycles will increase exponentially over time due to the sen-
sitivity to initial conditions. Therefore the correlation be-
tween two cycles, which is reflected in Npk, is expected to
drop exponentially with the cycle span k. The semilog plot
ln�Npk��k thus appears to be a straight line whose slope is

related to the largest Lyapunov exponent. We can use �
� ln Npk

�k �
as an indicator of chaos, which we call cycle divergence rate
�CDR�. Usually we chose p=1 since Tp is most similar to the
original time series and keeps most of the chaosity. In prac-
tice, we use another statistic, average cycle divergence rate
�ACDR�, which is more robust to noise. ACDR is defined as
the slope of ln�Nk� versus ln�k�, where Nk=	p=1

� Npk ��
=0.15m�. By summing the Npk�k curve for the first �
pseudocycle series, we can find a power law relation between
Nk and k. Therefore we estimate the slope of ln�Nk� versus
ln�k� to quantify chaos in the time series.
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An ACDR curve for a chaotic time series is typically
composed of three parts, see Fig. 1. At smaller time scale, a
scaling range which indicates the chaotic temporal correla-
tion among cycles may be found. Following the scaling re-
gion is a plateau in the medium time scale. The cycles sepa-
rated by such an interval are usually equally uncorrelated and
therefore lead to a horizontal part �up to some statistical fluc-
tuations�. Further up in scale, a slowly decreasing trend ap-
pears due to the finite length of the time series. The length of
the scaling range implies the largest time span over which
two cycles are still related, and it is associated with both the
chaotic property and the length of the time series.

B. Method that detects spatial correlation

By “spatial correlation among cycles,” we mean the con-
figuration of the cycles in phase space. This characteristic is
depicted through the structural properties of the complex net-
work constructed from the pseudoperiodic time series.

The complex network refers to a set of nodes connected
with nontrivial topology, and recently, there has been dra-
matic advances in this field �16�. The complex network
method has been introduced into pseudoperiodic time series
analysis as a means of mapping the time domain dynamics
into complex network topology in �14�. In that paper, the
nodes of the network correspond directly to cycles in the
time series, and network connectivity is determined by the
strength of temporal correlation between cycles. This repre-
sentation encodes the underlying time series dynamics in the
network topology, which may then be quantified via the
usual statistical properties of the network. In particular, �14�
shows that the structural properties of the network actually
characterize the spatial layout of the cycles in the phase
space.

We start by building the network. With each cycle repre-
sented by a node, we define that two nodes are connected if
the phase space distance between the corresponding cycles is
less than a predetermined value D, or alternatively, the cor-
relation coefficient between two cycles is larger than a pre-
determined �. We then use the structural properties of the
network, i.e., the degree distribution p�k�, the clustering co-

efficient C, and the average path length L, to characterize the
configuration of the cycles in the phase space.

For the chaotic system, the presence of the unstable peri-
odic orbits �UPOs� have rendered the distribution of cycles
in the phase space heterogeneous. To understand this let us
first take a look at the chaotic attractor. In a chaotic attractor,
the trajectory will approach an unstable periodic orbit along
its stable manifold. This approach can last for several cycles
during which the orbit remains close to the UPO. Eventually,
the orbit is ejected along the unstable manifold and proceeds
until it is captured by the stable manifold of another UPO.
Therefore some cycles will concentrate about the UPO,
forming clusters. A UPO of order n contains n cycles �or n
loops� lying in different locations in phase space. Therefore
we will see n clusters of cycles distributed in phase space for
this UPO-n, with the center of each cluster corresponding to
a cycle of UPO-n. Cycles in each cluster will have approxi-
mately the same number of links to the remaining cycles
�with appropriate threshold� since they are spatially adjacent.
Since cycles in one cluster usually have a different number
of links from another cluster due to the specific stability
properties and phase space location of the central cycle as-
sociated with UPO-n, these clusters contribute different
peaks to the degree distribution, and the UPO of order n
roughly leads to n peaks in the degree distribution. It should
be noted that the UPOs that lead to obvious peaks are low
order UPOs, i.e., the dominant UPOs �17�. Higher order
UPOs are always undetectable due to the finite length of the
time series.

For a given threshold �, the degree distribution curve will
typically show multiple peaks for chaotic time series, in con-
trast to the Poission distribution typical of a noisy periodic
time series. In order to emphasize the distinction, we further-
more construct a two-dimensional �2D� degree distribution,
i.e., a 2D degree distribution formed by a series of 1D degree
distribution curves obtained from different threshold �’s, and
define the variance of the normalized derivative of the 2D
degree distribution �VND� to quantify its fluctuation �14�.
The VND usually assumes a high value for a highly fluctu-
ating 2D degree distribution, which contains a large number
of peaks. For a noisy periodic signal which contains virtually
no UPOs, the corresponding VND is much lower, owing to
the small number of peaks. In terms of the clustering coeffi-
cient and average path length, the complex network from
chaotic time series will produce a high C, and correspond-
ingly, a low L, typical of a small-world network. This is due
to the fact that the cycles in phase space are spatially clus-
tered around the UPOs. Hence they also form clusters in the
corresponding network. In the following sections, we calcu-
late the clustering coefficients for a series of networks built
with different threshold �’s.

The average path length is not used since it is essentially
inversely proportionate to C, and therefore does not provide
new information. The complex network from a noisy peri-
odic time series actually corresponds to a random network
�14�. The network from chaotic time series, as a comparison,
shows scale-free characteristics. That is, the vertex strength
S, which is defined as Si=	 j�GWij �the weight between each
pair of nodes Wij is the distance between corresponding
cycles in the phase space�, follows a power-law distribution.

FIG. 1. �Color online� Typical ACDR curve for x component
�with 409 cycles� from the chaotic Rössler system �2�.
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Growth and preferential attachments have been coined as
the two fundamental mechanisms responsible for the scale-
free feature found in complex networks. Interestingly, we
find a similar phenomena in the networks for chaotic time
series, i.e., the new nodes are found to make preferential
attachment to existing nodes of different S, i.e., for nodes
with small S, the new nodes will also attach little weight to
it. Further investigation shows that there are two reasons for
new nodes to make preferential attachment to existing nodes.
�1� The cycles with small S are found to be more stable so
that a new cycle is more likely to reside near them. Therefore
the new cycles are attaching little weight to it due to the
short distance between them. �2� The cycles with small S
always lie in the center of the chaotic attractor, this makes
the distance of the new cycles �which are not in the neigh-
borhood of the cycles with small S� to cycles of small S
generally shorter than the distance to those outlying cycles
�i.e., cycles of larger S�. The two points here concern a cy-
cle’s nearby and faraway neighbors, respectively.

C. Advantages of the two methods

The adoption of the correlation coefficient between pairs
of cycles as a measure of their phase space distance has
rendered the methods quite robust to noise. In the case of
measurement noise, all the pairwise correlation coefficients
�ij will decrease. However, since measurement noise has no
preference in influencing different cycles in the time series,
the �ij’s will decrease roughly to the same extent, and their
relative order remains nearly unchanged. Experimentally,
ACDR can successfully detect chaos in the presence of ad-
ditive noise �including white and colored noise� and dynami-
cal noise of significant level �13�.

Another advantage of the above methods is their robust-
ness to nonstationarity, which is always encountered in bio-
logical time series. The metric properties such as correlation
dimension and Lyapunov exponent are vulnerable to nonsta-
tionarity since they involve the calculation of the Euclidian
distance between phase space points which may shift or twist
in the nonstationary time series. In our methods, we calculate
the correlation coefficient between cycles rather than the dis-
tance. The correlation coefficient basically characterizes the
similarity of the wave forms of the two cycles, and adding
trends �the most common kind of nonstationarity� to the
cycles will not influence their similarity index much. More-
over, the structural statistics from the network reflect the to-
pological property of the chaotic attractor. These topological
indices provide information of the organization of the un-
stable periodic orbits embedded in the strange attractor
which is independent of coordinate-system changes and also
remain invariant under control-parameter variation �18�.

III. VALIDATION THROUGH SURROGATE DATA
METHOD USING RÖSSLER DATA

The surrogate data technique �19� has been widely applied
as a form of hypothesis testing to determine whether a given
process is consistent with the specific null hypothesis, e.g., it
has always been used to differentiate a nonlinear from a lin-

ear process. In this paper, however, the surrogate data
method is utilized to confirm that the statistics proposed in
�13,14� do capture the temporal and spatial correlations
among the cycles that relate to the chaotic nature of the time
series, rather than as a form of hypothesis testing. After all,
we already know that the original time series �i.e., x compo-
nent from chaotic Rössler system �2�� is chaotic. The basic
principle is, we first calculate the statistics for both the origi-
nal chaotic time series and its corresponding surrogates, we
will then demonstrate that there are significant differences
between them. Since the surrogate data have wiped out the
intrinsic chaotic correlation between cycles, we can prove
that these statistics do capture the chaotic dynamics in the
pseudoperiodic time series.

The surrogate we use is the pseudoperiodic surrogate
�PPS� proposed by Small �9,15�. It offers an entirely new
surrogate generation algorithm which tests the null hypoth-
esis that an observed time series is consistent with an �un-
correlated� noise-driven periodic orbit. It overcomes the
problems with the cycle shuffled surrogate that introduces
nonstationarity and spurious long term correlations in the
surrogates �20�.

The PPS preserves the inherent periodic components of
the pseudoperiodic time series while destroying the subtle
nonlinear �possibly chaotic� structure. The surrogate follows
the same vector field as the original time series, but is per-
turbed by dynamic noise. The algorithm requires the embed-
ding dimension, the time lag, and the noise radius r to be
specified. The embedding dimension and time lag are param-
eters that identify the topology of the original data series and
the noise radius r defines the amount of noise in the surro-
gate. Noise radii that are too large will result in randomly
shuffled data as in the traditional method, while noise radii
that are too small will produce surrogates that are too similar
to the original data.

In the following part, we use the x-component of the well-
known chaotic Rössler system given by

x� = − �y + z� ,

y� = x + 0.398y ,

z� = 2 + z�x − 4� , �2�

and its PPS to demonstrate their different structure. The
original time series and its surrogate are shown in Fig. 2.
One can see that the two time series are indistinguishable by
simple visual inspection. Now we compare the statistics de-
scribed in Sec. II for both of them. For simplicity of refer-
ence, we denote the original time series and its surrogate as
ORI and PPS, respectively.

First is the PDF of the correlation coefficients between
cycles for the ORI and PPS shown in Fig. 3. We find that the
range for the PPS is wider than that of ORI, indicating that
the average distance between cycles in the PPS is larger than
those of ORI. This is because the PPS has eliminated the
determinism in the time series, so that the cycles become
irrelevant to each other, resulting in a larger average distance
between cycles.
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The ACDR shows a scaling region for the ORI, as is
illustrated in Fig. 4. For the PPS, since within each cycle the
wave form of the signal is altered by the dynamic noise, the
cycles will be temporally irrelevant as the determinism is
smeared out. The ACDR curve therefore is a straight line
subject to statistical fluctuations, since the cycles separated
by different time span k are equally uncorrelated.

Figure 5 illustrates the 2D degree distribution for ORI and
PPS. It demonstrates more prominent fluctuations for the
ORI than that of the PPS, which varies rather smoothly. This
is quantified by the VND. The prominent fluctuations in Fig.
5�a� indicate that the chaotic time series has a large number
of UPOs, i.e., a heterogenous distribution of cycles in the
phase space. In comparison, the distribution of cycles for the
PPS will be homogenous, due to the fact that the cycles
become uncorrelated with each other, leading to a more ho-
mogeneous configuration.

Figure 6 shows the clustering coefficient for different
threshold �’s. As can be seen, C is significantly larger �espe-
cially at higher �’s� for the original time series than its sur-
rogate. This is because the chaotic attractor contains a large
number of UPOs scattered in phase space, which form clus-

ters in the network and therefore lead to a higher C. In com-
parison, the surrogate which has destroyed the small scale
structures �so that the chaotic correlation between cycles are
also destroyed� has a more homogenous distribution of
cycles in phase space; and only a small portion �or none� of
the UPOs are preserved, leading to a low degree of clustering
in the network reflected by a lower C. Figure 7 gives the

FIG. 2. �Color online� Time series for �a� original time series
from the x-component of Eq. �2� and �b� PPS, with r=0.4.

FIG. 3. �Color online� The distribution of correlation coefficient
for �a� original time series and �b� PPS.

FIG. 4. �Color online� ACDR for original time series �circle�
and the PPS �diamond�.

FIG. 5. �Color online� 2D degree distribution for �a� original
time series, with its VND=4.4583 and �b� PPS, with its VND
=0.2312.
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distribution of the vertex strength S for the two time series.
As is shown, S follows a power law distribution for the origi-
nal chaotic time series, while it demonstrates a Gaussian dis-
tribution for the surrogate time series.

IV. APPLICATION TO HUMAN ECG DATA

The paradigm of deterministic chaos has led to new in-
sights into ECG analysis where the systems are expected to

be nonlinear and where often a linear stochastic description
fails to account for the rich structure of the signals. In the last
decade or so, considerable effort has been made to apply
ideas from chaos theory to ECG data analysis. However, the
number of successful practical applications of chaotic meth-
ods to ECG data has remained rather small, due to the fact
that the human cardiac system is subject to dynamical inputs
and is not purely deterministic. Therefore the intrinsic noise
and nonstationarity of ECG has rendered most dynamical
indices invalid for possible identification and characteriza-
tion of the time series.

There has been a lot of attention devoted to the RR inter-
val time series �heart rate variability� extracted from the hu-
man ECG. For example, Peng et al. found that the incre-
ments of the RR interval displays long range correlation �21�
and developed detrended fluctuation analysis �DFA� to quan-
tify the statistical correlation property in the nonstationary
time series �22�, which provided profound insights into the
interaction between neural and cardiovascular systems. In
this section, we apply the framework proposed in Sec. III to
the full wave form from the time series of the human elec-
trocardiograms �ECG�.

Figure 8 shows the ECG from a healthy volunteer �age
20� and the corresponding PPS surrogate. As can be seen in
the figure, the two time series are very similar in appearance.
The distribution of the correlation coefficient �see Fig. 9� for
the two time series, however, are apparently different. First,
the two peaks for the ECG which reflect nontrivial relation
between cycles are wiped out in the surrogate. Second, the
range of correlation coefficient for the surrogate is wider
than that of the original.

The ACDR and clustering coefficient for the ECG and its
surrogate are shown in Figs. 10 and 11, respectively. The
results are similar to the case of using chaotic Rössler time
series in Sec. III. For example, the ACDR curve for ORI
demonstrates a scaling region, indicating the chaotic tempo-
ral correlation among cycles. For PPS, the ACDR curve is
almost flat for the short cycle span, which makes it indistin-
guishable with a noisy periodic signal. The clustering coef-
ficient, similarly, takes on higher values for ORI than its
surrogate, showing that the ECG corresponds to a complex

FIG. 6. �Color online� Clustering coefficient vs � for �a� original
time series and �b� PPS.

FIG. 7. �Color online� Vertex strength for �a� original time se-
ries. S is rescaled from �319.7 612.5� to �0 20� �i.e., 20 bins�, and
the slope of the power law fit is −1.6231 and �b� PPS.

FIG. 8. �Color online� The wave form for �a� original time series
from ECG, containing 400 cycles and �b� PPS, with r=0.2.
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network of a high clustering. Finally, the VNDs calculated
for ORI and PPS are 5.2355 and 0.8805, respectively.

Here we only present the results for one ECG time series.
We have tested the sinus rhythm electrocardiogram record-
ings from different subjects �including 11 healthy volunteers
and patients�. Qualitatively similar results were obtained for
all the time series. These computation results clearly reveal
the chaotic correlations among cycles in the human ECGs.

V. APPLICATION TO HUMAN VOWEL DATA

Human speech, strictly speaking, is a nonlinear dynamical
phenomenon which involves nonlinear aerodynamic, biome-
chanical, physiological, and acoustic factors. Human vocal-
ization patterns are, virtually by definition, approximately
periodic. Here we consider a recording of the Japanese vowel
sound /o/. As can be seen in Fig. 12, the time series is clearly
pseudoperiodic and we divided it into consecutive cycles,
with each cycle containing six consecutive oscillations.

There has been several studies using the traditional indi-
ces for identification of chaos in the normal vowels. For
example, noninteger fractal dimension �23� and a weakly
positive but close to zero Lyapunov exponent �24� were

found for normal vowels. In addition, deterministic nonlin-
earity was detected �25� and the nonlinear modeling tech-
nique was also applied �26�. Despite these intensive studies,
it is still difficult to confirm chaotic dynamics in normal
vowels directly, due to the noise and length of the speech
data. In this section, we analyze the pitch-to-pitch wave-form
variation �i.e., the wave form of each cycle� of the Japanese
vowel /o/. As is shown in Figs. 13 and 14, the ACDR and the
clustering coefficient for the vowel time series demonstrates
obvious chaotic temporal and spatial correlation, in sharp
contrast to those of the corresponding PPS. Examination on
other Japanese vowels �/a/,/e/,/i/,/u/� also shows clearly cha-
otic correlation in the cycles of the time series. Based on
these results, we may draw the conclusion that the normal
human vowel is chaotic.

VI. DISCUSSION

In this section we consider various algorithms and alter-
native surrogate data methods for pseudoperiodic time series

FIG. 9. �Color online� The distribution of correlation coefficient
for �a� original time series and �b� PPS.

FIG. 10. �Color online� The ACDR for �circle� original time
series and �diamond� PPS.

FIG. 11. �Color online� The clustering coefficient vs threshold �
for �circle� original time series and �diamond� PPS. We draw only
five clustering coefficient curves �dashed lines� for the many surro-
gates produced, since it is found that the curves are essentially very
near to each other and form a very narrow distribution.

FIG. 12. �Color online� The time series of Japanese vowel
/o/.
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in distinguishing original time series and its surrogate by the
new statistics. Moreover, we show that the framework
adopted is more capable of capturing the subtle changes in
the dynamics in the PPS �compared with the traditional cha-
otic indices�, thus it provides a more accurate identification
and characterization of chaos.

The three most widely applied algorithms that test for
membership of the class of �i� independent and identical dis-
tributed �IID� noise processes, �ii� linearly filtered noise pro-
cesses, and �iii� static monotonic nonlinear transformation of
linearly filtered noise processes �18� are obviously not suit-
able, or are simply not applicable to pseudoperiodic data.
Theiler and Rapp first proposed an alternative algorithm �20�
for the pseudoperiodic time series: cycle shuffled surrogates.
Analogously to IID noise surrogates, cycle shuffled surro-
gates are produced by shuffling the individual cycles within a
time series. Hence intracycle dynamics are preserved but in-
tercycle dynamics are not. We note that the cycle shuffled
surrogates are not suitable for the complex network statistics.
In the cycle shuffled surrogate, each cycle in the original
time series is preserved �the wave form�, with just their tem-

poral sequence altered. Since the complex network method
only utilizes the distance between the cycles and checks how
they are distributed in the phase spase, the original time se-
ries and its surrogate will have exactly the same configura-
tion of cycles in phase space, and therefore statistics of the
same value.

Luo �10� designed another surrogate generation algo-
rithm. The main idea is that a linear combination of any two
segments of the same periodic orbit will generate another
periodic orbit. By properly choosing the temporal translation
between the two segments, under the same noise level we
can obtain statistically the same correlation dimensions of
the pseudoperiodic orbit and its surrogates. We find that the
surrogate time series generated in this way will typically
demonstrate a new component of high frequency, which
makes it hard to segment the time series into consecutive
cycles of comparable length, see Fig. 15. Therefore we have
not used this surrogate.

The small shuffle surrogate �SSS� proposed by Nakamura
and Small �27� provides another way to destroy local struc-
tures or correlations in irregular fluctuations �i.e., short term
variability� and preserve the global behaviors �trends� by
shuffling the data index on a small scale. Figure 16 gives a
typical SSS together with the original time series. As can be
seen, the SSS is essentially the original signal contaminated
with measurement noise whose amplitude is associated with
the shuffling scale chosen. Since the statistics we use are
demonstrated to be quite robust to noise, it can be expected
that there will not be much difference between the original
time series and its SSS.

Therefore it would seem that the PPS algorithm is most
suitable for detecting the presence of subtle chaotic fluctua-
tions that appear in the pseudoperiodic time series. By
choosing appropriate r, the resulting PPS surrogate preserves
the large scale periodic motion, but destroys the small scale
dynamics, if any. For chaotic time series, the chaotic corre-
lations among cycles are decided by the small scale dynam-
ics, i.e., the specific wave forms associated with each cycle.
Especially, such chaotic correlations among cycles are ro-
bustly captured and represented by the new statistics we
adopted. Therefore the lose of chaotic structure among

FIG. 13. �Color online� ACDR for original time series �ORI�,
i.e., vowel /o/ time series, and its PPS �r=0.05�.

FIG. 14. �Color online� Clustering coefficient vs � for original
time series �ORI�, i.e., vowel /o/ time series, and its PPS.

FIG. 15. �Color online� The surrogate data generated through
Luo’s algorithm. The original time series is from the x component
of the Rössler system �2�.
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cycles in the PPS surrogate is reflected by such statistics,
which allows for reliable judgement and quantification of
chaos in the original signal. In order to show the advantage
of combining the new statistics with PPS, we have applied
the above framework to the chaotic Rossler time series with
dynamical noise and its PPS. The time series is obtained by
integrating the Rössler system �2� at a time span of 0.2, and
the dynamical noise term is added to the right-hand side of it
with the noise level being 0.05 �Gaussian�. The radius used
in producing PPS is 0.05. We find that the correlation dimen-
sions of the original time series and its PPS are very near �
Dori=1.947, Dpps ranges from 1.943 to 1.965 for many PPS
generated� and are hard to differentiate. In comparison, the
ACDR and clustering coefficients show significant difference
for the two time series, see Figs. 17 and 18.

We now explain why the new statistics lead to a better
discrimination between the time series and its PPS. The PPS
keeps the periodic component of the original time series but
destroys the intracycle dynamics. The destruction of the
small scale structure has also altered the intercycle correla-

tion which is quantified by the correlation coefficients among
cycles. Therefore the chaotic temporal and spatial correlation
present in the original time series are eliminated, which is
characterized by the change of the ACDR and clustering co-
efficient that both rely on the correlation coefficients. As is
discussed in Sec. II C, these statistics characterize the chaotic
correlation on the scale of a cycle, this has made themselves
much robust to noise. In comparison, the correlation dimen-
sion characterizes the distribution of the phase space points.
In terms of the above chaotic Rössler time series with dy-
namical noise, the distribution of the points in phase space
for the PPS resembles that of the original time series because
of the dynamical noise in both of them. This is why correla-
tion dimensions for the two time series are indistinguishable.
However, the intercycle correlation �i.e., the overall configu-
ration of the cycles in the phase space� in the PPS is essen-
tially different from that of the original time series. Similarly,
the temporal correlation is also changed in the PPS. These
differences are exactly captured by the new statistics via the
changes in correlation coefficient between cycles. Therefore
these statistics match the PPS better than other statistics. In
�15�, the correlation dimension was used as a discriminative
statistic to distinguish chaotic Rössler time series from
period-6 time series with dynamical noise. We find that a
more significant difference between time series and its PPS
will be achieved if the new statistics are used.

In this paper, we use the pseudoperiodic surrogate data
method to validate the statistics we proposed in �13,14�. The
effectiveness of these statistics to capture the chaotic tempo-
ral and spatial correlations in pseudoperiodic time series is
confirmed by finding the significant difference in their values
between the original time series and the corresponding PPS.
The framework formulated in the paper is further proved be
able to detect chaos and subtle changes in dynamics more
reliably. We have applied it to the human ECG and vowel
data and find clear evidence of chaotic correlations among
cycles in both of them. The framework adopted is expected
to be applied to a much larger category of pseudoperiodic
time series to provide more insights into the nature of the
data.

FIG. 16. �Color online� Small shuffle surrogate. The solid curve
indicates original time series �ORI�, i.e., x component of the Rössler
system, and the dashed curve indicates the small shuffle surrogate
�SSS�.

FIG. 17. �Color online� ACDR for original time series �ORI�,
i.e., x component of the noisy Rössler system, and its PPS. Both
contain 10 000 points, i.e., 318 cycles.

FIG. 18. �Color online� Clustering coefficient vs � for original
time series �ORI�, i.e., x component of the noisy Rössler system,
and its PPS. Both contain 5550 points, i.e., 176 cycles.
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