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Large variety of physical, chemical, and biological systems show excitable behavior, characterized by a
nonlinear response under external perturbations: only perturbations exceeding a threshold induce a full system
response �firing�. It has been reported that in coupled excitable identical systems noise may induce the simul-
taneous firing of a macroscopic fraction of units. However, a comprehensive understanding of the role of noise
and that of natural diversity present in realistic systems is still lacking. Here we develop a theory for the
emergence of collective firings in nonidentical excitable systems subject to noise. Three different dynamical
regimes arise: subthreshold motion, where all elements remain confined near the fixed point; coherent pulsa-
tions, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a
disordered fashion. We also show that the mechanism for collective firing is generic: it arises from degradation
of entrainment originated either by noise or by diversity.
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I. INTRODUCTION

Excitable behavior appears in a large variety of physical,
chemical, and biological systems �1,2�. This behavior occurs
typically for parameter values close to an oscillation bifurca-
tion, and is characterized by a nonlinear response to pertur-
bations of a stationary state: while small perturbations induce
a smooth return to the fixed point, perturbations exceeding a
given threshold induce a return through a large phase space
excursion �firing�, largely independent of the magnitude of
the perturbation. Furthermore, after one firing the system
cannot be excited again within a refractory period of time. In
many situations of interest, the firings are induced by random
perturbations or noise �3�.

In coupled excitable systems, macroscopic firing �a sig-
nificatively large fraction of the units fire simultaneously�
excited by noise has been observed in chemical excitable
media �4,5�, neuron dynamics �6�, and electronic systems
�7�, and it has been described through several theoretical
approaches �8–10�. This synchronized firing can be consid-
ered as a constructive effect induced by the noise. Other
examples in which noise actually helps to obtain a more
ordered behavior are stochastic resonance �11�, stochastic co-
herence �or coherence resonance� �12�, and noise-induced
phase transitions �13�.

Diversity, the fact that not all units are identical, is an
important ingredient in realistic modeling of coupled sys-
tems. Ensembles of coupled oscillators with diversity have
been paradigmized �14� and largely studied �15,16�, with the
result that synchronized behavior can appear once the disor-
der induced by the diversity is overcome by the entraining
effect of the coupling. In particular, �17,18� study analyti-
cally the transition to desynchronization in an active rotator
model in the oscillatory, high natural frequency limit.

Also, it has been shown that in a purely deterministic
excitable system diversity may induce collective firing �19�
if a fraction of the elements are above the oscillatory bifur-
cation. In view of these examples, it might be expected that
diversity and noise can play a similar role.

In this work, we develop an analytical understanding for
the emergence of collective firing in coupled excitable sys-

tems in presence of disorder, either induced by noise or di-
versity. We show that three different dynamical regimes are
possible: subthreshold motion, where all elements remain
confined near the fixed point; coherent pulsations, where a
macroscopic fraction fire simultaneously; and incoherent
pulsations, where units fire in a disordered fashion. Remark-
ably, the coherent behavior appears through a genuine phase
transition when the noise intensity, the coupling or the diver-
sity cross a critical value. A second phase transition to the
disordered �incoherent� phase is recovered for large enough
noise intensity or diversity, or small enough coupling. The
mechanism for collective firing is the degradation of entrain-
ment which can be originated either by noise or diversity.
This is generic and opens a new scenario for experimental
observations.

This paper is organized as follows: in the next section we
present the model and introduce a general theoretical treat-
ment to understand this problem. In Sec. III we compare the
numerical simulations with the theory. Finally, in Sec. IV the
conclusions are drawn.

II. MODEL AND THEORY

We consider as a prototypical model an ensemble of glo-
bally coupled active-rotators � j�t�, j=1, . . . ,N, whose dy-
namics is given by �20�

� j
˙ = � j − sin � j +

C

N
�
k=1

N

sin��k − � j� + �D� j . �1�

The natural frequencies � j are distributed according to a
probability density function g�� j�, with mean value � and
variance �2. Notice that � j �1 �respectively, � j �1� corre-
sponds to an excitable �respectively, oscillatory �21�� behav-
ior of the solitary rotator j. Throughout the paper we con-
sider the case ��1. D is the intensity of the Gaussian noises
� j of zero mean and correlations �� j�t��k�t��=��t− t��� jk, and
C is the coupling intensity.

To characterize collective behavior we use the time-
dependent global amplitude, 	�t�, and phase, 
�t� �14,22�,
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	�t�ei
�t� =
1

N
�
k=1

N

ei�k�t�. �2�

The Kuramoto order parameter 		�	�t��, where � � denotes
the time average, is known to be a good measure of collec-
tive synchronization in coupled oscillators systems, i.e., 	
=1 when oscillators synchronize � j�t�=�k�t�, ∀j ,k, and 	
→0 for desynchronized behavior. In the excitable region
there are two different regimes that could give raise to a
value 	=1. The first regime is a dynamical one in which the
units fire pulses synchronously; this situation corresponds to
full synchronization. The other regime is a static one, in
which all the units rest in the stable fixed point. To discrimi-
nate between this static entrainment from the dynamic en-
trainment of excitable systems when all units fire synchro-
nously, we use the order parameter introduced by Shinomoto
and Kuramoto �22�

� = �
	�t�ei
�t� − �	�t�ei
�t��
� , �3�

which differs from zero only in the case of synchronous fir-
ing. Finally, a measure for the activity of the units, widely
used in problems of stochastic transport in nonsymmetric
potentials is the current

J =
1

N
�
k=1

N

��̇k�t�� . �4�

A nonzero current J describes a situation in which the sys-
tems are firing �not necessarily synchronized�.

We now provide an analytical theory to understand the
behavior of 	, �, and J as a function of the control param-
eters, C, D, and �. The theory proceeds in three steps. First,
under the assumption of entrainment, we derive a dynamical
equation for the global phase 
, depending on the value of
the Kuramoto parameter 	. Second, using the solution of that
equation, we obtain expressions for � and J which depend on
	. Finally, we calculate self-consistently the value of 	.

Averaging Eq. �1� over the whole ensemble and using the
definition of global amplitude and phase of Eq. �2� we have

1

N
�
k=1

N

�̇k = � − 	�t�sin 
�t� +�D

N
��t� , �5�

where ��t� is a Gaussian noise of zero mean and correlations
���t���t���=��t− t��. Taking the time derivative of Eq. �2� and
introducing � j�t�=� j�t�−
�t�, we obtain

	̇�t� + i	�t�
̇�t� =
i

N
�
k=1

N

�̇ke
i�k�t�. �6�

We consider now that the rotators are synchronized in the
sense that � j�t��1 and substitute the expansion ei�k =1+ i�k

+O��k
2� in the previous expression. Equating real and imagi-

nary parts, we obtain

	�t�
̇�t� =
1

N
�
k=1

N

�̇k + O��k
2� . �7�

The definition of �i leads to 	�t�=N−1�ke
i�k. Hence 	̇�t�

=O��k
2� and, consistently with the order of the approxima-

tion, we can replace in Eq. �7� the time dependent 	�t� by the
constant value 	. Therefore, Eq. �5� can be approximated by

	
̇�t� = � − 	 sin 
�t� + �D/N��t� , �8�

which in the limit N→
, reduces to


̇�t� =
�

	
− sin 
�t� . �9�

It is remarkable that the global phase obeys the same dynam-
ics than the individual units but with a natural frequency
scaled with 	, the Kuramoto parameter measuring the en-
trainment degree. Therefore, a decrease in the entrainment
lowers the collective threshold from �=1 to �=	 and the
system can start firing synchronously. The effect can be un-
derstood as a broadening of the distribution of the phases �,
so that a fraction of the rotators crosses over the threshold
and, if the coupling is large enough, they pull a macroscopic
fraction of the oscillators. Thus degradation of the entrain-
ment has the paradoxical effect of increasing the coherent
firing. It is essential to realize that Eq. �9� depends only on
the value of 	 and not in the specific way the degradation of
	 is achieved, so that similar effects can be achieved either
increasing the noise, either decreasing the coupling, or in-
creasing the diversity in the natural frequencies; a signifi-
cantly insightful result not previously understood nor dis-
cussed.

We now turn our attention to the computation of the prob-
ability distribution P�
 ,	�. As shown previously, 	 is con-
stant for small �i, and then the probability density associated
to the macroscopic equation �8�, is

P�
;	,�� = Z−1e−2NU�
;	,��/D�
0

2�

d
�e2NU�
�+
;	,��/D,

�10�

where Z is a normalizing constant. The associated potential
is given by

U�
;	,�� = −
�

	

 − cos�
� . �11�

In the thermodynamic limit, the expression in Eq. �8� is de-
terministic, and then Eq. �9� gets simplified. Then, the distri-

bution function which is proportional to �1/
̇�t�, is given
by
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P�
;	� = 
 1

2�
��2 − 	2/�� − 	 sin 
� for 	 � � ,

��
 − arcsin��/	�� for 	 � � .

�12�

The case 	��, corresponds to the case in which the global
phase dynamics has a fixed point, and then the distribution
becomes a delta function.

Another interesting result of our approach, is that it allows
us to express � and J as a function of the Kuramoto order
parameter 	. In the case 	��, the solution of �9� is given by
�23�

� − 	 sin 
�t� =
�2 − 	2

� − 	 cos �t
, �13�

where �=��� /	�2−1 is the frequency of the global phase
oscillations. The current is obtained from Eq. �5�, J=�
− �	 sin�
��. Time averages are computed over a period
T=2� /� using Eq. �13�,

J =
�2 − 	2

T
�

0

T dt

� − 	 cos �t
= ��2 − 	2. �14�

For 	��, J=0.
Approximating 	�t� by a constant value, the Shinomoto-

Kuramoto parameter ��	�
ei
�t�− �ei
�t�� 
 � can be computed
performing again the time averages over a period T using Eq.
�13�,

� =
2

�
�2�� − ��2 − 	2��� + 	�K� 2	

	 − �
� , �15�

where K�m� is the complete elliptic integral of the first kind
�24�. If 	�� we get �=0.

As a final step, we derive a equation for 	 using a self-
consistent, Weiss-type, mean-field approximation, which as-
sumes constant values for the global magnitudes and then
averages over their probability distribution �13,14�. For our
particular case, we start by rewriting Eq. �1� as

�̇i�t� = −
dV��i;
,	,�i�

d�i
+ �D�i�t� , �16�

where we have defined the potential

V��;
,	,�� = − �� − cos��� − C	 cos�
 − �� . �17�

Note that the coupling appears only through the global pa-
rameters 	 and 
. For fixed 	 and 
, the stationary prob-
ability distribution function reads �25�

Pst��;
,	,�� = Z−1e−2V���/D�
0

2�

d��e2V���+��/D, �18�

where Z is a normalizing constant. From its definition, we
have 	= �1/N��k=1

N �cos��k−
��, and we obtain

	 =� d�g����
0

2�

d
P�
;	��
0

2�

d�Pst��;
,	,��

�cos�� − 
� , �19�

where we have performed a triple average: with respect to
the distribution �18�, with respect to the distribution g��� of
natural frequencies and with respect to the distribution
P�
 ;	� of the global phase which is inversely proportional
to the instantaneous velocity given by Eq. �10�. The self-
consistent equation �19� for 	 needs to be solved numeri-
cally.

III. NUMERICAL RESULTS AND DISCUSSION

In the following, we discuss the theoretical results and
compare them with the numerical results obtained from a
numerical integration of Eq. �1�. Typical trajectories showing
the three dynamical regimes are displayed in Fig. 1 while the
corresponding order parameters are plotted in Fig. 2. Figure
2�a� a shows 	, �, and J as functions of the noise intensity D
in absence of diversity. The solid lines correspond to the
theoretical results while symbols show the numerical results
for different system sizes. In this figure, we can observe the
three aforementioned behaviors: For small noise intensity
�regime I� each rotator fluctuates around its fixed point. Al-
though for uncoupled rotators noise would eventually excite
some spontaneous random firings, the coupling of a large
number of units suppresses these individual firings. The
Kuramoto parameter 	 remains close to 1 and the deviations
from unity are due to the small dispersion induced by noise.
Region I is, in fact, characterized by 	�� for which our
theory predicts that the Shinomoto-Kuramoto parameter �

FIG. 1. Dynamical trajectories for 10 typical units in a system of
N=400 with �=0.95 and C=4. The right-hand column depicts the
results without noise D=0, and different diversities: �=0.0 �top,
regime I, no firing�, �=1.6 �middle, regime II, synchronized firing�
and �=3.0 �bottom, regime III, desynchronized firing�. While the
left-hand column shows the dynamical regimes emerging under the
presence of noise �and no diversity�: D=0.4 �top, regime I, no fir-
ing�, D=1.0 �middle, regime II, synchronized firing� and D=5.0
�bottom, regime III, desynchronized firing�.
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and the current J vanish, so reflecting the nonexistence of
collective movement. In this region, the numerical results for
	, �, and J are in excellent agreement with the theoretical
predictions.

Our theory predicts that a transition to a dynamical state
characterized by synchronized firing behavior �regime II�
takes place when 	=� again, in very good agreement with
the numerical results. This transition is clearly signaled by
nonvanishing values of � and J. The prediction of 	 is good
for a large part of region II �up to values of 	=0.7�. Later it
underestimates its value.

For very large noise intensity, the rotators desynchronize
while keeping a nonzero current value �regime III�. Hence,
the synchronized activity, as measured by � goes though a
maximum as noise amplitude increases. Our theory predicts
that the transition between regions II and III occurs for 	
=0 where �=0 and the current takes the maximum possible
value J=�. The limit value of J for very large disorder can
be understood by inspection of Eq. �5�, due to the fact that in
this limit 	 vanishes, and that the time average of the noise
term is zero. The transition from II to III corresponds to the
expected disordering role of diversity �or noise� and it is the
analogous of similar transitions in oscillator models, such as
Kuramoto’s: an increase of disorder desynchronizes the sys-
tem. In this case, this transition is signaled by �=0.

Surprisingly, since the small values of 	 in this transition
are beyond the assumptions of the theory, the location of the
second transition is also well predicted. Moreover, the whole
shape of the Shinomoto-Kuramoto parameter � is well repro-
duced over the whole range. The maximum of Eq. �15� oc-
curs for 	�0.821�, which is well confirmed by the numeri-
cal results. The theoretically predicted current J fits the

numerical values in the same range than 	. Note, however,
the numerical simulations show a local maximum for the
current J which indicates a local increasing in the total trans-
port due to the coherent dynamics in the regime II. This local
maximum is not present in the theoretical approximation.

Some of these states were already described by Kuramoto
and Shinomoto �22�. By looking at the probability distribu-
tion of �i, these authors identify two regions in parameter
space: the time-periodic regime �P� and the stationary re-
gime �S�. Region P corresponds to our regime II where the
order parameter � is different from zero and there is collec-
tive motion of the oscillators. Our findings allow us to split
region S of these authors into our distinct regions I and III:
while region I is a fluctuating regime around the steady state,
region III has a high activity as characterized by a nonzero
current J. In �8,9�, a semianalytical approach was used to
analyze the existence of these three phases. However, an
explanation of why these regimes appear, and the finding of
general mechanisms that could trigger the collective behav-
ior in these systems, was lacking.

Our results indicate that noise acts in two antagonistic
ways: while a given noise intensity can excite the subthresh-
old units, forcing a synchronized firing, large amplitude
noise deteriorates the synchronization properties of the en-
semble. This scenario resembles the so-called noise induced
phase transitions �13� in which a transition to an ordered
ferromagneticlike state is induced by increasing the noise
intensity; the order is destroyed again for large enough noise.
Here, the transition is towards an organized collective mo-
tion of the active rotators.

The reverse scenario can be observed varying the cou-
pling strength C, see Fig. 2�b�. The Kuramoto parameter 	

FIG. 2. Symbols represent 	, �, and J as obtained numerically from Eq. �1�. Solid lines are the theoretical results. Panel �a� shows the
variation with respect to the noise intensity D in absence of diversity, �=0, for frequency �=0.95, coupling C=4, and different system sizes:
N=50 ���, N=102 ���, N=103 ���, N=104 ���. Panel �b� displays the same results as a function of C for D=1.0. Panel �c� shows the
variation with respect to diversity � for D=0.3, C=4 and g�� j� being a uniform distribution. In all cases there are three regimes: �I� no firing,
�II� synchronized firing, and �III� desynchronized firing.
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increases with C �notice, however, the existence of a small
bump in the numerical results�, indicating that the degree of
synchronization increases with coupling, as expected. A large
coupling suppresses noise-induced firings, and the system is
macroscopically at rest, regime I, as indicated by the vanish-
ing of � and J. For weak coupling the noise induces desyn-
chronized individual firings �regime III� characterized by a
macroscopic current J and again a zero value for �. For in-
termediate values of the coupling �regime II� the interplay of
noise and coupling leads to the largest degree of synchro-
nized firing with a large value for �.

Finally Fig. 2�c� shows 	, �, and J as a function of the
diversity �. It is clear in the figure the existence of the same
three regimes that were obtained by varying the noise inten-
sity or the coupling. Altogether Fig. 2 clearly illustrates the
fact that similar effects can be achieved increasing the noise,
decreasing the coupling or increasing the diversity in the
natural frequencies as theoretically predicted.

IV. CONCLUSIONS

In summary, we have developed a theory for the emer-
gence of collective firing in a paradigmatic ensemble of sub-
threshold excitable units, containing coupling and a source of
disorder as generic ingredients. The collective behavior
emerges as a phase transition whose underground mechanism
is the degradation of entrainment originated by the compet-
ing effects of disorder and coupling. Paradoxically, this deg-

radation results in establishing a lower effective threshold for
collective firing, and thus inducing a somehow ordered state.
Our theory clearly establishes that it does not matter the spe-
cific source of disorder, either noise or diversity will lead to
similar results. This mechanism is not restricted to the model
we considered, it will exist in any physical, chemical or bio-
logical excitable system with the aforementioned basic ge-
neric ingredients. Our results are likely to be relevant also for
nonglobally coupled systems, such as extended systems with
local couplings and complex networks.

In extended systems the macroscopic fraction of units fir-
ing collectively are typically localized in a region of the
space, leading to the propagation of an excited wave. Waves
induced by parametric noise in chemical excitable systems
had been reported �4,5�. It has been argued in �9� that the
transition between I and II would be triggered by changes in
the excitability of the neurons, if one assumes that noise
intensity is a constant. In this paper we show a more plau-
sible scenario by which biological systems can trigger such
transition by adjusting the level of diversity among the neu-
rons. We expect that our results will stimulate further experi-
ments on systems with different sources of disorder.
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