
Hexagonal, square, and stripe patterns of the ion channel density in biomembranes

Markus Hilt and Walter Zimmermann
Theoretische Physik, Universität Bayreuth, D-95440 Bayreuth, Germany

�Received 10 April 2006; published 8 January 2007; publisher error corrected 17 January 2007�

Transmembrane ion flow through channel proteins undergoing density fluctuations may cause lateral gradi-
ents of the electrical potential across the membrane giving rise to electrophoresis of charged channels. A model
for the dynamics of the channel density and the voltage drop across the membrane �cable equation� coupled to
a binding-release reaction with the cell skeleton �P. Fromherz and W. Zimmerman, Phys. Rev. E 51, R1659
�1995�� is analyzed in one and two spatial dimensions. Due to the binding release reaction spatially periodic
modulations of the channel density with a finite wave number are favored at the onset of pattern formation,
whereby the wave number decreases with the kinetic rate of the binding-release reaction. In a two-dimensional
extended membrane hexagonal modulations of the ion channel density are preferred in a large range of
parameters. The stability diagrams of the periodic patterns near threshold are calculated and in addition the
equations of motion in the limit of a slow binding-release kinetics are derived.
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I. INTRODUCTION

Spatiotemporal pattern formation is ubiquitous in systems
driven away from thermal equilibrium �1–4�. Many physical,
chemical, and biological systems display dissipative struc-
tures, even though the underlying pattern forming mecha-
nisms are often completely different. Nevertheless many of
these patterns, especially those emerging at the primary bi-
furcation, belong to a few universality classes �1� and pat-
terns occurring in rather disparate systems share qualitative
and unifying properties.

Pattern forming processes in biological systems such as
the fluid mosaic model, dilute filament-motor solutions �see,
e.g., �5–8��, actively polymerizing filaments �9�, spiral waves
in the cardiac system �10�, skin patterning of the angle fish
�11�, or oscillatory dynamics in cell division �12–15� are in
general more elaborate than in classical pattern forming sys-
tems as, for instance, in fluid dynamics �1�. In the latter case
the equations of motion can be derived by using elementary
conservation laws and phenomenological transport laws and
accordingly, for various patterns in fluid dynamical systems a
quantitative understanding has been achieved with a high
precision �1,2�. These achievements can serve as a guide for
the analysis of more involved biological or chemical pattern
forming systems, where the respective models cover only the
key steps of the complex biochemical reaction cycles.

In the present work we investigate pattern formation of
ion channels embedded in a biomembrane. Membranes are
an important building block of living cells and play a key
role for the biological architecture. They consist of a lipid
bilayer which is rather impermeable and build the barrier to
the cell environment. All the vital components needed inside
the cell are transported across membranes through specific
proteins. Especially for the signal distribution along nerve
cells �axons� the transport of ions through ion channels em-
bedded in the membrane is essential since the transmem-
brane ion conductance is governed substantially by these dis-
crete channels. The channel proteins are considered to move
freely along the fluid lipid bilayer which is referred to as the
fluid mosaic model �16�, a concept that has attracted consid-

erable attention. Describing the dynamics of ion channels
within this framework, one finds transitions to various sta-
tionary as well as time-dependent density patterns with pos-
sible biological implications �17–24�. The binding-release re-
action removes the conservation of mobile ion channels and
as a consequence causes pattern forming instabilities with a
finite wave number. Accordingly one expects in two-
dimensional extended systems beyond a stationary bifurca-
tion either stripes, squares, or hexagonal patterns as proto-
type patterns. Here we focus on the competition between
these patterns in the presented model system.

Besides the fluid-mosaic model the channel concept �25�
is the second central physical idea in the field of biomem-
branes. It was found that including their electrodiffusion
properties �26–28� ion channels have an intrinsic propensity
for self-organization �17�. When a concentration gradient of
salt across the membrane exceeds a certain threshold, the
conserved number of freely movable ion channels may orga-
nize into transient periodic patterns which finally decay into
global clusters �18–20�.

The model of a fluid-mosaic of ion channels is only el-
ementary and neglects at least three important properties of
real biomembranes: �a� An interaction with signal molecules
may induce a reversible molecular transition which opens or
closes an ion channel �25�, �b� an interaction with the cell
skeleton may immobilize ion channels �29�, and �c� the ex-
cluded volume interaction between the ion channel mol-
ecules. The spatially dependent mobility of ion channels due
to rafts �30� is also an effect neglected in the fluid mosaic
model, but this heterogeneity effect is beyond the scope of
the present work.

The opening-closing reaction keeps the number of mobile
ion channels conserved and its effects on the instability of
the homogeneous ion channel distribution have been inves-
tigated thoroughly in two recent publications �22,24�. Since
membrane deformations coupled to the underlying cell skel-
eton �actin cortex� may also open or close ion channels
�31,32�, additionally we take here both the immobilization
and the closing of the channels into account �21�. For the
sake of simplicity we choose a model which combines the
two processes: We consider a reversible binding-release re-
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action of ion channels with the cell skeleton and assume that
this interaction induces a closing of the channels. Alternative
models for pattern formation along the cell membrane take
additional intermediate steps of the opening-closing dynam-
ics into account �18,22,23,33� but a thorough analysis of the
pattern formation processes in two spatial dimensions is not
available yet.

In the model we propose the closed ion channels which
are considered to be bound to the cell skeleton are acting as
a source for the mobile and open channels and therefore, the
free and open ion channels are not conserved anymore in
contrast to previously discussed models. We find in this
model different kinds of self-organization of the mobile ion
channels: With a considerable binding-release reaction one
has an unconserved number of open channels and one finds
�a� stable stripe or hexagonal patterns above threshold. This
formation of stationary periodic patterns belongs to the same
universality class as, for example, convection rolls in hydro-
dynamic systems. �b� The transition into the periodic pattern
is either sub-or supercritical depending on the equilibrium
constant, the relaxation time of the binding-release reaction,
and also on the strength of the excluded volume interaction
of the ion channel molecules. In the limit of small binding-
release reaction rates the model shows a crossover between
pattern formation for an unconserved and a conserved order
parameter. For this crossover regime a reduced equation is
derived in Sec. IV C.

This work is organized as follows: In Sec. II we describe
the model system and we give the basic equations for the
analysis in the subsequent sections. The linear stability of the
homogeneous distribution of the ion channel density and the
onset of the patterns is discussed in Sec. III. The amplitude
equations, describing the weakly nonlinear behavior of
stripes, hexagonal, and square patterns are derived in Sec. IV.
In this section also the nonlinear competition between these
patterns is investigated by a thorough analysis. In Sec. V
numerical solutions of the model equations are presented.
Those numerical results provide an estimate for the validity
range of the perturbational analysis given in Sec. IV. Con-
cluding remarks and a discussion of the results are provided
in Sec. VI.

II. MODEL SYSTEM

We consider a model membrane with embedded ion chan-
nels separating a thin electrolytic layer from an electrolytic
bulk medium. This may refer to a cell membrane in close
contact to another cell or to a membrane cable as it occurs in
dendrites and axons of neurons. In the first case the thin layer
is given by the extracellular cleft and the bulk by the cyto-
plasm. A particularly important biological example of this
case is the postsynaptic membrane of a neuronal synapse. In
the second case the narrow cylindrical cytoplasm plays the
role of a one-dimensional cleft opposed by the extracellular
bulk medium.

Here we assume that the ion channels interact with the
underlying cell skeleton, cf. Fig. 1 and Refs. �31,32,34�. In a
reversible binding-release reaction among the ion channels
and the cell skeleton the ion channels undergo also a confor-

mational change and switch between an opened and a closed
state. This binding-release reaction of the ion channels �IC�
is described by a simple reaction scheme with two rate con-
stants �o and �c, i.e., by an equilibrium constant KBR
=�o /�c and a relaxation time �BR= ��o+�c�−1:

ICclosed
bound�

�c

�o

ICopen
free . �1�

The closed ion channels are bound to the cell skeleton and
represent a source for free and open channels via the
binding-release reaction. Accordingly the number of open
and free channels is not conserved in our model, whereas in
several previous investigations the number of free and open
channels was conserved. Further mechanisms with similar
consequences as the nonconservation of the ion channel
number are also known �35�.

The free ion channels with an electrical conductance �
undergo a Brownian motion along the membrane with a dif-
fusion coefficient D. They are selective for ions presenting a
concentration gradient across the membrane which is de-
scribed by a Nernst-type potential E. The proteins bear an
effective electrophoretic charge q leading to a drift motion in
a lateral electrical field. The current through the mobile and
open channels and through a homogeneous leak conductance
of the membrane affects the local voltage in the cleft. In
combination with an inhomogeneous distribution of the ion
channels this gives rise to lateral gradients of the voltage.

A. Basic equations

In a mean field approximation the local density n�r , t� of
free and open channels �particles per unit area� is determined

FIG. 1. A fluid membrane that separates a narrow cleft of elec-
trolyte from a bulk electrolytic phase is considered. Membrane pro-
teins are embedded in the lipid bilayer. They are mobile along the
membrane �diffusion coefficient D�, they form selective ion chan-
nels across the membrane �conductance ��, they bear an electro-
phoretic charge q, and they interact with a filamentous substrate of
the membrane �cell skeleton� via a binding-release reaction with
rate constants �o and �c. Binding closes the channels by a confor-
mational change. The system is driven by a concentration gradient
of those ions which are conducted by the channels �Nernst-type
potential E�. The model refers to the biological situations of a cell-
cell-contact �postsynaptic membrane of a synapse� and of a cylin-
dric cellular cable �neuron dendrites�. The cleft of the model corre-
sponds to the extracellular space in the first case, whereas it
corresponds to the narrow cytoplasm in the second case. The struc-
ture of the model is described by the density of mobile channels
n�r , t� and by the voltage in the cleft v�r , t� as a function of space r
and time t.
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by diffusion and electrophoretic drift of the ion channels, the
binding-release reaction, and the local interaction forces. The
homogeneous density n̄ is kept constant by a reservoir n̄c
=const of bound channels by an equilibrium binding-release
reaction given by Eq. �1� with n̄=KBRn̄c. The equations of
motion for the channel density may be expressed in terms of
the deviation

ñ = n − n̄ �2�

from the mean density n̄, where the dynamics is composed of
a lateral current gradient and a source-sink contribution

�tñ = − � · j�n� −
ñ

�BR
. �3�

The current depends on the part of the chemical potential,
which is independent of the electric field, and on the mobility
of the charged channels times the local electric field

j�n� = − �� − �qn � v �4�

with the mobility

� =
D

kBT
, �5�

the diffusion constant D, the effective charge q per channel,
and the local voltage drop across the membrane v�r , t�. The
charge q is assumed to be an effective charge taking into
account screening as well as electro-osmotic effects �36�.
The remaining part of the chemical potential may be derived
from the free energy

� =
�F
�ñ

, �6�

where the free energy �per unit area S� of the channel-
channel interaction is up to leading order in the deviation ñ
of the following from:

F =
1

S
�

S

dr�D

2
ñ2 +

g2

3
ñ3 +

g

4
ñ4 +

1

2
�2��ñ�2� . �7�

The higher order contributions become important especially
for a negative diffusion constant D, if a demixing between
lipid proteins and ion channels in the membrane takes place.
Since the diffusion constant is assumed to be always positive
for the present problem, the higher order contributions may
be neglected in most situations. However, if the amplitudes
of the spatial ion channel density modulations, as induced by
the pattern forming mechanism discussed in this work, be-
come strong, the second and third order terms in Eq. �7�,
describing the effects of excluded volume interactions, be-
come important in some range of parameters. Here we inves-
tigate exemplarily the stabilizing effects of the fourth order
contribution to Eq. �7�, i.e., with g2=0, �=0 but g�0. In this
case the equation of motion for ñ takes the following form:

�tñ = �2�Dñ + gñ3� +
qD

kBT
� · ��ñ + n̄� � v� −

ñ

�BR
. �8�

The voltage v in the cleft is obtained from Kirchhoff’s law
for each element of the membrane cable. Taking into account

the current across the membrane and along the core of the
cable or below a flat membrane, we obtain the Kelvin equa-
tion with the membrane capacitance C either per unit length
in a one-dimensional model or per unit area for a two-
dimensional model, respectively, the resistance R of the cleft
per unit length �area� and the leak conductance G of the
membrane per unit length �area� �37,38�

C�tv =
1

R
�2v − Gv − �n�v − E� . �9�

The special case �BR→	 and g=0 of these equations has
been investigated in Refs. �17,19,20�.

B. Scaled equations

We rescale Eqs. �8� and �9� by introducing dimensionless
coordinates for space r�=r /
 and time t�= t /� with the typi-
cal length scale of an electrical perturbation 
= �R��n̄
+G��−1/2 and the time constant of displacement �=
2 /D. We
use normalized variables for the particle density N= �n
− n̄� / n̄ and voltage V= �v−vR�q /kBT with the resting voltage
vR=�E and the density parameter �=�n̄ / ��n̄+G�. Intro-
ducing the normalized relaxation time �V=RCD we obtain
the normalized reactive Smoluchowski-Kelvin equations
�36�

�t�N = ��2�N + gN3� + �� · ��1 + N���V� − �N , �10a�

�V�t�V = ���2 − 1�V − ��1 − ��
N − �NV . �10b�

The dynamics of the system is controlled by the following
three parameters: �i� The density parameter � characterizes
the equilibrium of the binding-release reaction; �ii� the rate
parameter �=� /�BR which characterizes the dynamics of the
binding-release and the simultaneous opening-closing reac-
tion; and �iii� the control parameter 
=−qE / �kBT� which
characterizes the distance to thermal equilibrium. Since the
spread of the voltage is fast compared to the diffusion of ion
channels �R�108� ,C�1 �F/cm2, D�0.1 �m2/s→�v�1
�39�� we put �V=0 in the following. For simplicity the primes
of the new coordinates r� and t� are suppressed further on.

III. THE ONSET OF PERIODIC PATTERNS

The onset of spatial patterns takes place in a parameter
range, where the homogeneous density n= n̄ of the mobile
channels, i.e., N=0 and V=0, becomes linearly unstable with
respect to small inhomogeneous perturbations. In order to
calculate this instability the linear part of Eqs. �10� is trans-
formed by an ansatz

	N

V

 = 	�N

�V

e�t+ikr �11�

into linear algebraic equations. The solubility condition of
these equations determines for finite perturbations �N ,�V
�0 and for �V=0 the dispersion relation ��k�
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� = − k2	1 −
��1 − ��


1 + k2 
 − � �12�

with k= �k�, which is shown for three different values of the
control parameter 
 in Fig. 2�a�. A perturbation grows in the
range of the wave number k where the real quantity ��k�
becomes positive. The neutral stability condition ��k�=0 ap-
plied to the expression in Eq. �12� gives the neutral curve as
follows:


0�k� =
1 + k2

��1 − ��
	1 +

�

k2
 , �13�

where 
0�k� separates the range of stable from the unstable
parameter values. A set of neutral curves 
0�k ;� ,�� is shown
in Fig. 2�b� for different values of the rate parameter �.

The minimum of 
0�k ;� ,�� defines the critical wave
number

kc = �1/4 �14�

and the critical control parameter


c =
�1 + ���2

��1 − ��
�15�

at which the basic state becomes first unstable.
For 
-values above the neutral curve 
0�k ,� ,�� the

growth rate � is positive and it takes its maximum at the
wave number km

km
2 = − 1 + �1 + ����1 + � , �16�

whereby the reduced control parameter �

� =

 − 
c


c
�17�

has been introduced. For a vanishing rate parameter �=0 the
number of channels is conserved and the dispersion in Eq.
�12� is at small values of k proportional to k2 which is similar
to hydrodynamic excitation modes. To some extent this limit
has already been investigated previously �17–19�.

IV. WEAKLY NONLINEAR ANALYSIS

For a finite value of the binding-release reaction param-
eter � the fraction of the open ion channels is not conserved.
In addition the homogeneous distribution of the ion channel
density as well as the homogeneous voltage drop across the
membrane may become simultaneously unstable against per-
turbations above a certain threshold. The perturbation with
the wave number kc=�1/4 has the largest growth rate, as
described in the previous section.

Near threshold and in two spatial dimensions this periodic
instability may lead to stripe, square, and, if the up-down
symmetry is broken, also to hexagonal patterns �1�. In a pa-
rameter range where the amplitudes of these patterns are still
small, the slow spatial variations of these patterns may be
described in terms of generic amplitude equations, a method
used for many other physical, chemical, and biological pat-
tern forming systems �1,40�. These generic equations and
their corresponding functionals are derived in this section
from the present model system whereby the detailed scheme
of derivation is given exemplarily for stripes in the Appen-
dix. The parameter ranges where each pattern realizes the
lowest functional value and where two patterns coexist are
determined in Sec. IV B. Far beyond the threshold the solu-
tions are determined numerically and the question of prefer-
ence of patterns is addressed by numerical simulations in
Sec. V.

In the range where the binding-release reaction becomes
rather slow and the number of channels nearly conserved,
i.e., ���2, another set of equations is derived and discussed
in Sec. IV C. The analytical solutions derived in the two
cases ��O�1� and ���2 are compared with numerical so-
lutions of Eqs. �10� in Sec. V.

A. Periodic patterns for a finite binding-release reaction, �
ÊO„1…

1. Stripe patterns

For finite values of � the solution of the linear part of Eqs.
�10� is in the simplest case spatially periodic in one direction.

FIG. 2. Part �a� shows the dispersion relation ��k� as given by
Eq. �12� for a supercritical, a critical, and subcritical value of the
reduced control parameter � and for the rate parameter �=0.08.
Part �b� shows for four different values of the rate parameter �
=0.01,0.1, 0.5, and 1.0 �bottom to top� the neutral curves ��1
−��
0�k� �solid lines� with 
0�k� given by Eq. �13�. The dashed
curve in �b� marks the location of the minimum of these neutral
curves, i.e., the critical wave number �kc ,
c���� as given by Eqs.
�14� and �15�.
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The two fields N and V may be written as a vector u
= �N ,V� in the form

u0 = ê0Aeikcr + c.c. �18�

with the eigenvector

ê0 = 	 1

E0

, E0 = − �1 + ��� �19�

where c.c. denotes the complex conjugate of the preceding
term. Due to rotational symmetry the orientation of the wave
vector

kc = kc	1

0

 �20�

may be chosen parallel to the x-direction. Spatial variations
of the pattern which are slow on the length scale 2� /kc are
described in Eq. �18� by a spatially dependent amplitude
A�x ,y , t�. The evolution equation for this spatially and time
dependent amplitude is a so-called amplitude equation,
namely the Ginzburg-Landau equation in our case, which
takes for an isotropic two-dimensional system, as, for in-
stance, for the two-dimensional flat membrane, the following
universal form �1,3,40�:

�0�tA = �� + �0
2	�x −

i

2kc
�y

2
2

− ��A�2�A . �21�

The values of the coefficients �0, �0, and � depend on the
specific pattern forming system �1,3,41�. The relaxation time
�0 and the coherence length �0 in the amplitude equation �21�
may be derived from the dispersion relation ��k� in Eq. �12�
and from the neutral curve 
0�k� specified in Eq. �13� by a
Taylor expansion of both formulas around the critical point
�kc ,
c� �see, for instance, Refs. �1,42,43��:

�0
−1 = 
 ��

�





=
c


c, �0
2 =

1

2
c

�2
0

�k2 . �22�

Using the expressions in Eqs. �12� and �13� we obtain
their explicit form for the present model:

�0 =
1

���1 + ���
, �0

2 =
4

�1 + ���2
. �23�

The sign of the nonlinear coefficient � determines whether
the transition to the periodic state as described by Eq. �18� is
supercritical ���0� or subcritical ���0�, and it may be de-
rived by a perturbation calculation from the basic equations
�10�:

� =
3g

1 + ��
−

1

3�6�2 − �2 + 2�� − ��2

1 + ��

+
2

3��
�4�� − 2� + 1���� − 2� + 1�� . �24�

The common scheme for the derivation of � may be found,
for instance, in Refs. �1,40,43� and the details of this calcu-
lation for the present system are given in the Appendix.

The linear coefficients in Eq. �23� depend only on the rate
parameter �. By increasing the binding-release reactions the
relaxation time and also the correlation length becomes
smaller. The nonlinear coefficient depends on besides the
rate parameter � also on the density parameter � and on the
nonlinear interaction parameter g. In the limit �→0 for �
�1/2 the relaxation time �0 and the nonlinear coefficient �
diverge. This behavior reflects the fact that in this limit the
validity range of the amplitude equation is left and a different
perturbation expansion has to be used as described in Sec.
IV C below.

The amplitude equation �21� for a stripe solution can also
be derived from a functional F

�0�tA = −
�FS

�A* �25�

�A* denotes the complex conjugate of A� of the following
form:

FS =
1

S
�

S

dr��

2
�A�4 − ��A�2 + �0

2
	�x −
i

2kc
�y

2
A
2� .

�26�

In the following we will focus on spatially homogeneous
patterns and their competition, i.e., A�x , t�→A�t�. So the
Ginzburg-Landau equation �21� reduces to a Landau equa-
tion

�0�tA = �A − ��A�2A �27�

with a simplified functional

FS =
1

S
�

S

dr��

2
�A�4 − ��A�2� =

�

2
�A�4 − ��A�2. �28�

Besides the trivial solution A=0, Eq. �27� has a second sta-
tionary solution

A =��

�
. �29�

This solution exists in the supercritical case ��0 only above
the threshold and for ��0 only in the range ��0 on the
unstable branch of the subcritical bifurcation. As the herein
presented expansion breaks down for subcritically bifurcat-
ing stripes, higher order terms with respect to A would have
to be taken into account in order to achieve a limitation of
the amplitude A which may, however, be determined by solv-
ing Eqs. �10� beyond threshold numerically as done in Sec.
V.

The parameter range of the supercritical and subcritical
bifurcation are separated by the tricritical line ��� ,��=0.
This line is shown in Fig. 3 in the �-� plane for different
values of the excluded volume parameter g, where the super-
critical range may be extended by increasing the nonlinear
parameter g.
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In the limit �→0 and �→1/2 the nonlinear coefficient
�=3g+1/4�0 is positive and the bifurcation still supercriti-
cal. Otherwise � diverges in the limit �→0. This is also in
agreement with an alternative perturbation analysis as de-
scribed in Sec. IV C.

2. Square patterns

Square patterns can be described by a superposition of
two periodic waves as given by Eq. �18�

u0 = ê0�A1eik1r + A2eik2r� + c.c., �30�

whereby the two wave vectors k1 and k2 have the same
length but both are orthogonal to each other

k1 = kc	1

0

 and k2 = kc	0

1

 . �31�

Similar as for stripes, one may derive by a perturbation cal-
culation from the basic Eqs. �10� the following two coupled
equations for the two amplitudes A1 and A2

�0�tA1 = �A1 − ���A1�2 + ��A2�2�A1, �32a�

�0�tA2 = �A2 − ���A2�2 + ��A1�2�A2, �32b�

wherein the spatial dependence of the amplitudes has already
been discarded. Herein �0 and � are defined by the same
expressions as for stripes in Eqs. �23� and �24�. For squares
one obtains with a perturbation calculation, similar as de-
scribed in the Appendix, the same expression for � as in Eq.
�24� and the nonlinear coupling term �

� = − 4�2�1 − 2�� + ��� �33�

+
2�3g + �2 − 2�1 − 2��2�

1 + ��
−

4�1 − 2��2

���1 + ���
. �34�

As for stripes, the two coupled equations may be once again
derived from a functional

�0�tAi = −
�FQ

�Ai
* �35�

by determining the extremal value of the functional

FQ = �
i=1

2 	�

2
�Ai�4 − ��Ai�2
 + ��A1�2�A2�2. �36�

Apart from the trivial solution A1=A2=0, the coupled ampli-
tude equations �32� have two types of stationary solutions of
finite amplitudes. The first type corresponds to simple stripe
solutions with only one finite modulus

�A1� =��

�
, �A2� = 0 or �A1� = 0, �A2� =��

�
.

�37�

For the second type of solutions the amplitudes have iden-
tical moduli

�A1� = �A2� =� �

� + �
�38�

which corresponds to a square pattern as can be seen from
Eq. �30�.

If the sum of the two nonlinear coefficients is positive,
i.e., �+��0, a square pattern bifurcates supercritically from
the homogeneous state. A vanishing sum �+�=0 marks the
tricritical line of the square pattern, the bifurcation changes
from a supercritical to a subcritical one. The tricritical line is
displayed for different values of the interaction parameter g
in Fig. 4, where increasing values of g broaden also the range
of supercritically bifurcating squares in the �-� plane.

3. Hexagonal patterns

In two-dimensional systems close to the threshold and
without an up-down symmetry N ,V→−N ,−V, as in Eqs.
�10� hexagonal structures are often preferred in some param-
eter range to stripe or square patterns �1�. In this section the
amplitude equations of hexagons, obtained through a pertur-

FIG. 3. The lines describe the tricritical point, i.e., ��� ,� ,g�
=0, for the stripe pattern in the �-� plane and for different values of
the interaction coefficient g, respectively. On the right-hand side of
each curve corresponding to different values of g, � is positive and
stripes bifurcate supercritically.

FIG. 4. The nonlinear coefficient �+� as given by Eq. �33� is
positive and the square pattern bifurcates supercritically in the
range enclosed by the solid line for g=0.0, for g=0.1 in the range
enclosed by the dashed line, and for g=0.5 between the dotted line.
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bation analysis likewise to the one outlined in the Appendix
in the case of stripes are presented.

Close to threshold a hexagonal pattern can be described
by a superposition of three plane waves �stripe patterns� as
given by Eq. �18�, but where the three wave vectors enclose
an angle of 2� /3 with respect to each other. The solution
may thus be represented by

u0 = ê0�A1eik1r + A2eik2r + A3eik3r� + c.c., �39�

whereas the wave vectors ki �i=1,2 ,3� are given by

k1 = kc	1

0

 and k2,3 =

kc

2
	 − 1

±�3

 . �40�

The coupled amplitude equations for the three envelope
functions Ai �i=1,2 ,3� are of the following form:

�0�tA1 = �A1 + �A2
*A3

* − ���A1�2 + ��A2�2 + ��A3�2�A1,

�41a�

�0�tA2 = �A2 + �A3
*A1

* − ���A2�2 + ��A3�2 + ��A1�2�A2,

�41b�

�0�tA3 = �A3 + �A1
*A2

* − ���A3�2 + ��A1�2 + ��A2�2�A3,

�41c�

with Ai
* being the complex conjugate of Ai. �0 and � are

defined by the same expressions as for stripes and squares
above in Eqs. �23� and �24� and the two nonlinear coupling
constants � and � read within the scope of our model system

� =
1 + �� − 2�

1 + ��
, �42a�

� =
6g

1 + ��
−

4�2

�1 + ���3
+

2��1 + ��
�1 + ���2

−
3�2 + ���
4�1 + ���

−
�1 − 2���3 + 2��

4���1 + ���
+

2��1 − 2��
��

+ 3� . �42b�

These three coupled nonlinear equations �41� may again be
derived via the relation

�0�tAi = −
�FH

�Ai
* �43�

from a functional

FH = �
i=1

3 	�

2
�Ai�4 − ��Ai�2
 +

�

2�
i�j

3

�Ai�2�Aj�2 − ��A1A2A3

+ A1
*A2

*A3
*� . �44�

Equations �41� admit two types of homogeneous solutions.
The first one corresponds to a stripe solution with only one
nonvanishing amplitude. For hexagonal solutions the moduli
of the three amplitudes �A1�= �A2�= �A3�=A coincide, but if
one allows still a relative phase shift �i �i=1,2 ,3�, with

Ai = Aei�i, �45�

one obtains the nonlinear equation

0 = �A + �ei�A2 − �� + 2��A3, �46�

with the sum of the three phase angles �=�1+�2+�3.
There are two real solutions of Eq. �46�

A± =
1

2�� + 2��
�� ± ��2 + 4��� + 2��� , �47�

with A+ corresponding to the larger amplitude for ��0 and
A− for ��0. For ��0 the phase angle is �=0, which cor-
responds to regular hexagons and for ��0 the angle is �
=�, which corresponds to inverse hexagons. Comparing for
both solutions the functional F± given by Eq. �44�, one finds
that regular hexagons have the lower functional, i.e., FH

+

�FH
− , in the range with ��0 and inverse hexagons in the

range of ��0 with FH
+ �FH

− .
The bifurcation from the homogeneous distribution of ion

channels to a hexagonal modulation of the channel density is
subcritical according to the quadratic nonlinearity A2 in Eq.
�46�, which originates from the quadratic nonlinearity Ai

*Aj
*

in Eqs. �41�. However, the amplitudes Ai are still bounded by
cubic nonlinearities in the parameter range of a positive non-
linear coefficient �+2��0 in Eq. �46�. This nonlinear coef-
ficient vanishes along the lines shown for different values of
the parameter g in the �-� plane in Fig. 5. If this coefficient
becomes negative, i.e., �+2��0, Eqs. �41� do not have any
stationary, finite amplitude solutions. In this case one needs
either a higher order expansion or the amplitudes of hexa-
gons have to be determined by solving the basic equations
�10� numerically. Increasing values of the nonlinear interac-
tion parameter g enlarges the parameter range wherein sta-
tionary solutions of the form �47� occur.

B. Competition between patterns

In the shaded subrange in Fig. 6 stripes and squares bifur-
cate both supercritically and the amplitude of the hexagons is

FIG. 5. The nonlinear coefficient �+2� for hexagons is positive
between the solid line for g=0.0, for g=0.1 between the dashed
line, and for g=0.5 between the dotted line. In each range the am-
plitude of the hexagonal solution is limited by the cubic terms in
Eq. �41�.
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simultaneously limited by a cubic term. This range becomes
even larger with increasing values of g as indicated by the
ranges in Figs. 3–5. So the interesting question arises, which
of the three solutions is preferred in this overlapping range.

One criterion is the comparison of the values of the func-
tionals, i.e., to which solution belongs the lowest value of the
respective functional F. The second criterion is the linear
stability of each of the nonlinear solutions, i.e., which sub-
range of the overlap range of parameters becomes one of the
solutions linear unstable with respect to small perturbations.

1. Comparison of the functionals for stripes, squares,
and hexagons

For one set of parameters, �=0.15, �=0.06, and g=0.5,
the functionals of the three patterns are shown in Fig. 7 as a
function of � in the range where each of them bifurcates
supercritically. This figure indicates in which region the re-
spective pattern has the lowest value of the functional.

For small ���0.49� and very large values of ���
�0.98� the functional FQ has the lowest value, i.e., squares
have the lowest energy and are accordingly preferred. Regu-
lar hexagons FH

+ are preferred in the range 0.49���0.56,
stripes FS in the range 0.56���0.86, and finally inverse
hexagons FH

− in the range 0.86���0.98. These respective
ranges change as a function of �, �, and g.

Plotting the crossing points of the curves in Fig. 7 as a
function of the kinetic parameter � leads to a phase diagram
as presented in Fig. 8 for �=0.06 and g=0.5. In this figure
hexagons have a lower functional value than stripes beyond
the upper dashed line and below the lower dashed line and a
lower functional value than squares between the dotted lines.
Taking the competition between squares and stripes into ac-
count too, stripes are preferred in the dark shaded range,
squares in the bright shaded range, and hexagons in the me-
dium shaded range.

Inserting the solutions of stripes in Eq. �29� and squares in
Eq. �38� into their functionals in Eq. �28� and Eq. �36� the
functionals can be reduced to very simple expressions

FS = −
1

2�
�2, FQ = −

1

� + �
�2. �48�

Hence the comparison of the functionals for squares and
stripes is independent of the reduced control parameter �:

FQ � FS ⇔ � � � � 0. �49�

Accordingly the curves, cf. the dash-dotted line in Fig. 8,
as calculated from the condition �=� of equal functional
values, separate the regions where the functionals of stripes
or squares have the lower values.

However, a comparison with the functionals for regular
and inverse hexagons is not independent of �. Since hexa-
gons bifurcate subcritically their amplitude is already finite
and they have lower functional values at threshold �=0, i.e.,

FIG. 6. The bifurcation behavior of stripes, squares, and hexa-
gons is shown in the �-� plane for g=0.5: In the shaded range the
amplitudes for stripes, squares, and hexagons are limited by a cubic
nonlinearity, i.e., ��0, �+��0, and �+2��0. On the right-hand
side of the dashed line, which is determined by �=0, stripes bifur-
cate supercritically and squares do so in the range inclosed by the
solid line, which is defined by �+�=0. Between the dashed-dotted
line which is determined by �+2�=0 hexagons are limited by cubic
order terms.

FIG. 7. The functional F per unit area is shown for stripes �FS�,
squares �FQ�, regular �FH

+ �, and inverse hexagons �FH
− � as a func-

tion of the parameter � as well as for the parameter values �
=0.15, �=0.06, and g=0.5.

FIG. 8. For �=0.6 and g=0.5 the parameter ranges are shown
where stripes �dark�, hexagon �medium�, and squares �bright� have
the lowest value for the functional F. Along the dotted line one has
FH=FQ, along the dashed line FH=FS, and along the dash-dotted
line FS=FQ.
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FH��=0��FS=FQ=0. Hexagons are therefore always pre-
ferred close to the threshold. Stripes and squares are always
favored with respect to hexagons beyond some critical val-
ues ���S�� ,�� and ���Q�� ,�� which are determined by
the conditions FH=FS and FH=FQ, respectively. Accord-
ingly, with decreasing values of � the range in the �-� plane
increases where hexagons have the lowest functional. As in-
dicated by Fig. 9 the ranges of stripes and squares become
smaller and smaller. For small values of � square patterns are
suppressed nearly completely.

For the interesting limiting case, �=1/2 and �→0, one
has �=0 and �=6g+1/2. Thus one expects in two spatial
dimensions for ��1 and �=1/2 as well as small values of �
a clustering of ion channels to stripes. For finite values of �
and ��0 stripes are preferred to hexagons in the neighbor-
hood of the curve �=0, cf. Fig. 6. This region broadens with
increasing values of �, as indicated by Fig. 9.

2. Linear stability analysis

A comparison of the values of the functionals for the re-
spective patterns is one criterion for their basis of attraction.
A linear stability analysis of the patterns shows, as described
subsequently, that two patterns can both coexist in a region
around the parameter range where their functionals agree.

�a� Stripes vs hexagons. Stripes are still linearly stable
even if their free energy is already higher than that of the
hexagons, as can be seen by investigating the linear stability
of stripes with respect to small amplitude perturbations �Ai

A1 =��

�
+ �A1, A2 = �A2, A3 = �A3. �50�

Linearizing Eqs. �41� with respect to the small functions
�Ai�t� and solving the resulting linear differential equations,
one obtains the stability boundary as described by the con-
dition �see, e.g., Ref. �44��

��� − ��2 − ��2 � 0. �51�

By a similar stability analysis of the hexagonal solutions one
obtains the following stability boundary �44�:

��� − ��2 − �� − 2���2 � 0. �52�

While hexagons have higher free energy than stripes between
the two dashed lines in Fig. 10 they are still linearly stable in
a finite subrange �gray regions�.

�b� Stripes vs squares. By a linear stability analysis of the
stationary solutions given by Eqs. �37� and �38� one finds
that stable stripes are preferred in the range ����0 of the
nonlinear coefficients and squares in the parameter range
����� �45�. These ranges coincide with the ranges where
both patterns have their lower functional values �cf. Eqs.
�49��. Therefore stripe and square patterns do not coexist.

�c� Squares vs hexagons. Numerical results in Sec. V B
show that the amplitude equation for squares is a good ap-
proximation only for very small values of �. In this range
square patterns are nearly completely suppressed by the hex-
agonal pattern. Thus the quite complicated stability analysis
of square patterns vs hexagons �see, e.g., �46�� has been left
out.

C. “Nearly conserved case” — �Ê�2

The amplitude equations for stripes, squares, and hexa-
gons were derived in Sec. IV A under the assumption of a

FIG. 9. Dependence of the phase diagram of square, hexagon,
and stripe solutions �bright, medium, and dark gray� on the control
parameter �: �a�–�d� �=0.6, 0.4, 0.2, and 0.1, g=0.5. For small
values of � the region for hexagon solutions in the �-�-plane in-
creases and other solutions, squares quite more than stripe patterns,
are suppressed.

FIG. 10. Range of coexistence of hexagons and stripes for �
=0.1 and g=0.5. In the gray regions hexagons and stripes are both
linearly stable with respect to small amplitude perturbations. There-
fore both patterns coexist in a finite range around the dashed lines
where their functionals agree, FS=FH. Along the dotted line the
nonlinear coefficient ��� ,��=0 vanishes. The solid line indicates
the region where both structures are limited by a cubic nonlinearity
in their amplitude equations ���0 and �+2��0�.
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finite wave number kc=�1/4�O�1� and kc
2��. In the limit of

a conserved number of open ion channels, i.e., �=0, beyond
the onset of patter formation a clustering of channels takes
place �47� that may be described with a single component
Cahn-Hilliard equation. In this section we show that in the
limit of small values of the rate parameter � with ���2 a
reduction of Eqs. �10� to a single equation is still possible,
whereby the resulting equation covers the qualitative proper-
ties of demixing as well as of periodic pattern formation.

From the previous section it is known that in the limit �
→0 the bifurcation is subcritical in the range of small values
of �, besides �=1/2. Therefore the appropriate expansion,
which leads also to finite amplitude solutions, is the com-
bined expansion of ���2 and of �=1/2+ �̄�� �with �̄
�O�1��, as described in this section.

�a� Expansion in the regime ���2 and � arbitrary. In
this case we expand the two fields N and V with respect to
powers of � in the following manner:

N = �N0 + �2N1 + ¯ , �53a�

V = �V0 + �2V1 + ¯ . �53b�

In addition we also introduce slow space variables, X ,Y
=��x ,��y, and a slow time variable T=�2t. Choosing �

=�2�̃, with �̃�O�1� and expanding Eqs. �10� with respect to
powers of � one obtains a single order parameter equation
for N0:

�TN0 = − �̃2���̃2 + 1 + 2��̃�N0 − 	� −
1

2

N0

2� − �̃N0

�54�

wherein �̃= ��X ,�Y� has been used. The voltage follows im-
mediately via the identity

V0 = − N0. �55�

By rescaling space, time as well as the amplitude �Ñ=�N0�
this equation takes the form

�tÑ = − ��2 + � + 2����2Ñ + 	� −
1

2

�2�Ñ2� − �Ñ ,

�56a�

Ṽ = − Ñ . �56b�

This equation for Ñ shares similarities with the damped
Kuramoto-Sivashinsky equation �1,48�. The only difference

is in the nonlinearity �2�Ñ2�=2���Ñ�2+ Ñ�2Ñ� because the
Kuramoto-Sivashinsky equation includes as nonlinearity

��Ñ�2 only. The additional term, Ñ�2Ñ, however, changes
the dynamics and stability of the solutions completely be-
yond threshold, ��0. While one has for the Kuramoto-
Sivashinsky equation “turbulent” but bounded solutions, the
solutions of Eq. �56a� are always divergent according to the

nonlinear diffusion Ñ�2Ñ. For �=1/2 the nonlinear coeffi-
cient in Eq. �56a� vanishes completely, which suggests a dif-

ferent expansion close to this point, as described in the next
paragraph.

�b� Expansion in the regime ���2 and ��− 1
2

����. Here
also the parameter � is expanded with respect to the small
parameter �: �=1/2+���̃ with �̃�O�1�. Expanding the
fields N and V with respect to powers of ��

N = �1/2N0 + �N1 + �3/2N2 + ¯ , �57a�

V = �1/2V0 + �V1 + �3/2V2 + ¯ �57b�

yields from Eq. �10� at leading order a single equation for

N0, which after rescaling Ñ=��N0 takes the form

�tÑ = − �2���2 + � + 2���Ñ − 	� −
1

2

Ñ2 − 	 1

12
+ g
Ñ3�

− �Ñ , �58a�

Ṽ = − Ñ . �58b�

The cubic nonlinearity now limits the amplitudes of the so-
lutions to finite values because 1/12+g is positive even in
the limit �→0. For �=0 and �=1/2, corresponding to �̃
=0, the transition to the inhomogeneous channel distribution
is continuous while it is discontinuous for �̃�0 but remains

bounded. In the limit of a conserved channel density Ñ, i.e.,
�=0, Eq. �58a� is of the Cahn-Hilliard type �49,50�.

Equation �58a� covers all qualitative features of the basic
equations �10� in both cases, in the limit �=0 and for �
�0. Therefore, similar to the previous section one can also
derive the amplitude equations for stripes, squares, and hexa-
gons by starting from the modified equation �58a� instead of
Eqs. �10�. These derivations are much simpler for Eq. �58a�
but the results are now restricted to a range along the line
��1/2, close to the threshold and to small values of the rate
parameter ���2. Thereby one obtains again the amplitude
equation for stripes as given by Eq. �21�, for squares as by
Eq. �32�, and for hexagons as by Eq. �41�, but now with
slightly modified expressions for the coefficients.

�0 =
1

��
, � = 1 − 2� ,

� =
1

4
+ 3g, � = � =

1

2
+ 6g . �59�

These expressions may also be recovered from the formulas
given in Sec. IV A in the limit �→0 and �→1/2.

V. NUMERICAL RESULTS

The amplitude equations, as given for the present system
in the previous sections, are exemplarily derived in the Ap-
pendix by a perturbational calculation. However, the validity
range of these equations and their solutions is a priori un-
known. An estimation of this range can be provided by com-
paring the analytical solutions with numerical simulations of
the basic equations �10�, as done in this section.
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A. Stripe patterns

In the range of supercritically bifurcating stripe patterns
determined analytically in the previous section, the analytical
and numerical solutions of Eqs. �10� are compared in Fig. 11
as a function of the control parameter � for �=0.4, �=0.1,
g=0.5, and �V=0.1. There is fairly good agreement between
the analytical and the numerical solutions up to about �
=0.1. Since the stripe pattern is stationary it does not depend
on the actual value of �V used in simulations.

B. Square patterns

Numerical simulations do not show stable square patterns
besides transients to finally hexagonal patterns. Choosing a
special geometry with a very small system length �L
=2� /kc� hexagonal patterns can be suppressed in numerical
simulations. In this case the system shows the square pat-
terns as predicted. By comparing the amplitudes Ai as given
for squares by Eq. �38� for �=0.4, �=0.1, and g=0.5 with
the numerically obtained solution, as depicted in Fig. 12, we
find as a function of the reduced control parameter only an
acceptable agreement for very small values of ��10−4. But
then we find that squares are only preferred according to the
analytical calculation in the range ��0.1, which is far be-
yond the validity range of the amplitude equations for
squares. This is an explanation why we do not find the pre-
dicted squares by numerical solution of Eqs. �10�.

C. Hexagonal patterns

Close to threshold hexagons are the preferred pattern in a
wide range of parameters. In a range where stripes and
squares bifurcate supercritically, but where hexagons are al-
ready preferred, at �=0.4, �=0.1, and g=0.5, the analyti-
cally, cf. Eq. �47�, and the numerically obtained solutions are
compared in Fig. 13.

D. Anharmonic solutions and clustering of ion channels
for near conservation

Increasing the control parameter up to �=0.9, far beyond
the validity range of the amplitude equations, the density
N�x� becomes rather anharmonic as shown in Fig. 14�b�.
Closer to the threshold at �=0.04 but in the range where
stripes bifurcate subcritically and where the amplitudes take
immediately large values, at �=0.95 and �=0.03, the solu-
tions are also very anharmonic as shown for N�x� in Figs.
14�a� and 14�c�. In both cases each peak in Figs. 14�a� and
14�c� takes already a similar shape that is typical for the
clusters in the conserved limit �=0.

VI. DISCUSSION AND CONCLUSION

In Ref. �21� a model for the dynamics of ion channels
including electrophoresis, an opening-closing reaction, as

FIG. 11. The amplitudes of a stripe pattern as determined by the
amplitude equation �solid line� and by numerical solutions of Eq.
�10� �circles� are compared as a function of the control parameter.
For the parameters �=0.4, �=0.1, g=0.5, and �V=0.1 the bifurca-
tion was supercritical, i.e., ��0.

FIG. 12. The amplitudes of squares, A1=A2, are shown as a
function of the reduced control parameter � and for the parameters
�=0.4, �=0.1, and g=0.5. The solid line is given by Eq. �38� and
the circles are obtained from numerical simulations of the model
equations.

FIG. 13. The amplitudes Aj of the hexagonal pattern are given
as a function of the reduced control parameter �. The solid line
corresponds to the analytical solution A+ and the dashed line be-
longs to the unstable solution A−, where both are given by Eq. �47�.
The data points are obtained from the numerical solution of Eqs.
�10�. The parameters �=0.1, �=0.4, and g=0.5 have been used.
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well as a simultaneous binding-release reaction has been in-
troduced. Compared to this earlier work, we have taken into
account the effect of the excluded volume interaction be-
tween ion channel molecules. In addition the analysis of the
bifurcations beyond the threshold of pattern formation has
been extended to two spatial dimensions.

In terms of amplitude equations we give a detailed analy-
sis of the competition between stripes, squares, and hexago-
nal patterns. We have found that immediately above thresh-
old hexagonal patterns are preferred in a large range of
parameters, whereas further beyond the threshold stripes are
preferred in an increasingly larger parameter range.

The validity range of the amplitude expansion has been
tested by solving the model equations numerically with a
pseudospectral code. By this comparison we have shown that
the amplitude equations for squares have a very small valid-
ity range. The expansion for squares breaks down two orders
of magnitude earlier than the one for stripes and hexagonal
structures. Accordingly, the large range where square pat-
terns should be favored as predicted by the amplitude expan-
sion is not confirmed by the numerical analysis of the model
equations while the amplitude equations describing the com-
petition between stripes and hexagons are in a fairly good
agreement with the numerical simulations close to the
threshold.

In the limiting case �→0 implying a conserved number
of open ion channels the patterns have a strong similarity
with those patterns occurring during ion channel clustering
�47� in systems with a binding-release reaction. Near thresh-
old and in the limit of ���2 the model equations can be
reduced to a single model equation which shares similarities
with different variants of the Swift-Hohenberg equation �1�
as well as the Cahn-Hilliard equation �49,50�. On the basis of
this reduced equation essential effects related to the binding
release reaction are already captured.

It is an interesting question whether the curvature of
membranes influences the pattern competition especially be-
tween stripes and hexagons. One expects that in such a sys-
tem the effects of a broken up-down symmetry become
stronger leading to an additional enlargement of the param-
eter range where hexagonal patterns occur.

If the binding-release reaction is replaced by an opening-
closing reaction, the formation of spatially periodic either
stationary or oscillatory patterns has been reported �22,24�.
There the nonlinear behavior of stripe patterns has been dis-
cussed only partially and only in one spatial dimension. A
competition of patterns as described in the present work will
be expected but also a competition between two-dimensional
stationary and time-dependent patterns.

Our calculations are related to experiments of the type as
investigated in Ref. �51� where ion channels are studied in
vitro. The electrodiffusive model at hand seems to be rel-
evant for in vivo systems as shown by experiments on the
effect of electric fields on clustering of acetylcholine recep-
tors �23,27,28�. In membranes composed of several types of
lipids a self-organized structuring has also been described in
terms of lipid rafts �30�. Therefore one expects in such cases
a spatially varying mobility of proteins embedded in the
membrane. How this heterogeneity affects the formation of
patterns is another interesting question as has been investi-
gated for other model systems �52–56�. A detailed analysis of
all these questions may be given in forthcoming works.
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APPENDIX: DERIVATION OF THE AMPLITUDE
EQUATION FOR THE STRIPE PATTERN

1. Basic equations in matrix notation

Rewriting the basic Eqs. �10� to a matrix notation

�M · �t + L�u = N�u� �A1�

allows a more compact formulation of the derivation of the
generic amplitude equations of stripe patterns as given by
Eq. �21�, of square patterns as given by Eqs. �32�, or of
hexagonal patterns as given by Eqs. �41�. The two compo-
nents of the vector u are the normalized channel density N
and the reduced voltage V, whereas the matrices M and L
represent the linear parts of Eqs. �10�:

M = 	1 0

0 0

, L = 	 � − �2, − �2

��1 − ��
 , 1 − �2 
 , �A2�

and the vector N the nonlinearity:

N = 	��N � V� + g�2�N3�
− �NV


 . �A3�

The linear coefficients of Eq. �21� follow directly from the
linear stability analysis as described in Secs. III and IV A 1,
but the nonlinear coefficient � in the same equation is deter-
mined by the perturbation expansion described in the next
section.

2. Nonlinear coefficient

The sign of the nonlinear coefficient � in Eq. �21� deter-
mines whether one has a sub-or a supercritical bifurcation to

FIG. 14. The stationary and normalized distribution of ion chan-
nels N�x� is shown for a stripe pattern above threshold for four
different sets of parameters. In all cases �=0.03 and g=0.1 were
fixed and therefore also the critical wave number kc=0.416. The
system length is L=8� /kc.
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the periodic state given by Eq. �18�. The scheme of the deri-
vation of � and the respective amplitude equations may be
found in various references, as, for instance, in Refs.
�1,40,43�. This scheme for the derivation of � is summarized
for the present system in this appendix. The starting point is
an expansion of the solutions of Eqs. �A1� with respect to
powers of the reduced control parameter � as given by Eq.
�17�:

u�r,t� = �1/2u0�r,t� + �u1�r,t� + �3/2u2�r,t� + ¯ .

�A4�

Since the vector N is a nonlinear function of u, it may be
also expanded with respect to powers of �:

N�u� = �N1�u0� + �3/2N2�u0,u1� + ¯ . �A5�

To the ansatz in Eq. �18� for a homogeneous stripe pattern

u0 = ê0Aeikcr + c.c. �A6�

a multiscale analysis in time is added

�t → �t + ��T �A7�

to account for the variation of the amplitude A=A�T� on a
very slow time scale T=�t. Together with the relation 

=
c�1+�� finally the basic equations in Eq. �A1� may be
rearranged into a powers series with respect to �1/2 leading
to the following hierarchy of equations:

�1/2 : �M�t + L0�u0 = 0, �A8�

� : �M�t + L0�u1 = N1�u0� , �A9�

�3/2 : �M�t + L0�u2 = − �L2 + M�T�u0 + N2�u0,u1�

�A10�

with the linear operators

L0 = 	 � − �2, − �2

��1 − ��
c, 1 − �2 
 , �A11�

L2 = 	 0 0

��1 − ��
c 0

 �A12�

and the nonlinearities

N1 = 	��N0 � V0�
− �N0V0


 , �A13�

N2 = 	��N0 � V1 + N1 � V0� + g�2N0
3

− ��N0V1 + N1V0�

 . �A14�

Using the ansatz of Eq. �A6� the leading contribution N1�u0�
of N�u� has the explicit form

N1 = − E0	 2kc
2A2e2ikcr

��A2e2ikcr + �A�2�

 + c.c. �A15�

The solution u1 of Eq. �A9� has to be of the same form as
the inhomogeneity N1. This leads to the ansatz

u1 = �B1ê0 + B2ê1�A2e2ikcr + �B3ê0 + B4ê1��A�2 + c.c.

�A16�

using the two eigenvectors ê0,1= �1,E0,1� of L0 with

E0 = − �1 + ���, E1 =
1 + ��

��
. �A17�

After inserting Eq. �A16� in Eq. �A9� one obtains by com-
parison of coefficients:

B1 =
1

9	10 − � + 2�� +
3�

���1 + ���
+

2 − 7�

��

 ,

B2 =
1

3
	2�� −

���

1 + ��

 ,

B3 = −
���

1 + ��
, B4 = − B3. �A18�

At the next higher order, Eq. �A10�, one has to deal with the
second order correction of the linear operator, L2, and of the
vector N2 as defined in Eqs. �A12� and �A14�. It is not nec-
essary to solve Eq. �A10� explicitly. One can use Fredholm’s
alternative or one simply can take advantage of the following
property:

�f̂0eikcr,L0u2� =
1

S
�

S

dre−ikcrf̂0
†L0u2�r,t� = 0 �A19�

of the left eigenvector

f̂0 = 	 1

F0
� 
, F0 = −

��

1 + ��
, �A20�

which spans the adjoint kernel of L0. Since u0 and u1 have
an explicit dependency only on the time scale T but not on t
the corresponding derivatives can be neglected. Accordingly
all the terms on the right-hand side of Eq. �A10� projected

onto f̂0eikcr also have to vanish:

�f̂0eikcr,N2 − �L2 + M�T�u0� = 0. �A21�

This provides the solubility condition for the determination
of the amplitude A. For this purpose the contributions to the
expressions L2u0 and N2 which are proportional to eikcr are
collected. According to the Fredholm’s alternative we obtain
after projection

��A�2A − A + ��TA = 0 �A22�

with the nonlinear coefficient

� =
3g

1 + ��
−

1

3�6�2 − �� − 2�1 + ����2

1 + ��
+

2

3��

��4�� − 2� + 1���� − 2� + 1�� , �A23�

and the relaxation time
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� =
1

���1 + ���
. �A24�

The nonlinear coefficient depends on the rate parameter �,
the density parameter �, and on the parameter g for the ex-

cluded volume interaction. The relaxation time of the pattern
as well as the nonlinear coefficient � both diverge for a fro-
zen binding-release reaction ��→0�. In this limit the wave
number kc tends to zero and the assumptions made for the
derivation of the amplitude equation are no longer fulfilled.
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