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We study the mean escape time in a market model with stochastic volatility. The process followed by the
volatility is the Cox, Ingersoll, and Ross process which is widely used to model stock price fluctuations. The
market model can be considered as a generalization of the Heston model, where the geometric Brownian
motion is replaced by a random walk in the presence of a cubic nonlinearity. We investigate the statistical
properties of the escape time of the returns, from a given interval, as a function of the three parameters of the
model. We find that the noise can have a stabilizing effect on the system, as long as the global noise is not too
high with respect to the effective potential barrier experienced by a fictitious Brownian particle. We compare
the probability density function of the return escape times of the model with those obtained from real market
data. We find that they fit very well.
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I. INTRODUCTION

The noise in a physical system gives rise to interesting
and sometimes counterintuitive effects. The stochastic reso-
nance and the noise enhanced stability are two examples of
noise activated phenomena that have been extensively stud-
ied in a wide variety of natural and physical systems such as
lasers, spin systems, and chemical and biological complex
systems �1–3�. Specifically the activated escape from a meta-
stable state is important in the description of the dynamics of
nonequilibrium complex systems �4,5�. Recently there has
been growing interest in the application of complex system
methodology to model social systems. In particular the ap-
plication of statistical physics for modeling the behavior of
financial markets has given rise to a new field called “econo-
physics” �6–9�.

The stock price evolution is indeed driven by the interac-
tion of a great number of traders. Each one follows his own
strategy in order to maximize his profit. There are fundamen-
tal traders who try to invest in a solid company, speculators
who try to exploit arbitrage opportunity, and noise traders
who act in a nonrational way. All these considerations allow
us to say that the market can be thought of as a complex
system where the rationality and the arbitrariness of human
decisions are modeled by using stochastic processes.

The price of financial time series was modeled as a ran-
dom walk by Bachelier �10�. His model provides only a
rough approximation of the real behavior of the price time
series. Indeed it does not reproduce some of the stylized facts
of the financial markets: �i� the distribution of relative price
variation �price return� has fat tails, showing strong non-
Gaussianity �7,9�; �ii� the standard deviation of the return
time series, called volatility, is a stochastic process itself
characterized by long memory and clustering �9,11�; �iii� au-
tocorrelations of asset returns are often negligible �9�.

A popular model proposed to characterize the stochastic
nature of the volatility is the Heston model �12�, where the

volatility is described by a process known as the Cox, Inger-
soll, and Ross �CIR� process �13� and in mathematical sta-
tistics as the Feller process �14�. The model has been re-
cently investigated by econophysicists �15,16� and solved
analytically �17,18�. Models of financial markets reproduc-
ing the most prominent features of statistical properties of
stock market fluctuations and whose dynamics is governed
by nonlinear stochastic differential equations have been con-
sidered recently in the literature �19–26�. Moreover financial
markets present days of normal activity and extreme days of
crashes and rallies characterized by different behaviors for
the volatility. The question of whether extreme days are out-
liers or not is still debated. This research topic has been
addressed both by physicists �26� and economists �27�.

A Langevin approach to the market dynamics, where mar-
ket crisis was modeled through the use of a cubic potential
with a metastable state, has already been proposed �8,23–25�.
There feedback effects on the price fluctuations were consid-
ered in a stochastic dynamical equation for instantaneous
returns. The evolution inside the metastable state represents
the normal market behavior, while the escape from the meta-
stable state represents the beginning of a crisis.

Systems with metastable states are ubiquitous in physics.
Such systems have been extensively studied. In particular, it
has been proven that the noise can have a stabilizing effect
on these systems �2,3�. To the best of our knowledge, all of
the models proposed up to now to study the escape from a
metastable state contain only a constant noise intensity,
which represents the volatility in econophysics. Recently
theoretical and empirical investigations have been done on
the mean exit time �MET� of financial time series �28,29�,
which is the mean time when the stochastic process leaves,
for the first time, a given interval. The authors investigated
the MET of asset prices outside a given interval of size L,
and they found that the MET follow a quadratic growth in
terms of the region size L. Their theoretical investigation was
done within the formalism of the continuous time random
walk. Within the same formalism the statistical properties of
the waiting times for high-frequency financial data have been
investigated in Ref. �30�.
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In this work we model the volatility with the CIR process
and investigate the statistical properties of the escape times
when both an effective potential with a metastable state and
the CIR stochastic volatility are present. Our study provides
a natural evolution of the models with constant volatility.
The analysis has the purpose to investigate the role of the
noise in financial market extending a popular market model
and to provide a starting model for physical systems under
the influence of a fluctuating noise intensity. The paper is
organized as follows. In the next section the modified Heston
model and the noise enhanced stability effect are described.
In the third section the results for two extreme cases of this
model are reported. In Sec. IV we comment on the results for
the general case and the probability density function of the
escape time of the returns, obtained by our model, is com-
pared with that extracted from experimental data of a real
market. In the final section we draw our conclusions.

II. THE MODIFIED HESTON MODEL
AND THE NES EFFECT

The Heston model, which describes the dynamics of stock
prices p�t� as a geometric Brownian motion with the volatil-
ity given by the CIR mean-reverting process, is defined by
the following Ito stochastic differential equations:

dp�t� = �pdt + ��t�pdW1�t� , �1�

dv�t� = a�b − v�t��dt + c�v�t�dW2�t� , �2�

where ��t� is the time-dependent volatility, v�t�=�2�t� and
Wi�t� are uncorrelated Wiener processes with the usual sta-
tistical properties

�dWi� = 0, �dWi�t�dWj�t��� = dt��t − t���i,j . �3�

In Eq. �1� � represents a drift at macroeconomic scales. In
Eq. �2� the square of the volatility reverts towards a macro-
economic long time term given by the mean value b, with a
relaxation time a−1. Here c is the amplitude of volatility fluc-
tuations often called the volatility of volatility. By introduc-
ing log returns x�t�=ln�p�t� / p�0�� in a time window �0, t�
and using Ito’s formula �31�, we obtain the stochastic differ-
ential equation �SDE� for x�t�

dx�t� = �� − v�t�/2�dt + �v�t�dW1�t� . �4�

Here we consider a generalization of the Heston model, by
replacing the geometric Brownian motion with a random
walk in the presence of a cubic nonlinearity. This generali-
zation represents a fictitious “Brownian particle” moving in
an effective potential with a metastable state, in order to
model those systems with two different dynamical regimes
similar to financial markets in normal activity and extreme
days �23–25�. The equations of the new model are

dx�t� = − � �U

�x
+

v�t�
2
	dt + �v�t�dW1�t� , �5�

dv�t� = a�b − v�t��dt + c�v�t�dW2�t� , �6�

where U�x�=Ax3+Bx2 is the effective cubic potential shown
in Fig. 1 with A=2 and B=3. From now on we call the first

and second term of Eq. �6� reverting term and noise term,
respectively.

Let us call xM the abscissa of the potential maximum and
xI the cross point between the potential and the x axes. The
intervals x0�xI and I= �xI ,xM� are clearly regions of insta-
bility for the system. In systems with a metastable state, the
random fluctuations can originate the noise enhanced stabil-
ity �NES� phenomenon, an interesting effect that increases
the stability, enhancing the lifetime of the metastable state
�2,3�. The mean escape time � for a Brownian particle mov-
ing throughout a barrier �U is given by the well known
exponential Kramers law �31,32�

� = C exp
�U

v
� , �7�

where � is a monotonically decreasing function of the noise
intensity v, and C is a prefactor which depends on the po-
tential profile. This is true only if the random walk starts
from initial positions inside the potential well. When the
starting position is chosen in the instability region x0�xM, �
exhibits an enhancement behavior, with respect to the deter-
ministic escape time, as a function of v. This is the NES
effect and it can be explained by considering the barrier
“seen” by the Brownian particle starting at the initial position
x0, that is �Uin=U�xmax�−U�x0�. Moreover �Uin is less than
�U as long as the starting position x0 lies in the interval I
= �xI ,xM�. Therefore for a Brownian particle starting from an
unstable initial position it is more likely to enter into the well
than to escape from, once the particle has entered. So a small
amount of noise can increase the lifetime of the metastable
state. For a detailed discussion on this point and different
dynamical regimes see Refs. �3�. For increasing noise
intensities, the Kramers behavior is recovered.

We have already investigated the statistical properties of
the escape times for models with stochastic volatility,
namely, the Heston model and the GARCH model �16�. We
found that the probability density function of the escape

FIG. 1. Cubic potential used in the dynamical equation for the
variable x�t�. The points evidenced in the figure indicate the starting
positions x0 used for the simulations illustrated in Sec. III �white
circles� and Sec. IV �black square�.
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times obtained in the Heston model exhibits a better agree-
ment with real data than that calculated in the GARCH
model. Here, by considering the modified Heston model
�Eqs. �5� and �6��, characterized by a stochastic volatility and
a nonlinear Langevin equation for the returns, we study the
mean escape time as a function of the model parameters a, b,
and c. In particular we investigate whether it is possible to
observe some kind of nonmonotonic behavior such as that
observed for � vs v in the NES effect with constant volatility
v. We find a nonmonotonic behavior of the mean escape time
�MET� �, as a function of the model parameters. Within this
behavior we recognize the enhancement of � as a NES effect
in a broad sense.

Our modified Heston model has two limit regimes, corre-
sponding to the cases a=0, with only the noise term in the
equation for the volatility v�t�, and c=0 with only the revert-
ing term in the same equation. This last case corresponds to
the usual parametric constant volatility regime. In fact, apart
from an exponential transient, the volatility reaches the
asymptotic value b. The NES effect should be observable in
the latter case as a function of b, which is the average vola-
tility. In fact, in this case we recover the motion of a Brown-
ian particle in a fixed cubic potential with a metastable state
and an enhancement of its lifetime for particular initial
conditions.

For this purpose we perform simulations by numerically
integrating Eqs. �5� and �6� using a time step �t=0.01 and,
as potential parameters, A=2 and B=3. All the integration
steps yielding negative values for v were rejected and re-
peated. The simulations were performed placing the walker
in the initial positions x0 located in the unstable region
�xI ,xM� �see Fig. 1� and using an absorbing barrier at
x=−6.0. Each time the walker hits the barrier, the escape
time is registered and another simulation starts, placing the
walker at the same initial position x0, but using the volatility
value of the barrier hitting time.

III. LIMIT CASES

First of all we present the result obtained in the limit cases
where we have only one of the two terms in the CIR equa-
tion �6�. Namely, �a� only the reverting term �a�0,b�0,c
=0, revert-only case�, and �b� only the noise term �a=0, b
whatever, c�0, noise-only case� are present. In the case �a�
the volatility is practically constant and equal to b, apart
from an exponential transient that is negligible for times t
�a−1.

The mean escape time as a function of b is plotted in Fig.
2�a� for the seven different initial positions indicated in Fig.
1 �white circles in that figure�. The curves are averaged over
105 escape events. The nonmonotonic behavior is present.
The escape time increases by increasing b until it reaches a
maximum. After the maximum, when the values of b are
much greater than the potential barrier height, the Kramers
behavior is recovered. The nonmonotonic behavior is more
evident for starting positions near the maximum of the po-
tential. For starting positions x0 lying in the interval I
= �xI ,xM�, the initial plateau is an artifact of the calculus.
Indeed in the theoretical solution for the constant volatility

case, � diverges as the noise intensity approaches zero �2,3�.
With such a noise intensity the escape from the well is a very
unlikely event. We should require an extremely great number
of simulation steps in order to observe an event pushing the
particle into the well.

In case �b�, v is a multiplicative stochastic process with
standard deviation equal to c. The random term in Eq. �6� is
given by the product of the white noise and the square root
of the process itself v. In Fig. 2�b� we plot � as a function of
the parameter c. The nonmonotonic behavior is absent and
the MET decreases monotonically, but differently from the
Kramers behavior. The curves are averaged over 108 escape
events. In this case a greater number of events is required to
eliminate the fluctuations present in the curves. Once again

FIG. 2. Mean escape time � for the seven different starting po-
sitions of Fig. 1 �white circles in that figure�. Limit cases where
only one of the two terms in the CIR equation is present: �a� � vs b,
when only the reverting term is present �a=10−2, c=0�, and �b� � vs
c, when only the noise term is present �a=0, b=10−2�. The different
starting positions x0 from top to bottom are −1.1, −1.2, −1.3, −1.4,
−1.5, −1.55, −1.60. The parameters b and c are dimensionless,
while a, measured in arbitrary units, has dimension of the inverse
time. Inset: detail of the curve with x0=−1.10.

MEAN ESCAPE TIME IN A SYSTEM WITH STOCHASTIC… PHYSICAL REVIEW E 75, 016106 �2007�

016106-3



we cannot draw any conclusions for the constant behavior of
�, when the values of the parameter c are very small, because
of the finite number of simulation steps �3�. It is worthwhile
pointing out that the NES effect is not observable as a func-
tion of the parameter c, if a=0. Therefore, the presence of
the reverting term affects the behavior of � in the domain of
the noise term of the volatility and it regulates the transition
from nonmonotonic to monotonic regimes of MET. More-
over in this noise-only regime the volatility is proportional to
the square of the Wiener process and therefore the fluctua-
tions during the monotonic decreasing behavior of � are very
large. We see three different dynamical regimes: �i� for low
values of the parameter c, with respect to the height of the
potential barrier, we have a constant behavior, �ii� for inter-
mediate values of c we have fluctuations with decreasing
monotonic behavior, �iii� for values of c greater than 1,
which is exactly the height of the barrier, we get very small
and constant values of � close to zero. This behavior is
mainly due to the presence of the Ito term in Eq. �5� for the
log returns x�t�. In fact, because of this term we have a
fluctuating potential, obtained by the previous one by adding
a linear term U�=U�x�+ �xv� /2. The effect of the positive
linear term is to modify randomly the potential shape in such
a way that the potential barrier disappears for greater values
of the volatility v�t�. Specifically for values of v�3 the po-
tential barrier is always present, while for v	3 it disappears.
This produces a random enhancement of the escape process
with a consequent decreasing behavior of the average escape
time.

IV. GENERIC CASE

In order to present our results for the generic case, where
both the reverting and noise terms of the CIR equation are
present, we focus on a single starting position x0=−1.25,
which is located in the middle of the interval �xI ,xM�. We
analyze the escape time through the barrier using different
values for parameters a, b, and c. We note that the average
escape time � is measured in arbitrary units �a.u.�, the param-
eter a �measured in a.u. too� has the dimension of the inverse
time, while b and c are dimensionless.

As a first result we present the behavior observed for � as
a function of the reverting level b. In Fig. 3 we show the
curves averaged over 105 escape events. Each panel corre-
sponds to a different value of c. Inside each panel different
curves correspond to different values of a spanning seven
orders of magnitude. The nonmonotonic shape, characteristic
of the NES effect, is clearly shown in Fig. 3�a�. This behav-
ior is shifted towards higher values of b as the parameter a
decreases, and it is always present. In Fig. 3�c�, which cor-
responds to a much greater value of c �c=30�, all the curves
are monotonic but with a large plateau. So an increase in the
value of c causes the NES effect to disappear.

To understand this behavior let us note that the parameters
a and c play a regulatory role in Eq. �4�. For a�c the drift
term is predominant while for a
c the dynamics is driven
by the noise term, unless the parameter b takes great values.
In fact in Fig. 3�a� the nonmonotonic behavior is observed
for a
c, provided that b�c. For increasing values of a the

system approaches the revert-only regime and we recover the
behavior shown in Fig. 2�a�. For a
c the shape of the
curves changes. The mean escape time � is almost constant,
and only for very high values of b we observe a decreasing
behavior. This happens because, for smaller values of a the
reverting term becomes negligible in comparison with the
noise term and the dependence on b becomes weaker. Only
when b is large enough the reverting term assumes values
that are no more negligible with respect to the noise term and
we can observe again a dependence of � on b. By increasing

FIG. 3. Mean escape time � as a function of the reverting level
b. Each panel corresponds to a different value of c, specifically �a�
c=10−2, �b� c=10, and �c� c=30. Inside each panel different curves
correspond to the following values of a: �a� black circle 10−7, white
circle 10−6, black triangle down 10−5, white triangle up 10−4, black
square 10−3, white square 10−2, black diamond 10−1; �b� and �c�
black circle 10−4, white circle 10−1, black triangle down 1, white
triangle up 10, black square 102.
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the value of c we observe the nonmonotonic behavior only
for a very great value of the parameter a, that is for a=100
�c �see Fig. 3�b��. For further increase of parameter c �see
Fig. 3�c��, the noise experienced by the system is much
greater than the effective potential barrier “seen” by the fic-
titious Brownian particle and the NES effect is never observ-
able. Moreover we are near a noise-only regime, and we can
say that the magnitude of c is so high as to saturate the
system.

In summary the NES effect can be observed as a function
of the volatility reverting level b, the effect being modulated
by the parameter �ab� /c. The phenomenon disappears if the
noise term is predominant in comparison with the reverting
term. Moreover the effect is no more observable if the pa-
rameter c pushes the system towards a too noisy region.

As a second step we study the dependence of � on the
noise intensity c. Figure 4 shows the curves of � vs c, aver-
aged over 105 escape events. Each panel corresponds to a
different value of b. Inside each panel different curves cor-

respond to different values of a. The shape of the curves is
similar to that observed in Fig. 3. For small b �panel �a�� we
observe a nonmonotonic behavior, while for great b
�panel �b�� the curves are monotonic but with a large plateau.
Let us recall the results of Fig. 2�b�: there was no NES effect
in the noise-only case. So for small values of a, when the
reverting term is negligible, the absence of the nonmonotonic
behavior is expected. By increasing a the nonmonotonic be-
havior is recovered �see Fig. 4�a��. Once again, if one of the
parameters pushes the system into a high noise region, the
nonmonotonic behavior disappears �see Fig. 4�b��. Specifi-
cally if b is high, the reverting term drives the system to-
wards values of volatility that are outside the region where
the NES effect is observable. Indeed a direct inspection of
Fig. 3 shows that the value of b used in Fig. 4�b� is located
after the maximum of � for all values of a and c.

In summary when the noise term is coupled to the revert-
ing term we observe the NES effect on the variable c. The
effect disappears if b is so high as to saturate the system. As
a last result we discuss the behavior observed for � as a
function of the reverting rate a. This allows us to observe the
transition between the two regimes of the process discussed
above: the noise-only regime and the revert-only regime. The
results are reported in Fig. 5 for three different values of b
and three different values of c. To reduce the fluctuations in
all the curves when the parameter a becomes small, we per-
formed simulations by averaging on 106 escape events. It is
worthwhile to note that for values of the parameter a
�10−5, we enter into the noise-only regime, which charac-
terizes one of the limit cases discussed in Sec. III. Curves
with the same color correspond to the same value of c while
curves with the same symbol correspond to the same value
of b.

The system tends to the noise-only regime for lower val-
ues of a and to the revert-only regime for higher values of a.
On the right end of Fig. 5 the curves corresponding to the

FIG. 4. Mean escape time � as a function of the noise intensity
c. Each panel corresponds to a different value of b, specifically �a�
b=10−2 and �b� b=10. Inside each panel different curves corre-
spond to the following values of a: black circle 10−3, white circle
3�10−3, black triangle down 9�10−3, white triangle up 2.7
�10−2, black square 8.1�10−2, white square 2.4�10−1, black dia-
mond 7.3�10−1, white diamond 2.2, black triangle up 6.6.

FIG. 5. Mean escape time � as a function of the reverting rate a
for different values of b and c. Curves with the same color corre-
spond to the same value of c, while curves with the same symbol
correspond to the same value of b. Specifically the values of b used
are 10−3 circle, 1 triangle, 102 square. The values of c used are 10−2

black, 10−1 white, 1 gray.
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same value of b tend to group together. The values of � the
curves approach reflect the nonmonotonic behavior observed
in Fig. 3�a�. Indeed all the curves corresponding to the inter-
mediate value of b �b=1� approach a value of �, which al-
most corresponds to the maximum value of MET in Fig. 3�a�
�we note that the behavior for a=10−1 coincides with that for
a=1, even if it is not reported in Fig. 3�a��. This value of � is
greater than that reached by the curves corresponding to
other two, lower and greater, values of b �10−3 and 102, re-
spectively�. Conversely on the left end the curves corre-
sponding to the same value of c tend to group together. It is
worth noting that in this last case the curves with the highest
value of c, namely, c=1, show greater fluctuations as those
observed in all the previous cases where the noise term is
predominant �see, for example, Fig. 2�b��.

It is interesting to show, for our model �Eqs. �5� and �6��,
some of the well-established statistical signatures of the fi-
nancial time series, such as the probability density function
�PDF� of the stock price returns, the PDF of the volatility,
and the return correlation. In Fig. 6 we show the PDF of the
returns. To quantitatively characterize this PDF with regard
to the width, asymmetry, and fatness of the distribution, we
calculate the mean value ��x�, the variance ��x, the skew-
ness �3, and the kurtosis �4. We obtain the following values:
��x�=−0.162, ��x=0.348, �3=−1.958, and �4=5.374. These
statistical quantities clearly show the asymmetry of the dis-
tribution and its leptokurtic nature observed in real market
data. In fact, the empirical PDF is characterized by a narrow
and large maximum, and fat tails in comparison with the
Gaussian distribution �7,8�. Specifically we note that the
value of the kurtosis �4=5.374, which gives a measure of the
distance between our distribution and a Gaussian one, is of
the same order of magnitude as that obtained for the S&P
500 for daily prices �see Fig. 7.2 on page 114 of Ref. �8��.
The presence of the asymmetry is very interesting and is the
subject of future investigations. This asymmetry is due to the
nonlinearity introduced in the model through the cubic po-
tential �see Fig. 1�. Of course, a comparison between the

PDF of real data and that obtained from the model requires
further investigations on the dynamical behavior of the sys-
tem, as a function of the model parameters. In Fig. 7 we
show the PDF of the volatility for our model, and we can see
a log-normal behavior as that observed approximately in real
market data. Finally, in Fig. 8 we show the correlation func-
tion of the returns. As we can see, the autocorrelations of the
asset returns are insignificant except for the very small time
scale for which microstructure effects come into play. This is
in agreement with one of the stylized empirical facts emerg-
ing from the statistical analysis of price variations in various
types of financial markets �9�. A quantitative agreement of
the PDF of volatility and the correlation of returns with the
corresponding quantities obtained from real market data is
the subject of further studies.

Our last investigation concerns the PDF of the escape
time of the returns, which is the main focus of our paper. By
using our model �Eqs. �5� and �6��, we calculate the prob-
ability density function for the escape time of the returns. We

FIG. 6. Probability density function of the stock price returns for
our model �Eqs. �5� and �6��. The values of the parameters are a
=10−1, b=4.5, and c=2�10−1. The potential parameters are A=2
and B=3.

FIG. 7. Probability density function of the volatility for our
model �Eqs. �5� and �6��. The values of the parameters are the same
as in Fig. 6. Inset: semilog plot of the PDF of volatility in a longer
time scale.

FIG. 8. Correlation function of the returns for our model �Eqs.
�5� and �6��. The values of the parameters are the same as in Fig. 6.
Inset: detail of the behavior at short times.
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define two thresholds �xi and �xf, which represent the start
point and the end point for calculating �, respectively. When
the return series reaches the value �xi, the simulation starts
to count the time � and it stops when the threshold �xf is
crossed. In order to fix the values of the two thresholds we
consider the standard deviation �SD� ��x of the return series
over a long time period corresponding to that of the real data.
Specifically ��x is the average of the standard deviations �n
observed for each stock during the above mentioned whole
time period �n is the stock index, varying between 1 and
1071�. Then we set �xi=−0.1 ��x and �xf =−1.0 ��x. We
perform our simulations obtaining a number of time series of
the returns equal to the number of stocks considered, which
is 1071. The initial position is x0=−1.25 and the absorbing
barrier is at xabs=−6.0. For the CIR stochastic process v, we
choose vstart=8.62�10−5, a=10−1, b=4.5, and c=2�10−1.
The choice of this parameter data set is not based on a fitting
procedure as that used for example in Ref. �18�. There the
minimization of the mean square deviation between the PDF
of the returns, extracted from financial data, and that ob-
tained theoretically is done. We choose the parameter set in
the range in which we observe the nonmonotonic behavior of
the mean escape time of the price returns as a function of the
parameters b and c. Then by a trial and error procedure we
select the values of the parameters a, b, and c for which we
obtain the best fitting between the PDF of the escape times
calculated from the modified Heston model �Eqs. �5� and �6��
and that obtained from the time series of real market data.
We report the results in Fig. 9. Of course a better quantitative
fitting procedure could be done, by considering also the po-
tential parameters. This detailed analysis will be done in a
forthcoming paper.

As real data we use the daily closure prices for 1071
stocks traded at the NYSE and continuously present in the
12-year period 1987–1998 �3030 trading days�. The same
data set was used in previous investigations �16,17,33,34�.
From this data set we obtain the time series of the returns
and we calculate the time to hit a fixed threshold starting
from a fixed initial position. The two thresholds were chosen
as a fraction of the average standard deviation ��x on the
whole time period, as we have done in simulations. The
agreement between real data and those obtained from our
model is very good. We note that at high escape times the
statistical accuracy is worse because of few data with high
values. The parameter values of the CIR process for which
we obtain good agreement between real and theoretical data
are in the range in which we observe the nonmonotonic be-
havior of MET �see Fig. 3�a��. This means that in this pa-
rameter region we observe a stabilizing effect of the noise on
the prices in the time windows for which we have a variation
of returns between the two fixed values �xi and �xf. This
encourages us to extend our analysis to large amounts of
financial data and to explore other parameter regions of the
model.

V. CONCLUSIONS

We studied the mean escape time in a market model with
a cubic nonlinearity coupled with a stochastic volatility de-
scribed by the Cox-Ingersoll-Ross equation. In the CIR pro-
cess the volatility has fluctuations of intensity c and it reverts
to a mean level b at rate a.

Our results show that as long as the mean level a is dif-
ferent from zero it is possible to observe a nonmonotonic
behavior of MET as a function of the two model parameters
b and c. The parameter a regulates the transition from a
noise-only regime, where the reverting term is absent or neg-
ligible, to a revert-only regime, where the noise term is ab-
sent or negligible. In the former case, the enhancement of
MET with a nonmonotonic behavior as a function of the
model parameters, that is the NES effect, is not observable.
The curves have a monotonic shape with a plateau. More-
over, if one of the parameters is so big to push the system
into a region where the noise is greater than the barrier
height of the effective potential, the effect is no more observ-
able at all. In the revert-only regime, instead, the NES phe-
nomenon is recovered. With its regulatory effect, the revert-
ing rate a can be used to modulate the intensity of the
stabilizing effect of the noise observed by varying b and c. In
this parameter region the probability density function of the
escape times of the returns fits very well that obtained from
the experimental data extracted by the real market.
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FIG. 9. Probability density function of the escape time of the
returns from simulation �solid line�, and from real data �black
circle�. The values of the parameters are �xi=−0.1��x,
�xf =−1.0��x, x0=−1.25, xabs=−6.0, vstart=8.62�10−5, a=10−1, b
=4.5, and c=2�10−1. The potential parameters are A=2 and B
=3.

MEAN ESCAPE TIME IN A SYSTEM WITH STOCHASTIC… PHYSICAL REVIEW E 75, 016106 �2007�

016106-7



�1� L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev.
Mod. Phys. 70, 223 �1998�; V. S. Anishchenko, A. B. Neiman,
F. Moss, and L. Schimansky-Geier, Phys. Usp. 42, 7 �1999�;
R. N. Mantegna, B. Spagnolo, and M. Trapanese, Phys. Rev. E
63, 011101 �2001�; T. Wellens, V. Shatokhin, and A. Buchle-
itner, Rep. Prog. Phys. 67, 45 �2004�.

�2� R. N. Mantegna and B. Spagnolo, Phys. Rev. Lett. 76, 563
�1996�; D. Dan, M. C. Mahato, and A. M. Jayannavar, Phys.
Rev. E 60, 6421 �1999�; R. Wackerbauer, ibid. 59, 2872
�1999�; A. Mielke, Phys. Rev. Lett. 84, 818 �2000�; B. Spag-
nolo, A. A. Dubkov, and N. V. Agudov, Acta Phys. Pol. B 35,
1419 �2004�.

�3� N. V. Agudov and B. Spagnolo, Phys. Rev. E 64, 035102�R�
�2001�; A. Fiasconaro, D. Valenti, and B. Spagnolo, Physica A
325, 136 �2003�; A. A. Dubkov, N. V. Agudov, and B. Spag-
nolo, Phys. Rev. E 69, 061103 �2004�; A. Fiasconaro, B. Spag-
nolo, and S. Boccaletti, ibid. 72, 061110 �2005�.

�4� G. Parisi, Nature �London� 433, 221 �2005�; C. M. Dobson,
ibid. 426, 884 �2003�; M. Acar, A. Becskei, and A. van Oude-
naarden, ibid. 435, 228 �2005�; C. Lee et al., Nat. Rev. Mol.
Cell Biol. 5, 7 �2004�.

�5� A. L. Pankratov and B. Spagnolo, Phys. Rev. Lett. 93, 177001
�2004�; H. Larralde and F. Leyvraz, ibid. 94, 160201 �2005�;
E. V. Pankratova, A. V. Polovinkin, and B. Spagnolo, Phys.
Lett. A 344, 43 �2005�.

�6� P. W. Anderson, K. J. Arrow, and D. Pines, The Economy as an
Evolving Complex System �Addison Wesley, Longman, 1988�;
P. W. Anderson, K. J. Arrow, and D. Pines, The Economy as an
Evolving Complex System II �Addison Wesley, Longman,
1997�.

�7� R. N. Mantegna and H. E. Stanley, An Introduction to Econo-
physics: Correlations and Complexity in Finance �Cambridge
University Press, Cambridge, 2000�.

�8� J.-P. Bouchaud and M. Potters, Theory of Financial Risks
�Cambridge University Press, Cambridge, 2000�.

�9� R. Cont, Quant. Finance 1, 223 �2001�.
�10� L. Bachelier, Ann. Sci. Ec. Normale Super. III-17, 21 �1900�.
�11� M. M. Dacorogna, R. Gencay, U. A. Müller, R. B. Olsen, and

O. V. Pictet, An Introduction to High-Frequency Finance
�Academic Press, New York, 2001�.

�12� S. L. Heston, Rev. Financ. Stud. 6, 327 �1993�.
�13� J. Cox, J. Ingersoll, and S. Ross, Econometrica 53, 385

�1985�; J. P. Fouque, G. Papanicolau, and K. R. Sircar, Deriva-
tives in Financial Markets with Stochastic Volatility

�Cambridge University Press, Cambridge, 2000�.
�14� W. Feller, Ann. Math. 54, 173 �1951�.
�15� A. Christian Silva, Richard E. Prange, and Victor M.

Yakovenko, Physica A 344, 227 �2004�; A. Christian Silva,
arXiv: physics/0507022 �unpublished�.

�16� G. Bonanno and B. Spagnolo, Fluct. Noise Lett. 5, L325
�2005�; Mod. Probl. Stat. Phys. 4, 122 �2005�.

�17� S. Miccichè, G. Bonanno, F. Lillo, and R. N. Mantegna,
Physica A 314, 756 �2002�.

�18� A. A. Dragulescu and V. M. Yakovenko, Quant. Finance 2,
443 �2002�.

�19� Y. Louzoun. and S. Solomon, Physica A 302, 220 �2001�; S.
Solomon and P. Richmond, Eur. Phys. J. B 27, 257 �2002�; O.
Malcai, O. Biham, P. Richmond, and S. Solomon, Phys. Rev. E
66, 031102 �2002�.

�20� L. Borland, Phys. Rev. E 57, 6634 �1998�; Quant. Finance 2,
415 �2002�.

�21� L. Borland, Phys. Rev. Lett. 89, 098701 �2002�.
�22� P. Neu and R. Kühn, Physica A 342, 639 �2004�; J. P. L.

Hatchett and R. Kühn, J. Phys. A 39, 2231 �2006�.
�23� J.-P. Bouchaud and R. Cont, Eur. Phys. J. B 6, 543 �1998�.
�24� J.-P. Bouchaud, Quant. Finance 1, 105 �2001�.
�25� J.-P. Bouchaud, Physica A 313, 238 �2002�.
�26� D. Sornette, Phys. Rep. 378, 1 �2003�.
�27� B. M. Friedman, D. I. Laibson, and H. P. Minsky, Brooking

Papers on Economic Activity 1989�2�, 137 �1989�.
�28� J. Masoliver, M. Montero, and J. Perelló, Phys. Rev. E 71,

056130 �2005�.
�29� M. Montero, J. Perelló, J. Masoliver, F. Lillo, S. Miccichè, and

R. N. Mantegna, Phys. Rev. E 72, 056101 �2005�.
�30� E. Scalas, R. Gorenflo, and F. Mainardi, Physica A 284, 376

�2000�; F. Mainardi, M. Raberto, R. Gorenflo, and E. Scalas,
ibid. 287, 468 �2000�; M. Raberto, E. Scalas, and F. Mainardi,
Physica A 314, 749 �2002�; E. Scalas, cond-mat/0501261
�unpublished�.

�31� C. W. Gardiner, Handbook of Stochastic Methods �Springer,
Berlin, 2004�.

�32� P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62,
251 �1990�; E. Pollak and P. Talkner, Chaos 15, 026116
�2005�.

�33� G. Bonanno, G. Caldarelli, F. Lillo, and Rosario N. Mantegna,
Phys. Rev. E 68, 046130 �2003�.

�34� G. Bonanno, G. Caldarelli, F. Lillo, S. Miccichè, N. Vande-
walle, and R. N. Mantegna, Eur. Phys. J. B 38, 363 �2004�.

BONANNO, VALENTI, AND SPAGNOLO PHYSICAL REVIEW E 75, 016106 �2007�

016106-8


