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Efficiency of time evolution of quantum observables, and thermal states of quenched Hamiltonians, is
studied using time-dependent density-matrix renormalization group method in a family of generic quantum
spin chains which undergo a transition from integrable to nonintegrable-quantum chaotic case as control
parameters are varied. Quantum states �observables� are represented in terms of matrix-product operators with
rank D��t�, such that evolution of a long chain is accurate within fidelity error � up to time t. We found that the
rank generally increases exponentially D��t��exp�const t�, unless the model system was integrable in which
case we found polynomial increase.
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In the theory of classical dynamical systems there is a
fundamental difference between integrable and chaotic sys-
tems. Chaotic systems, having positive algorithmic complex-
ity, unlike the integrable ones, cannot be simulated for arbi-
trary times with a finite amount of information about their
initial states. Computational complexity of individual chaotic
trajectories is linear in time, however, if one wants to de-
scribe statistical states �phase space distributions� or observ-
ables of chaotic classical systems, up to time t, exponential
amount of computational resources N�t��exp�ht� is needed,
where h is the Kolmogorov’s dynamical entropy related to
exponential sensitivity to initial conditions. For example, one
needs to expand the solution of the Liouville equation into
the lowest N�t� Fourier modes.

How difficult is it to simulate isolated and bounded quan-
tum systems of many interacting particles using classical re-
sources? In analogy with the classical �chaotic� case, we
might expect that the best classical simulation of typical
quantum systems �in thermodynamic limit �TL�� is exponen-
tially hard. Even though there is no exponential sensitivity to
initial conditions in quantum mechanics, there is a tensor-
product structure of the many-body quantum state space
which makes its dimension to scale exponentially with the
number of particles, as opposed to linear scaling in the clas-
sical case. Furthermore, due to intricate quantum correlations
�entanglement� generic quantum time evolution cannot be
reduced to �efficient� classical computation in terms of non-
entangled �classical like� states. However, it is not known
what amount and form of quantum entanglement is needed in
order to prevent efficient classical simulation.

Recently, a family of numerical methods for the simula-
tion of interacting many-body systems has been developed
�1� which is usually referred to as time-dependent density-
matrix renormalization group �t-DMRG�, and which has
been shown to often provide an efficient classical simulation
of certain interacting quantum systems. Simulations of lo-
cally interacting one-dimensional quantum lattices were ac-
tually shown rigorously to be efficient in the number n of
particles �2� �i.e., computation time and memory resources
scale as polynomial functions of n at fixed t, or up to
t=O�ln n��, whereas the scaling of computation time and
memory with physical time t �in TL n=��, later on referred
to as time efficiency, has not been systematically studied.

t-DMRG was shown to be time efficient �3� only in rather
special cases of exactly solvable dynamics �generated with
XY spin chain Hamiltonian� and/or for particular choices of
initial states, lying either in low-energy sectors or in low-
dimensional invariant subspaces. However, for applications
in nonequilibrium statistical mechanics and condensed mat-
ter theory, e.g., in transport phenomena, it is of primary im-
portance to understand long-time dynamics of generic inter-
acting quantum systems �4�.

In this paper we address the question of time efficiency
implementing an up-to-date version of t-DMRG for a family
of Ising spin-1

2 chains in arbitrary oriented magnetic field,
which undergoes a transition from integrable �transverse
Ising� to nonintegrable quantum chaotic regime as the mag-
netic field is varied. We focus on evolution of density opera-
tors of mixed states, starting from a thermal state of a
quenched Hamiltonian, and evolution of local or extensive
initial observables in Heisenberg picture. Note that time evo-
lution of pure states is often ill defined in TL �5�. As a quan-
titative measure of time efficiency we define and compute
the minimal dimension D��t� of matrix product operator
�MPO� representation of quantum states and/or observables
which describes time evolution up to time t within fidelity
1−O���. Our central result states that in generic noninte-
grable cases computation resources grow exponentially
D��t��exp�hqt�, except in the integrable case of transverse
Ising chain, where the growth is typically linear D��t�� t.
Constant hq, asymptotically independent of n, depends only
on the evolution �Hamiltonian� and not on the details of the
initial state observable or error measures, and can be inter-
preted as a kind of quantum dynamical entropy. We conjec-
ture that integrability �solvability� of one-dimensional �1D�
interacting quantum systems is in one-to-one correspondence
with the efficiency of their classical simulability.

We also studied time efficiency of simulation of pure
states in Schrödinger picture, for which many examples of
efficient applications exist, however all for initial states of
rather particular structure typically corresponding to low en-
ergy sectors. Treating other, typical states, e.g., eigenstates of
unrelated Hamiltonians, linear combinations of highly ex-
cited states, or states chosen randomly in the many-particle
Hilbert space, we found that, irrespective of integrability of
dynamics, t-DMRG is not time efficient, i.e., D��t� grows

PHYSICAL REVIEW E 75, 015202�R� �2007�

RAPID COMMUNICATIONS

1539-3755/2007/75�1�/015202�4� ©2007 The American Physical Society015202-1

http://dx.doi.org/10.1103/PhysRevE.75.015202


exponentially even in the integrable case of transverse field
�consistently with a linear growth of entanglement entropy
�6��. In view of this fact, our finding that t-DMRG can be
time efficient for integrable systems when implemented for
time-evolved operators or high-temperature thermal states,
provides a new paradigm for a successful application of
t-DMRG.

Let us briefly review t-DMRG for evolution of density
matrices and operators �7� which generalizes t-DMRG for
pure states �1�. One defines a superket corresponding to an
operator O expanded in the computational basis of products
of local operators. Concretely, for a chain of n qubits we use
a basis of 4n Pauli operators �s0 � ¯ � �sn−1, with
sj � �0,x ,y ,z� and �0=1. The key idea of t-DMRG is to rep-
resent any operator in a matrix product form, O
=�sj

tr�A0
s0
¯An−1

sn−1��s0 � ¯ � �sn−1, in terms of 4n matrices
Aj

sj of fixed dimension D. The number of parameters in the
MPO representation is 4nD2 and for sufficiently large D it
can describe any operator. In fact, the minimal D required is
equal to the maximal rank of the reduced super density ma-
trix over all bipartitions of the chain. The advantage of MPO
representation lies in the fact that doing an elementary local
one or two qubit unitary transformation O�=U†OU can be
done locally, affecting only a pair of neighboring matrices
Aj

sj.
In order to study the role of integrability on the efficiency

of t-DMRG we take antiferromagnetic Ising chain in a gen-
eral homogeneous magnetic field,

H�hx,hz� = �
j=0

n−2

� j
x� j+1

x + �
j=0

n−1

�hx� j
x + hz� j

z� , �1�

where � j
s=1� j � �s � 1��n−1−j�. We will analyze evolution for

two different magnetic field values: �i� an integrable �regular�
case HR=H�0,2� with transverse magnetic field and �ii� non-
integrable �quantum chaotic� case HC=H�1,1� with tilted
magnetic field. Particular value of hz=2 in the case of HR
plays no role. HR can be solved by Jordan-Wigner transfor-
mation which maps HR to a system of noninteracting fermi-
ons. To confirm that HC, and HR, indeed represent generic
quantum chaotic, and regular system, respectively, we calcu-
lated level spacing distribution �LSD� of their spectra �shown
in Fig. 1�. LSD is a standard indicator of quantum chaos �8�.
It displays characteristic level repulsion for strongly nonin-
tegrable quantum systems, whereas for integrable systems

there is no repulsion due to existence of conservation laws
and quantum numbers.

Evolution by t-DMRG proceeds by splitting Hamiltonian
�1� into even and odd terms, H=He+Ho, such that terms
within He or Ho commute between each other. An approxi-
mate propagator for short time step is then written using
Trotter-Suzuki formula as U��t�=e−iHe�t/2e−iHo�te−iHe�t/2,
where each of the three terms can be written as a series of
commuting one and two qubit operations. There are two
sources of errors in t-DMRG scheme. One is Trotter error
scaling as ���t�3 per time step, or ���t�2 in total, and the
other, usually dominating one, is due to truncation.

The truncation error arises because after performing two
qubit transformation on MPO the required dimension of the
new matrices increases to 4D. In order to prevent the expo-
nential growth of D with time we truncate the resulting ma-
trices back to dimension D �1�. Truncation after application
of a single gate Ui introduces a norm error ��Ui� equal to the
sum of squares of discarded singular values. As an estimate
for the total truncation error �tot�t� at time t we will use a
sum of all truncation errors ��Ui� for two qubit gates Ui

applied up to time t, U�t�=	iUi �the number of such gates
scales as �t /�t�. If �k

2�Ui� ,k=0, . . . ,4D−1, denote decreas-
ingly ordered eigenvalues of the reduced super-density ma-
trix after the application of a gate Ui, then ��Ui� and �tot are
given by

��Ui� = �
j=D

4D−1

� j
2�Ui�, �tot�t� = �

i

��Ui� . �2�

Simple perturbation argument shows that for small time step
�t, single gate truncation error scale as ��Ui�� ��t�2, so the
total error �tot�t���t. We use the same time step �t=0.01 in
all our simulations. One may hope that �tot�t� gives a good
measure of fidelity

F�t� =

tr�OMPO�t�Oexact�t��
2


tr�OMPO
2 �t��

tr�Oexact

2 �t��

, �3�

where OMPO�t� is an operator obtained from the initial O
with t-DMRG evolution with a given fixed D, while
Oexact�t�=U†�t�OU�t� is obtained with an exact evolution. In-
deed, by comparing to exact numerical simulations of small
systems of size n=6,8 ,10 and several different D we find
quite generally �see Fig. 2 for an example� that up to good
numerical approximation 1−F�t��c�tot�t� /�t, where c is
some numerical constant of order 1 which does not depend
on �t, D, or n.

The central quantity we are going to study is D��t� which
is the minimal dimension D of matrices Ai

si in order for the
total truncation error �tot�t� to be less than some error toler-
ance �, or fidelity �3� to be bigger than 1− �c /�t��, for evo-
lution to time t. We use �=10−4 for local and extensive op-
erators and �=10−6 for thermal states. The central question is
the following: does D��t� grow exponentially or polynomi-
ally with t? If it grows polynomially we can say that
t-DMRG is time efficient.

FIG. 1. Nearest neighbor LSD for HC �left-hand side� and
HR �right-hand side� for n=12. Dashed curves are p�s�
=s	 /2 exp�−	2s2 /4� �left-hand side� and p�s�=exp�−s� �right-hand
side�, typical for chaotic and regular systems, respectively �8�.
Eigenenergies ��−9,9� were used and statistics for even and odd
parity states were combined.
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Let us first study the case where the initial operator is a
local operator in the center of the lattice O�0�=�n/2

s ,s
� �x ,y ,z�. In the integrable case time evolution O�t� can be
computed exactly in terms of Jordan-Wigner transformation
and Toeplitz determinants �9�, however for initial operators
with infinite index �10�, like, e.g., for �n/2

x,y , n→�, the evolu-
tion is rather complex and the effective number of terms
�Pauli group elements� needed to span O�t� grows exponen-
tially in t. In spite of that, our numerical simulations shown
in Fig. 3 strongly suggest the linear growth D��t�� t for ini-
tial operators with infinite index. Quite interestingly, for ini-
tial operators with finite index, D��t� saturates to a finite
value, for example �11� D����=4 for �n/2

z , or D����=16 for
�n/2−1

z �n/2
z . In nonintegrable cases the rank has been found to

grow exponentially, D��t��exp�hqt� with exponent hq which

does not depend on �, properties of O�0� or n, for big n. For
H=HC we find hq=1.10.

In physics it is often useful to consider extensive observ-
ables, for instance translational sums of local operators, e.g.,
the Hamiltonian H or the total magnetization Ms=� j=0

n−1� j
s. As

opposed to local operators, extensive initial operators, inter-
preted as W-like super states, contain some long-range en-
tanglement so one may expect that t-DMRG should be some-
what less efficient than for local operators. Indeed, in the
integrable case we find for extensive operators with finite
index that D��t� does no longer saturate but now grows lin-
early, D��t�� t, whereas for extensive operators with infinite
index the growth may be even somewhat faster, most likely
quadratic D��t�� t2 but clearly slower than exponential. In
the nonintegrable case, we again find exponential growth
D��t��exp�hqt� with the same exponent hq as for local initial
observables. The results are summarized in Fig. 4. Note that
for local as well as for extensive observables �tot�t� asymp-
totically does not depend on n. Therefore the results shown
in Figs. 3 and 4, for which convergence with n has been
reached, are already representative of TL.

In the last set of numerical experiments we consider time
efficiency of the evolution of a thermal initial state O�t�
=Z−1 exp�−
H0� under a sudden change of the Hamiltonian
at t=0, namely H�t�0�=H0=H�0,1� ,H�t�0�=H1. Again,
we treat two situations: in the first case we consider change
after which the Hamiltonian remains integrable, H1
=H�0,2�=HR, while in the other case the change breaks in-
tegrability of the Hamiltonian, H1=H�1,1�=HC. Initial state
is prepared from identity super state using imaginary time
t-DMRG with the same MPO rank D as it is later used for
real time dynamics. We find, consistently with previous re-
sults, that at high temperature �
�1� the rank D��t� grows
very slowly, perhaps slower than linear, in the integrable
case, and exponentially D��t��exp�hqt�, in the nonintegrable
case. Interestingly, at lower temperatures we find exponential
growth in both cases, even in the integrable one. This is not
unreasonable as the initial �thermal� state can be expanded in

FIG. 2. Fidelity �3� of t-DMRG evolution �full curves� and
scaled truncation errors c�tot�t� /�t with c=0.5 �dashed curves�, for
O�0�=�n/2

y , Hamiltonian HR and n=10. Different sets of curves are
for D=10,20,30,40 �top to bottom�. Chain line marks the thresh-
old where the truncation error �tot�t�=10−4 �indicated by stars for
different D’s�.

FIG. 3. D��t� for local initial operators. We consider three cases
O�0�=�n/2

x,y,z �empty circles, squares, and triangles�, for noninte-
grable evolution HC, and four cases, O�0�=�n/2

x,y �full squares, dia-
monds�, �n/2−1

z �n/2
y �full triangles� with infinite index, and O�0�

=�n/2−1
z �n/2

z �full circles� with index 2, for integrable evolution HR.
Full line in the inset illustrates exponential growth �e1.1t in the
nonintegrable case. Full squares and diamonds are for n=40, other-
wise n=20.

FIG. 4. D��t� for extensive initial operators. For both Hamilto-
nians HC, HR we take O�0�=� j� j

x �empty, full squares� with infinite
index, and O�0�=H�0,1� �empty, full circles� with index 1. For HR

we also show case O�0�=� j� j
z� j+1

z +� j
y� j+1

y �full diamonds� with
index 1 and 2. In the semilog inset we illustrate exponential in-
crease �e1.1t �full straight line� for HC and polynomial �t2 �full
curve� for HR. For full circles n=64, otherwise n=32.
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a power series in 
 and the higher orders H0
p become less

local with longer entanglement range as we increase the
power p.These results are summarized in Fig. 5. In contrast

to local and W-like observables, the total truncation error
�tot�t� is for thermal states proportional to n. Therefore, the
fidelity at fixed t and D of t-DMRG simulation of thermal
states decreases in TL.

In conclusion, we have presented numerical experiments
suggesting that the scaling of classical computation resources
in t-DMRG simulations of quantum 1D lattices with local
interaction may sensitively depend on the integrability of the
Hamiltonian, and on whether we propagate pure states or
mixed states and/or observables. For the latter we find uni-
versal exponential growth of the minimal rank of the matrix
product representation in physical time, unless we propagate
by an integrable Hamiltonian from the initial state and/or
observable which can be related to �sums of� local operators,
in which case the growth is polynomial, or even saturates for
a specific class of initial operators.
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FIG. 5. D��t� for thermal states of H0 with 
=0.01 �
=0.05 in
inset�, for evolution with HC �open symbols� and HR �full symbols�
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